[1] Piao S L, Fang J Y, Zhou L M, et al. Changes in biomass carbon stocks in China’s grasslands between 1982 and 1999. Global Biogeochemical Cycles, 2007, 21(2): 1-10. [2] Bai Y F, Chen S P. Carbon sequestration of Chinese grassland ecosystems: Stock, rate and potential. Chinese Journal of Plant Ecology, 2018, 42(3): 261-264. 白永飞, 陈世苹. 中国草地生态系统固碳现状、速率和潜力研究. 植物生态学报, 2018, 42(3): 261-264. [3] Yu W C, Song X L, Xiu W M, et al. Effects of additional nitrogen on litter decomposition in Stipa baicalensis grassland. Acta Prataculturae Sinica, 2014, 23(5): 49-60. 于雯超, 宋晓龙, 修伟明, 等. 氮素添加对贝加尔针茅草原凋落物分解的影响. 草业学报, 2014, 23(5): 49-60. [4] Fang X M, Zhang X L, Chen F S, et al. Phosphorus addition alters the response of soil organic carbon decomposition to nitrogen deposition in a subtropical forest. Soil Biology and Biochemistry, 2019, 133: 119-128. [5] Li Y N, Zhou X M, Zhang N L, et al. The research of mixed litter effects on litter decomposition in terrestrial ecosystems. Acta Ecologica Sinica, 2016, 36(16): 4977-4987. 李宜浓, 周晓梅, 张乃莉, 等. 陆地生态系统混合凋落物分解研究进展. 生态学报, 2016, 36(16): 4977-4987. [6] Lu W J, Liu N, Zhang Y J, et al. Impact of vegetation community on litter decomposition: Evidence from a reciprocal transplant study with 13C labeled plant litter. Soil Biology and Biochemistry, 2017, 112(1): 248-257. [7] Djukic I, Kepfer-Rojas S, Schmidt I K, ,et al. Early stage litter decomposition across biomes. Science of the Total Environment. Early stage litter decomposition across biomes. Science of the Total Environment, 2018, 628/629: 1369-1394. [8] Yang L L, Gong J R, Liu M, et al. Advances in the effect of nitrogen deposition on grassland litter decomposition. Chinese Journal of Plant Ecology, 2017, 41(8): 894-913. 杨丽丽, 龚吉蕊, 刘敏, 等. 氮沉降对草地凋落物分解的影响研究进展. 植物生态学报, 2017, 41(8): 894-913. [9] Lu G C, Shao Y R, Xue L. Research progress in the effect of nitrogen deposition on litter decomposition. World Forestry Research, 2014, 27(1): 35-42. 卢广超, 邵怡若, 薛立. 氮沉降对凋落物分解的影响研究进展. 世界林业研究, 2014, 27(1): 35-42. [10] Hobbie S E. Nitrogen effects on decomposition: A five year experiment in eight temperate sites. Ecology, 2008, 89(9): 2633-2644. [11] Cheng S L, Fang H J, Xu M, et al. Regulation of plant-soil-microbe interactions to soil organic carbon in natural ecosystems under elevated nitrogen deposition: A review. Acta Ecologica Sinica, 2018, 38(23): 8285-8295. 程淑兰, 方华军, 徐梦, 等. 氮沉降增加情景下植物-土壤-微生物交互对自然生态系统土壤有机碳的调控研究进展. 生态学报, 2018, 38(23): 8285-8295. [12] Yue K, Yang W Q, Peng C H, ,et al. Foliar litter decomposition in an alpine forest meta-ecosystem on the eastern Tibetan Plateau. Science of the Total Environment. Foliar litter decomposition in an alpine forest meta-ecosystem on the eastern Tibetan Plateau. Science of the Total Environment, 2016, 566/567: 279-287. [13] Peng Y, Yang W Q, Yue K, et al. Temporal dynamics of phosphorus during aquatic and terrestrial litter decomposition in an alpine forest. Science of the Total Environment, 2018, 642: 832-841. [14] Jing X, Chen X, Xiao W, et al. Soil enzymatic responses to multiple environmental drivers in the Tibetan grasslands: Insights from two manipulative field experiments and a meta-analysis. Pedobiologia, 2018, 71: 50-58. [15] Shi B K, Zhang J M, Wang C L, et al. Responses of hydrolytic enzyme activities in saline-alkaline soil to mixed inorganic and organic nitrogen addition. Scientific Reports, 2018, 8(1): 1-12. [16] Cline L C, Zak D R. Soil microbial communities are shaped by plant-driven changes in resource availability during secondary