[1] Yuan X Y, Guo P Y, Huang J, et al. Effect of glyphosate on photosynthesis and chlorophyll fluorescence of leaves of glyphosate-resistant soybean (Glycine max) seedlings under phosphorus deficiency stress. Journal of Plant Nutrition and Fertilizer, 2014, 20(1): 221-228. 原向阳, 郭平毅, 黄洁, 等. 缺磷胁迫下草甘膦对抗草甘膦大豆幼苗光合作用和叶绿素荧光参数的影响. 植物营养与肥料学报, 2014, 20(1): 221-228. [2] Deng Q W, Luo X D, Chen Y L, et al. Transcriptome analysis of phosphorus stress responsiveness in the seedlings of Dongxiang wild rice (Oryza rufipogon Griff.). Biological Research, 2018, 51(1): 7. [3] Bieleski R L.Phosphate pools, phosphate transport, and phosphate availability. Annual Review of Plant Physiology, 1973, 24(1): 225-252. [4] Vance C P, Uhde-Stone C, Allan D L.Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 2010, 157(3): 423-447. [5] Rivaie A A.The effects of understory vegetation on P availability in Pinus radiata forest stands: A review. Journal of Forestry Research, 2014, 25(3): 489-500. [6] Yuan T Y, Wang J Z, Ji J H, et al. Changes in soil available phosphorus and its response to phosphorus balance under long-term fertilization in fluvo-aquic soil. Journal of Nuclear Agricultural Sciences, 2017, 31(1): 125-134. 袁天佑, 王俊忠, 冀建华, 等. 长期施肥条件下潮土有效磷的演变及其对磷盈亏的响应. 核农学报, 2017, 31(1): 125-134. [7] Gong S Y, Liang X H, Yang S Q, et al. Effect on growth and physiological characteristics of tobacco genotypes with different P-efficiency at seedling stage under low-phosphorus stress. Journal of Nuclear Agricultural Sciences, 2019, 33(6): 1217-1224. 龚丝雨, 梁喜欢, 杨帅强, 等. 低磷胁迫对不同磷效率基因型烟草苗期生长及生理特征的影响. 核农学报, 2019, 33(6): 1217-1224. [8] Sun M, Li P C, Zheng C S, et al. Effects of low phosphorus stress on root morphology and physiological characteristics of different cotton genotypes at the seedling stage. Cotton Science, 2018, 30(1): 45-52. 孙淼, 李鹏程, 郑苍松, 等. 低磷胁迫对不同基因型棉花苗期根系形态及生理特性的影响. 棉花学报, 2018, 30(1): 45-52. [9] Li Z S, Li Z Y, Zhang Q X, et al. Comparision of response mechanisms to low inorganic phosphate stress between alfalfa varieties Aohan and Victoria. Acta Prataculturae Sinica, 2019, 28(1): 50-59. 李振松, 栗振义, 张绮芯, 等. 敖汉和维多利亚紫花苜蓿对低磷环境应激机制的比较. 草业学报, 2019, 28(1): 50-59. [10] Richardson A E.Regulating the phosphorus nutrition of plants: Molecular biology meeting agronomic needs. Plant & Soil, 2009, 322(1/2): 17-24. [11] Chen L S, Chen Y Z, Wang R, et al. Effects of P-dificiency on protective enzyme activities of different fine clones of camellia oleifera abel. Journal of Northeast Forestry University, 2013, 41(9): 23-25. 陈隆升, 陈永忠, 王瑞, 等. 低磷胁迫对不同油茶优良无性系酶活性的影响. 东北林业大学学报, 2013, 41(9): 23-25. [12] Macdonald G K, Bennett E M, Potter P A, et al. Agronomic phosphorus imbalances across the world’s croplands. Proceedings of the National Academy of Sciences, 2011, 108(7): 3086-3091. [13] Wang Y H, Garvin D F, Kochian L V.Rapid induction of regulatory and transporter genes in response to phosphorus, potassium and iron deficiencies in tomato roots. Evidence for cross talk and root/rhizosphere-mediated signals. Plant Physiology, 2002, 130(3): 1361-1370. [14] Wang Y Z, Huang X, Cai L P, et al. Effect of soil particle composition on seed germination and seedling growth of Paspalum wettsteii under different temperatures. Acta Prataculturae Sinica, 2018, 27(9): 45-55. 