草业学报 ›› 2021, Vol. 30 ›› Issue (11): 122-131.DOI: 10.11686/cyxb2020428
• 研究论文 • 上一篇
收稿日期:
2020-09-22
修回日期:
2020-10-26
出版日期:
2021-10-19
发布日期:
2021-10-19
通讯作者:
刘建新
作者简介:
Corresponding author.基金资助:
Jian-xin LIU(), Rui-rui LIU, Hai-yan JIA, Xiu-li LIU, Ting BU, Na LI
Received:
2020-09-22
Revised:
2020-10-26
Online:
2021-10-19
Published:
2021-10-19
Contact:
Jian-xin LIU
摘要:
稀土元素镧(La)作为一种重金属在高浓度时对作物产生胁迫伤害。为探究外源半胱氨酸(Cys)对裸燕麦La胁迫的缓解作用及其生理机制,采用盆栽土培试验,研究了抽穗期喷施Cys (0、0.5、1.0、2.5、5.0 mmol·L-1)对400 mg·kg-1 La胁迫下裸燕麦叶片活性氧代谢、渗透调节及农艺产量性状和La吸收积累的影响。结果表明:1)喷施0.5~2.5 mmol·L-1 Cys显著缓解了La胁迫下裸燕麦叶片超氧阴离子含量的上升;喷施0.5~5.0 mmol·L-1 Cys降低了La胁迫下裸燕麦叶片过氧化氢和丙二醛含量,提高了裸燕麦地上部生物量、穗粒数、穗粒重和籽粒产量,对株高和千粒重的影响不显著。2)喷施0.5~5.0 mmol·L-1 Cys显著降低La胁迫下裸燕麦叶片超氧化物歧化酶和过氧化物酶活性及抗坏血酸和类胡萝卜素含量,提高抗坏血酸过氧化物酶活性及谷胱甘肽和植物络合素含量;喷施0.5和1.0 mmol·L-1 Cys显著提高过氧化氢酶(CAT)活性,喷施2.5和5.0 mmol·L-1 Cys的CAT活性显著下降。3)喷施0.5~5.0 mmol·L-1 Cys可显著缓解La胁迫下裸燕麦叶片可溶性蛋白质和可溶性糖含量的下降,提高脯氨酸含量,以2.5 mmol·L-1 Cys为最好。4)随着Cys喷施浓度的增加,La胁迫下裸燕麦根、茎和叶对La的富集能力和La吸收积累量显著提高,分别提高4.5%~41.3%和4.4%~41.2%,但对La在裸燕麦不同部位的转运无显著影响。因此,外源Cys虽提高裸燕麦对La的吸收富集,但通过调控活性氧清除系统和促进渗透调节物质积累能够减轻La胁迫造成的氧化伤害和对农艺产量性状的抑制,从而增强裸燕麦耐受La胁迫的能力。
刘建新, 刘瑞瑞, 贾海燕, 刘秀丽, 卜婷, 李娜. 外源半胱氨酸缓解裸燕麦镧胁迫的生理机制[J]. 草业学报, 2021, 30(11): 122-131.
Jian-xin LIU, Rui-rui LIU, Hai-yan JIA, Xiu-li LIU, Ting BU, Na LI. Physiological mechanism of exogenous cysteine application alleviation of lanthanum stress in naked oats[J]. Acta Prataculturae Sinica, 2021, 30(11): 122-131.
La含量 La content (mg·kg-1) | 株高 Plant height (cm) | 地上部生物量 Shoot biomass (g·pot -1) | 穗粒数 Grains per spike (grains·spike-1) | 穗粒重 Grain weight per spike (g·spike-1) | 千粒重 1000-grain weight (g) | 籽粒产量 Grain yield (g·pot-1) |
---|---|---|---|---|---|---|
CK | 81.6±3.2a | 187.5±25.3a | 30.2±3.2a | 0.52±0.05a | 17.81±0.80a | 28.36±4.83ab |
25 | 82.3±1.5a | 193.4±17.2a | 31.9±4.5a | 0.50±0.09a | 17.64±0.63a | 32.94±3.52a |
50 | 80.2±2.4ab | 185.6±21.9a | 28.9±2.6a | 0.49±0.04a | 17.26±0.65a | 26.22±3.78ab |
100 | 80.1±3.0ab | 178.5±15.6a | 28.4±3.3a | 0.46±0.04a | 17.24±0.76a | 22.79±2.96bc |
200 | 78.4±5.1bc | 167.3±20.8a | 27.3±4.0a | 0.34±0.06b | 17.58±0.68a | 21.16±3.05bc |
300 | 75.3±2.9cd | 124.8±14.9b | 21.2±3.5b | 0.28±0.07bc | 17.45±0.94a | 17.54±2.97cd |
400 | 71.9±3.6d | 113.3±16.2b | 18.4±5.5bc | 0.24±0.08bc | 17.61±0.88a | 15.44±2.58cd |
500 | 62.5±2.6e | 104.6±18.5b | 15.1±3.7c | 0.21±0.03c | 17.02±0.73a | 11.25±3.04d |
表1 外源La对裸燕麦株高、地上部生物量和产量构成因素的影响
Table 1 Effect of exogenous lanthanum on plant height, shoot biomass and yield component factors of naked oat
La含量 La content (mg·kg-1) | 株高 Plant height (cm) | 地上部生物量 Shoot biomass (g·pot -1) | 穗粒数 Grains per spike (grains·spike-1) | 穗粒重 Grain weight per spike (g·spike-1) | 千粒重 1000-grain weight (g) | 籽粒产量 Grain yield (g·pot-1) |