succession. Ecology, 2015, 96(12): 3374-3385. [17] Tian D, Jiang L, Ma S H, et al. Effects of nitrogen deposition on soil microbial communities in temperate and subtropical forests in China. Science of the Total Environment, 2017, 607: 1367-1375. [18] Li Y B, Bezemer T M, Yang J J, et al. Changes in litter quality induced by N deposition alter soil microbial communities. Soil Biology and Biochemistry, 2019, 130: 33-42. [19] Zhang Q F, Laanbroek H J. The effects of condensed tannins derived from senescing Rhizophora mangle leaves on carbon, nitrogen and phosphorus mineralization in a Distichlis spicata salt marsh soil. Plant and Soil, 2018, 433(1/2): 37-53. [20] Hofrichter M. Review: Lignin conversion by manganese peroxidase (MnP). Enzyme and Microbial Technology, 2002, 30(4): 454-466. [21] Mccay T S, Cardelus C L, Neatrour M A. Rate of litter decay and litter macroinvertebrates in limed and unlimed forests of the Adirondack mountains, USA. Forest Ecology and Management, 2013, 304: 254-260. [22] Berg B, Kjonaas O J, Johansson M B, et al. Late stage pine litter decomposition: Relationship to litter N, Mn, and acid unhydrolyzable residue (AUR) concentrations and climatic factors. Forest Ecology and Management, 2015, 358: 41-47. [23] Wickings K, Grandy A S, Reed S C, et al. The origin of litter chemical complexity during decomposition. Ecology Letters, 2012, 15(10): 1180-1188. [24] Parsons S A, Congdon R A, Lawler I R. Determinants of the pathways of litter chemical decomposition in a tropical region. New Phytologist, 2014, 203(3): 873-882. [25] Huo L X, Hong M, Zhao B Y N M L, et al. Effects of increased nitrogen deposition and changing rainfall patterns on litter decomposition in a desert grassland. Acta Ecologica Sinica, 2019, 39(6): 2139-2146. 霍利霞, 红梅, 赵巴音那木拉, 等. 氮沉降和降雨变化对荒漠草原凋落物分解的影响. 生态学报, 2019, 39(6): 2139-2146. [26] Zheng Y X, Cao J L, Yang Z J, et al. Impacts of nitrogen deposition on soil microbial community structure in subtropical natural evergreen broad-leaved forest relative to season. Acta Pedologica Sinica, 2018, 55(6): 1534-1544. 郑裕雄, 曹际玲, 杨智杰, 等. 氮沉降对亚热带常绿阔叶天然林不同季节土壤微生物群落结构的影响. 土壤学报, 2018, 55(6): 1534-1544. [27] Liu X, Zhang Y, Han W, et al. Enhanced nitrogen deposition over China. Nature, 2013, 494: 459-462. [28] Luo Q P, Gong J R, Yang L L, et al. Impacts of nitrogen addition on the carbon balance in a temperate semiarid grassland ecosystem. Biology and Fertility of Soils, 2017, 53(8): 911-927. [29] Henry H A L, Cleland E E, Field C B, et al. Interactive effects of elevated CO2, N deposition and climate change on plant litter quality in a California annual grassland. Oecologia, 2005, 142(3): 465-473. [30] Van Soest P J. Development of a comprehensive system of feed analyses and its application to forages. Journal of Animal Science, 1967, 26(1): 119-128. [31] Liu M M, Jia L, Zhang H Q, et al. Mechanical damage on secondary metabolites from Artemisia. Journal of Zhejiang A & F University, 2015, 32(6): 845-852. 刘盟盟, 贾丽, 张洪芹, 等. 机械损伤对冷蒿叶片次生代谢产物的影响. 浙江农林大学学报, 2015, 32(6): 845-852. [32] Verchot L V, Borelli T. Application of para-nitrophenol (pNP) enzyme assays in degraded tropical soils. Soil Biology and Biochemistry, 2005, 37(4): 625-633. [33] Guan S Y. Soil enzyme and its research method. Beijing: Agricultural Press, 1986. 关松荫. 土壤酶及其研究方法. 北京: 农业出版社, 1986. [34] Sinsabaugh R L, Carreiro M M, Repert D A. Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry, 2002, 60(1): 1-24. [35] Zhao H Y, Geng Y Q, Yang Y, et al. Enzyme activities in litter of Pinus tabulaeformis and Acer truncatum forests in lower mountain area, Beijing. Journal of Central South University of Forestry and Technology, 2016, 36(6): 23-28. 