[1] Tester M, Davenport R. Tolerance and Na+ transport in higher plant. Annals of Botany, 2003, 91: 503-527. [2] Darwish T, Atallah T, Moujabber M E, et al. Salinity evolution and crop response to secondary soil salinity in two agro-climatic zones in Lebanon. Agricultural Water Management, 2005, 78(1): 152-164. [3] Lauchli A, James R A, Huang C X, et al. Cell specific localization of Na+ in roots of durum wheat and possible control points for salt exclusion. Plant, Cell & Environment, 2008, 31(11): 1565-1574. [4] Kvode V A. Loss of productive land due to salinization. Ambio, 1983, 12(2): 91-93. [5] Mao H T, Huang Q H, Long S J, et al. Development and experiment on protective blanket for soil salination control. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(17): 121-127. 毛海涛, 黄庆豪, 龙顺江, 等. 土壤盐渍化治理防护毯的研发及试验. 农业工程学报, 2015, 31(17): 121-127. [6] Guo Z Y. Shaanxi soil. Beijing: Science Press, 1992. 郭兆元. 陕西土壤. 北京: 科学出版社, 1992. [7] Wang R Y, Hunt H V, Qiao Z J, et al. Diversity and cultivation of broomcorn millet (Panicum miliaceum L.) in China: A review. Economic Botany, 2016, 7(3): 1-11. [8] Dun J L, Wang H G, Chen L, et al. Analysis of genetic diversity and structure of proso millet core germplasm. Scientia Agricultura Sinica, 2015, 48(16): 3121-3131. 董俊丽, 王海岗, 陈凌, 等. 糜子骨干种质遗传多样性和遗传结构分析. 中国农业科学, 2015, 48(16): 3121-3131. [9] Zhang P P, Feng B L, Wang P K, et al. Leaf senescence and activities of antioxidant enzyme in different broomcorn millet cultivars (Panicum miliaceum L.) under simulated drought condition. Journal of Food, Agriculture and Environment, 2012, 10(2): 438-444. [10] Zhang P P, Ke X W, Jin X J, et al. Effects of film mulching modes on dry matter accumulation and transportation characteristics of broomcorn millet at later growing stage in arid land. Journal of Heilongjiang Bayi Agricultural University, 2015, 27(5): 47-51. 张盼盼, 柯希望, 金喜军, 等. 覆膜方式对旱地糜子生育后期干物质积累与转运的影响. 黑龙江八一农垦大学学报, 2015, 27(5): 47-51. [11] Wang Y F. Response of maize seedling to NaCl stress and the mechanism of salt tolerance regulation. Changchun: Shenyang Agricultural University, 2008. 王玉凤. 玉米苗期对NaCl胁迫的响应与耐盐性调控机理的研究. 长春: 沈阳农业大学, 2008. [12] Yang W Y, Yu Z W, Yu S L, et al. Effects of uniconazole waterless-dressing seed on yield of wheat. Acta Agronomica Sinica, 2004, 30(5): 502-506. 杨文钰, 于振文, 余松烈, 等. 烯效唑干拌种对小麦的增产作用. 作物学报, 2004, 30(5): 502-506. [13] Abdel-Gawad M H, E1-Batal M A. Response of maize productivity to the growth retardant “uniconazole” under high nitrogen fertilization and plant density. Annals of Agricultural Science Moshtohor, 1996, 34(2): 429-440. [14] Sawada H, Shim I S, Usui K. Induction of benzoic acid 2-hydroxy-lase and salicylic acid biosynthesis-modulation by salt stress in rice seedlings. Plant Science, 2006, 171(2): 263-270. [15] Qiu J, Wang R M, Yan J Z, et al. Seed film coating with uniconazole improves rape seedling growth in relation to physiological changes under waterlogging stress. Plant Growth Regulation, 2005, 47(1): 75-81. [16] Li H S, Sun Q, Zhao S J, et al.Principles and techniques of plant physiological and biochemical tests. Beijing: Higher Education Press, 2000: 195-261. 李合生, 孙群, 赵世杰, 等. 植物生理生化试验原理和技术. 北京: 高等教育出版社, 2000: 195-261. [17] Yang L T, Li Y R, Mo J R, et al. Preliminary studies on the effects of spraying “Duoxiaohou” on some physiological and biochemical characters in sugarcane leaves. Journal of Guangxi Agricultural, 1990, 9(1): 79-83. 杨丽涛, 李杨瑞, 莫家让, 等. 喷施“多效好”对甘蔗叶片几个生理生化特性的效应研究初报. 广西农学院报, 1990, 9(1): 79-83. [18] Gao J. Experimental instruction in plant physiology. Beijing: Higher Education Press, 2006: 210-211. 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006: 210-211. [19] Gebre G M. Role of osmotic adjustment in plant productivity. Washington: Office of Scientific & Technical Information Technical Reports, 2001. [20] Olszewski J, Makowska M, Pszczółkowska A, et al. The effect of nitrogen fertilization on flag leaf and ear photosynthesis and grain yield of spring wheat. Plant Soil & Environment, 2014, 60(12): 531-536. [21] Wang C, Zhao H D, Feng N J, et al. Effects of S3307 and DTA-6 on the photosynthetic characteristics and yield of kidney bean plants in the reproductive stage. Acta Prataculturae Sinica, 2018, 27(11): 162-170. 