王玉珍, 黄晓, 蔡丽平, 等. 不同温度条件下土壤颗粒组成对宽叶雀稗种子发芽与幼苗生长的影响. 草业学报, 2018, 27(9): 45-55. [15] He K W, Huang Y H, Jiang F S, et al. Effects of two types of herb plants’ roots on soil moisture in the alluvial soil in Changting County. Science of Soil and Water Conservation, 2017, 15(4): 25-34. 何恺文, 黄炎和, 蒋芳市, 等. 2种草本植物根系对长汀县崩岗洪积扇土壤水分状况的影响. 中国水土保持科学, 2017, 15(4): 25-34. [16] Chen S Y, Zhao Y M, Li Z X, et al. Effects of Pb, Cd and acid stress on seed germination, seedling growth and antioxidant enzyme activities of Paspalum wettsteinii. Acta Agrestia Sinica, 2018, 26(5): 1173-1180. 陈顺钰, 赵雅曼, 李宗勋, 等. Pb、Cd和酸胁迫对宽叶雀稗种子萌发、幼苗生长及抗氧化酶活性的影响. 草地学报, 2018, 26(5): 1173-1180. [17] Wang W J, Zhao L L, Wang P C, et al. Seed dormancy mechanism and breaking technique of two Paspalum species. Seed, 2017, 36(9): 6-11, 16. 王文娟, 赵丽丽, 王普昶, 等. 2种雀稗属牧草种子休眠机理及其破除方法研究. 种子, 2017, 36(9): 6-11, 16. [18] Hu D Y, Cai L, Chen G D, et al. Mapping QTLs for phosphorus efficiency at tillering stage under different phosphorus levels in barley (Hordeum vulgare). Acta Agronomica Sinica, 2017, 43(12): 1746-1759. 胡德益, 蔡露, 陈光登, 等. 不同磷水平下大麦分蘖期磷效率相关性状QTL定位分析. 作物学报, 2017, 43(12): 1746-1759. [19] Ma J H, Wang Y G, Sun Y, et al. Effects of low phosphorous stress on the morphologies and physiological indices of different sorghum cultivars at seedling stage. Journal of Plant Nutrition and Fertilizer, 2013, 19(5): 1083-1091. 马建华, 王玉国, 孙毅, 等. 低磷胁迫对不同品种高粱苗期形态及生理指标的影响. 植物营养与肥料学报, 2013, 19(5): 1083-1091. [20] Xu J, Zhang X Z, Li T X, et al. Phosphorus absorption and acid phosphatase activity in wild barley genotypes with different phosphorus use efficiencies. Acta Prataculturae Sinica, 2015, 24(1): 88-98. 徐静, 张锡洲, 李廷轩, 等. 野生大麦对土壤磷吸收及其酸性磷酸酶活性的基因型差异. 草业学报, 2015, 24(1): 88-98. [21] Tian X X, Mao P C, Guo Q, et al. Effect of cadmium on root morphology and partial physiological indexes of Iris lacteal var. chinensis. Acta Botanica Boreali-Occidentalia Sinica, 2019, (6): 1105-1113. 田小霞, 毛培春, 郭强, 等. 镉胁迫对马蔺根系形态及部分生理指标的影响. 西北植物学报, 2019, (6): 1105-1113. [22] Zheng J F, Dong S M, Li C P, et al. Effects of phosphorus deficiency stress on protective enzyme activities, MDA content and chromosome of wheat substitution lines. Plant Nutrition and Fertilizer Science, 2010, 16(6): 1366-1372. 郑金凤, 董少鸣, 李成璞, 等. 低磷胁迫对小麦代换系保护酶活性和丙二醛含量的影响及染色体效应. 植物营养与肥料学报, 2010, 16(6): 1366-1372. [23] Liu T, Chen H Y, Yu H Y, et al. Characterization of phosphorus utilization in barley leaf under low phosphorus stress. Chinese Bulletin of Botany, 2016, 51(4): 504-514. 刘涛, 陈海英, 余海英, 等. 低磷胁迫下大麦叶片磷素利用特征. 植物学报, 2016, 51(4): 504-514. [24] Cai Q Y, Zhang X Z, Li T X, et al. The utilization of phytate organic phosphorus in P-efficient wild barley genotypes at jointing stage. Scientia Agricultura Sinica, 2015, 48(16): 3146-3155. 蔡秋燕, 张锡洲, 李廷轩, 等. 磷高效野生大麦拔节期对植酸态有机磷的利用. 中国农业科学, 2015, 48(16): 3146-3155. [25] Li Z Y, Zhang Q X, Tong Z Y, et al. Analysis of morphological and physiological responses to low Pi stress in different alfalfas. Scientia Agricultura Sinica, 2017, 50(20): 3898-3907. 