赵恒毅, 耿玉清, 杨英, 等. 北京低山区油松林和元宝枫林凋落物酶活性研究. 中南林业科技大学学报, 2016, 36(6): 23-28. [36] Xu C, Yu Q, Zuo X A, et al. Effects of nitrogen addition on photosynthetic characteristics of different canopy plants in grassland. Journal of Desert Research, 2019, 39(1): 135-141. 徐翀, 庾强, 左小安, 等. 氮素添加对草原不同冠层植物光合作用的影响. 中国沙漠, 2019, 39(1): 135-141. [37] García P, Shaw E A, Wall D H, et al. Temporal dynamics of biotic and abiotic drivers of litter decomposition. Ecology Letters, 2016, 19(5): 554-563. [38] Huang J Y, Yu H L, Yuan Z Y, et al. Effects of nitrogen, phosphorus and water supply on litter decomposition quality of senescing leaves of Leymus chinensis. Chinese Journal of Plant Ecology, 2011, 35(8): 808-815. 黄菊莹, 余海龙, 袁志友, 等. 氮、磷和水分供给对羊草枯叶分解质量的影响. 植物生态学报, 2011, 35(8): 808-815. [39] Birgander J, Rousk J, Olsson P A. Comparison of fertility and seasonal effects on grassland microbial communities. Soil Biology and Biochemistry, 2014, 76: 80-89. [40] Gao H Y, Hong M, Huo L X, et al. Effects of exogenous nitrogen input and water change on litter decomposition in a desert grassland. Chinese Journal of Applied Ecology, 2018, 29(10): 3167-3174. 高海燕, 红梅, 霍利霞, 等. 外源氮输入和水分变化对荒漠草原凋落物分解的影响. 应用生态学报, 2018, 29(10): 3167-3174. [41] Wu C S, Wang H K, Mo Q F, et al. Effects of elevated UV-B radiation and N deposition on the decomposition of coarse woody debris. Science of the Total Environment, 2019, 663: 170-176. [42] Xu G P, Chao Z G, Wang S P, et al. Temperature sensitivity of nutrient release from dung along elevation gradient on the Qinghai-Tibetan Plateau. Nutrient Cycling in Agroecosystems, 2010, 87(1): 49-57. [43] Wu Q Q, Wang C K. Dynamics in foliar litter decomposition for Pinus koraiensis and Quercus mongolica in a snow-depth manipulation experiment. Chinese Journal of Plant Ecology, 2018, 42(2): 153-163. 武启骞, 王传宽. 控雪处理下红松和蒙古栎凋落叶分解动态. 植物生态学报, 2018, 42(2): 153-163. [44] Cleveland C C, Reed S C, Keller A B, et al. Litter quality versus soil microbial community controls over decomposition: A quantitative analysis. Oecologia, 2014, 174(1): 283-294. [45] Zhang Y, Zhang D J, Zhang J, et al. Effects of forest gap size on litter recalcitrant components of two tree species in Pinus massoniana plantations. Chinese Journal of Plant Ecology, 2015, 39(8): 785-796. 张艳, 张丹桔, 张健, 等. 马尾松人工林林窗大小对两种凋落叶难降解物质含量的影响. 植物生态学报, 2015, 39(8): 785-796. [46] Kanerva S, Kitunen V, Kiikkila O, et al. Response of soil C and N transformations to tannin fractions originating from Scots pine and Norway spruce needles. Soil Biology and Biochemistry, 2006, 38(6): 1364-1374. [47] Zong W Z, Wang J, He Y S, et al. Net nitrogen mineralization and enzyme activities in an alpine meadow soil amended with litter tannins. Journal of Plant Nutrition and Soil Science, 2018, 181(6): 954-965. [48] Berg B, Matzner E. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environmental Reviews, 1997, 5(1): 1-25. [49] Austin A T, Ballare C L. Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(10): 4618-4622. [50] Rahman M M, Tsukamoto J, Rahman M M, et al. Lignin and its effects on litter decomposition in forest ecosystems. Chemistry and Ecology, 2013, 29(6): 540-553. [51] Li W Y, Qiu X, Bai L, et al. Effects nitrogen and phosphorus addition on litter decomposition on the Stipa baicalensis steppe. Acta Prataculturae Sinica, 2017, 26(8): 43-53. 李文亚, 邱璇, 白龙, 等. 氮、磷添加对贝加尔针茅草原凋落物分解的影响. 