王畅, 赵海东, 冯乃杰, 等. S3307和DTA-6对芸豆生殖生长阶段光合特性和产量的影响. 草业学报, 2018, 27(11): 162-170. [22] Zhang Y P, Chen Y Y, Yang S J, et al. Effects of exogenous salicylic acid on seedling growth, photosynthetic and chlorophyll fluorescent parameters in melon seedlings under cadmium stress. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(4): 778-785. 张永平, 陈幼源, 杨少军, 等. 外源水杨酸对镉胁迫甜瓜幼苗生长与光合气体交换和叶绿素荧光特性的影响. 西北植物学报, 2014, 34(4): 778-785. [23] Fang Y R, Xue L. Research advances in the effect of salt stress on plant chlorophyll fluorescence. Ecological Science, 2019, 38(3): 225-234. 方怡然, 薛立. 盐胁迫对植物叶绿素荧光影响的研究进展. 生态科学, 2019, 38(3): 225-234. [24] Meng N, Xu H, Wei M, et al. Effect of foliar uniconazole spraying under salt stress on physiological and anatomical characteristics in Glycine max. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(10): 1988-1995. 孟娜, 徐航, 魏明, 等. 叶面喷施烯效唑对盐胁迫下大豆幼苗生理及解剖结构的影响. 西北植物学报, 2017, 37(10): 1988-1995. [25] Yu Q, Feng N J, Wang S Y, et al. Effects of S3307 on the photosynthesis and yield of mung bean at R1 and R5 stages under waterlogging stress. Acta Agronomica Sinica, 2019, 45(7): 1080-1089. 于奇, 冯乃杰, 王诗雅, 等. S3307 对始花期和始粒期淹水绿豆光合作用及产量的影响. 作物学报, 2019, 45(7): 1080-1089. [26] Hou L L, Zhang J L, Guo F, et al. Effects of exogenous Ca2+ on peanut plant characters under salt stress. Shandong Agricultural Sciences, 2015, 47(10): 25-28. 侯林琳, 张佳蕾, 郭峰, 等. 盐胁迫下外源Ca2+对花生植株性状的影响. 山东农业科学, 2015, 47(10): 25-28. [27] Yang X K, Wang X. Overview on soil amelioration techniques for salt-alkali field. Acta Agricultura Jiangxi, 2012, 24(3): 114-116. 杨小康, 王雪. 盐碱地改良技术研究综述. 江西农业学报, 2012, 24(3): 114-116. [28] Ci D W, Dai L X, Song W W, et al. Genotypic differences in salt tolerance from germination to seedling stage in peanut. Chinese Journal of Plant Ecology, 2013, 37(11): 1018-1027. 慈敦伟, 戴良香, 宋文武, 等. 花生萌发至苗期耐盐胁迫的基因型差异. 植物生态学报, 2013, 37(11): 1018-1027. [29] Jiang Y X. Effects of uniconazole on root growth and development of cucumber plug seedling. Hubei Agricultural Sciences, 2014, 53(7): 1589-1591. 蒋玉香. 烯效唑对黄瓜穴盘苗根系发育的影响. 湖北农业科学, 2014, 53(7): 1589-1591. [30] Li G J. Study on the production of superoxide anions and their effects in plants. Biotechnology World, 2012, 10(4): 24-25. 李国婧. 超氧阴离子的产生及其在植物体内作用的研究. 生物技术世界, 2012, 10(4): 24-25. [31] Riesa S K, Giannopelitis C N. Superoxide dismutase occurrence in higher plants. Plant Physiology, 1997, 59: 309-314. [32] Song S, Feng N J, Zheng D F. Effect of seed soaking with uniconazole on germination and anti-oxidant enzyme of soybean. Soybean Science, 2008, 27(2): 260-266. 宋胜, 冯乃杰, 郑殿峰. 烯效唑浸种对大豆种子萌发及保护性酶系的影响. 大豆科学, 2008, 27(2): 260-266. [33] Zhang J, Wu X N, Wang X J. Effects of salt stress on root growth of wheat at its seedling stage. Journal of Shangluo University, 2016, 30(4): 52-55. 张军, 吴秀宁, 王新军. 盐胁迫对小麦幼苗根系生长的影响. 商洛学院学报, 2016, 30(4): 52-55. [34] Li N Y, Wang J Z, Shi Y P. Regulation of salt tolerance by uniconazole (S3307) on Petunia hybrid seedlings. Journal of Shenyang Agricultural University, 2011, 42(6): 668-671. 李宁毅, 王吉振, 时彦平. 烯效唑(S3307)对矮牵牛幼苗耐盐性的调节效应. 沈阳农业大学学报, 2011, 42(6): 668-671. [35] Irshad A, Muhammad K, Shahzad A, et al. Seed filling in maize and hormones crosstalk regulated by exogenous application of uniconazole in semiarid regions. Environmental Science and Pollution Research, 2018, 25(33): 33225-33239. [36] Xiang H T, Li W, He N, et al. Effects of S3307 on physiology of chilling resistance in root and on yield of adzuki bean under low temperature stress during seedling stage. Acta Prataculturae Sinica, 2019, 28(7): 92-102. 项洪涛, 李琬, 何宁, 等. 苗期低温胁迫下烯效唑对红小豆根系抗寒生理及产量的影响. 草业学报, 2019, 28(7): 92-102. |