栗振义, 张绮芯, 仝宗永, 等. 不同紫花苜蓿品种对低磷环境的形态与生理响应分析. 中国农业科学, 2017, 50(20): 3898-3907. [26] Huang C Y, Shirley N, Genc Y, et al. Phosphate utilization efficiency correlates with expression of low-affinity phosphate transporters and noncoding RNA, IPS1, in barley. Plant Physiology, 2011, 156(3): 1217-1229. [27] Song S J, Sun H C, Zhang Y J, et al. Genotypic differences in root morphology and leaf photosynthesis of cotton seedlings treated with phosphorus-deficient solutions. Cotton Science, 2015, 27(3): 223-231. 宋世佳, 孙红春, 张永江, 等. 水培磷胁迫下不同基因型棉花苗期根系形态及叶片光合特性的差异. 棉花学报, 2015, 27(3): 223-231. [28] Cao C L, Mao Y H, Cao P T, et al. Effect of phosphorous stress on photosynthesis rate and root physiological characteristic of cowpea seed lings. Plant Nutrition and Fertilizer Science, 2010, 16(6): 1373-1378. 曹翠玲, 毛圆辉, 曹朋涛, 等. 低磷胁迫对豇豆幼苗叶片光合特性及根系生理特性的影响. 植物营养与肥料学报, 2010, 16(6): 1373-1378. [29] Cristina M A, Ruiz-Lozano J M, Dodd I C, et al. Hormonal and nutritional features in contrasting rootstock-mediated tomato growth under low-phosphorus nutrition. Frontiers in Plant Science, 2017, 8(23): 533-538. [30] Reiter R S, Coors J G, Sussman M R, et al. Genetic analysis of tolerance to low-phosphorus stress in maize using restriction fragment length polymorphisms. Theoretical & Applied Genetics, 1991, 82(5): 561-568. [31] Wu J J, Liu L J, Zhong P, et al. Effects of low phosphorus stress on activities of cell defense enzymes of different P-efficiency soybean. Soybean Science, 2008, 27(3): 437-441. 吴俊江, 刘丽君, 钟鹏, 等. 低磷胁迫对不同基因型大豆保护酶活性的影响. 大豆科学, 2008, 27(3): 437-441. [32] Tarafdar J C, Claassen N.Preferential utilization of organic and inorganic sources of phosphorus by wheat plant. Plant and Soil, 2005, 275: 285-293. [33] Richardson A E, Hocking P J, Simpson R J, et al. Plant mechanisms to optimise access to soil phosphorus. Crop and Pasture Science, 2009, 60(2): 124. [34] Li F, Li M Y, Pan X H, et al. Biochemical and physiological characteristics in seedlings roots of different rice cultivars under low-phosphorus stress. Chinese Journal of Rice Science, 2004, 18(1): 48-52. 李锋, 李木英, 潘晓华, 等. 不同水稻品种幼苗适应低磷胁迫的根系生理生化特性. 中国水稻科学, 2004, 18(1): 48-52. [35] Xu B, Gao Z, Wang J, et al. Morphological changes in roots of bothriochloa ischaemum intercropped with lespedeza davurica following phosphorus application and water stress. Plant Biosystems, 2013, 149(2): 1-9. [36] Zheng L, Huang F, Narsai R, et al. Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings. Plant Physiology, 2009, 151(1): 262-274. [37] Li H, Ma Q, Li H, et al. Root morphological responses to localized nutrient supply differ among crop species with contrasting root traits. Plant and Soil, 2014, 376(1/2): 151-163. [38] Fan J W, Du Y L, Turner N C, et al. Changes in root morphology and physiology to limited phosphorus and moisture in a locally-selected cultivar and an introduced cultivar of Medicago sativa growing in alkaline soil. Plant and Soil, 2015, 392(1/2): 215-226. [39] Poorter H, Ryser P.The limits to leaf and root plasticity: What is so special about specific root length?New Phytologist, 2015, 206(4): 1188-1190. |