草业学报, 2017, 26(8): 43-53. [52] Liu W F, Shen F F, Xu Z P, et al. Impacts of nitrogen deposition on nutrient release during leaf litter decomposition in Cunninghamia lanceolata plantations. Ecology and Environmental Sciences, 2019, 28(4): 695-701. 刘文飞, 沈芳芳, 徐志鹏, 等. 氮沉降对杉木人工林凋落物叶分解过程中养分释放的影响. 生态环境学报, 2019, 28(4): 695-701. [53] Yue K, Wu F Z, Yang W Q, et al. Cellulose dynamics during foliar litter decomposition in an alpine forest meta-ecosystem. Forests, 2016, 7(8): 1-13. [54] Liu Y W, Yang W Q, Wu F Z, et al. Soil organic layer enzyme activities in subalpine coniferous forests of Western Sichuan, China. Ecology and Environmental Sciences, 2017, 26(5): 747-753. 刘育伟, 杨万勤, 吴福忠, 等. 川西亚高山针叶林土壤有机层酶活性. 生态环境学报, 2017, 26(5): 747-753. [55] Luo R Y, Fan J L, Wang W J, et al. Nitrogen and phosphorus enrichment accelerates soil organic carbon loss in alpine grassland on the Qinghai-Tibetan Plateau. Science of the Total Environment, 2019, 650: 303-312. [56] Qin Y, Zhang D J, Li X, et al. Changes of total phenols and condensed tannins during the decomposition of mixed leaf litter of Pinus massoniana and broad-leaved trees. Chinese Journal of Applied Ecology, 2018, 29(7): 2224-2232. 覃宇, 张丹桔, 李勋, 等. 马尾松与阔叶树种混合凋落叶分解过程中总酚和缩合单宁的变化. 应用生态学报, 2018, 29(7): 2224-2232. [57] Vivanco L, Austin A T. The importance of macro- and micro-nutrients over climate for leaf litter decomposition and nutrient release in Patagonian temperate forests. Forest Ecology and Management, 2019, 441: 144-154. [58] Xu X, Wang W F, Ruan H H. Effects of soil fauna on the decomposition of forest litter: Mechanism and modeling. Chinese Journal of Ecology, 2019, 38(9): 2858-2865. 徐璇, 王维枫, 阮宏华. 土壤动物对森林凋落物分解的影响: 机制和模拟. 生态学杂志, 2019, 38(9): 2858-2865. [59] Jing X, Chen X, Tang M, et al. Nitrogen deposition has minor effect on soil extracellular enzyme activities in six Chinese forests. Science of the Total Environment, 2017, 607: 806-815. [60] Wang L N, Luo J F, Yang M X, et al. Effects of nitrogen addition on the soil microbial biomass C and microbial biomass N in degraded alpine grassland in Zoige County. Acta Prataculturae Sinica, 2019, 28(7): 38-48. 王丽娜, 罗久富, 杨梅香, 等. 氮添加对退化高寒草地土壤微生物量碳氮的影响. 草业学报, 2019, 28(7): 38-48. [61] Weintraub S R, Wieder W R, Cleveland C C, et al. Organic matter inputs shift soil enzyme activity and allocation patterns in a wet tropical forest. Biogeochemistry, 2013, 114(1/2/3): 313-326. [62] Hobbie S E, Vitousek P M. Nutrient limitation of decomposition in Hawaiian forests. Ecology, 2000, 81(7): 1867-1877. [63] Marklein A R, Houlton B Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytologist, 2012, 193(3): 696-704. [64] Dong C C, Wang W, Liu H Y, et al. Temperate grassland shifted from nitrogen to phosphorus limitation induced by degradation and nitrogen deposition: Evidence from soil extracellular enzyme stoichiometry. Ecological Indicators, 2019, 101: 453-464. [65] Peng Y, Chen G T, Li S, et al. Nitrogen additions reduce rhizospheric and heterotrophic respiration in a subtropical evergreen broad-leaved forest. Plant and Soil, 2018, 431(1/2): 449-463. [66] Li Y, Nie C, Liu Y H, et al. Soil microbial community composition closely associates with specific enzyme activities and soil carbon chemistry in a long-term nitrogen fertilized grassland. Science of the Total Environment, 2019, 654: 264-274. [67] Ahmed I U, Mengistie H K, Godbold D L, et al. Soil moisture integrates the influence of land-use and season on soil microbial community composition in the Ethiopian highlands. Applied Soil Ecology, 2019, 135: 85-90. |