---|---|---|---|---|---|---|
CK | 81.6±3.2a | 187.5±25.3a | 30.2±3.2a | 0.52±0.05a | 17.81±0.80a | 28.36±4.83ab |
25 | 82.3±1.5a | 193.4±17.2a | 31.9±4.5a | 0.50±0.09a | 17.64±0.63a | 32.94±3.52a |
50 | 80.2±2.4ab | 185.6±21.9a | 28.9±2.6a | 0.49±0.04a | 17.26±0.65a | 26.22±3.78ab |
100 | 80.1±3.0ab | 178.5±15.6a | 28.4±3.3a | 0.46±0.04a | 17.24±0.76a | 22.79±2.96bc |
200 | 78.4±5.1bc | 167.3±20.8a | 27.3±4.0a | 0.34±0.06b | 17.58±0.68a | 21.16±3.05bc |
300 | 75.3±2.9cd | 124.8±14.9b | 21.2±3.5b | 0.28±0.07bc | 17.45±0.94a | 17.54±2.97cd |
400 | 71.9±3.6d | 113.3±16.2b | 18.4±5.5bc | 0.24±0.08bc | 17.61±0.88a | 15.44±2.58cd |
500 | 62.5±2.6e | 104.6±18.5b | 15.1±3.7c | 0.21±0.03c | 17.02±0.73a | 11.25±3.04d |
处理 Treatment | O2·-含量O2·- content (nmol·g-1 FW) | H2O2含量H2O2 content (mg·g-1 FW) | MDA 含量MDA content (μmol·g-1 FW) | |||
---|---|---|---|---|---|---|
7 d | 14 d | 7 d | 14 d | 7 d | 14 d | |
CK | 18.19±4.45d | 21.47±3.19e | 6.64±0.57bc | 8.59±1.83d | 0.858±0.109c | 1.936±0.085d |
La | 60.25±8.69ab | 89.07±7.25a | 10.18±0.43a | 23.97±3.56a | 1.222±0.187a | 6.308±0.274a |
La+0.5Cys | 27.19±1.81c | 44.52±5.90c | 7.08±0.83b | 16.99±2.37bc | 1.053±0.121ab | 4.149±0.352b |
La+1.0Cys | 18.92±4.01d | 31.08±4.55d | 6.08±0.89c | 15.12±1.12c | 0.911±0.207bc | 2.958±0.354c |
La+2.5Cys | 54.04±5.93b | 71.27±5.19b | 7.45±0.60b | 18.27±0.60b | 0.790±0.086cd | 3.422±0.143bc |
La+5.0Cys | 67.90±9.51a | 95.72±6.38a | 7.10±0.35b | 21.54±1.94ab | 0.637±0.093d | 3.816±0.167b |
表2 外源Cys对La胁迫下裸燕麦叶片O2.-、H2O2和MDA含量的影响
Table 2 Effect of exogenous Cys on O2.-, H2O2 and MDA contents in leaves of naked oat under La stress
处理 Treatment | O2·-含量O2·- content (nmol·g-1 FW) | H2O2含量H2O2 content (mg·g-1 FW) | MDA 含量MDA content (μmol·g-1 FW) | |||
---|---|---|---|---|---|---|
7 d | 14 d | 7 d | 14 d | 7 d | 14 d | |
CK | 18.19±4.45d | 21.47±3.19e | 6.64±0.57bc | 8.59±1.83d | 0.858±0.109c | 1.936±0.085d |
La | 60.25±8.69ab | 89.07±7.25a | 10.18±0.43a | 23.97±3.56a | 1.222±0.187a | 6.308±0.274a |
La+0.5Cys | 27.19±1.81c | 44.52±5.90c | 7.08±0.83b | 16.99±2.37bc | 1.053±0.121ab | 4.149±0.352b |
La+1.0Cys | 18.92±4.01d | 31.08±4.55d | 6.08±0.89c | 15.12±1.12c | 0.911±0.207bc | 2.958±0.354c |
La+2.5Cys | 54.04±5.93b | 71.27±5.19b | 7.45±0.60b | 18.27±0.60b | 0.790±0.086cd | 3.422±0.143bc |
La+5.0Cys | 67.90±9.51a | 95.72±6.38a | 7.10±0.35b | 21.54±1.94ab | 0.637±0.093d | 3.816±0.167b |
图1 外源Cys对镧胁迫下裸燕麦叶片SOD、CAT、POD和APX活性的影响不同小写字母表示同一时间不同处理间5%水平差异显著。下同。Different lowercase letters indicate significant difference at 5% level among different treatments for the same time. The same below.
Fig.1 Effect of exogenous Cys on the activities of SOD, CAT, POD and APX in naked oat leaves under La stress
图2 外源Cys对镧胁迫下裸燕麦叶片ASA、GSH、类胡萝卜素和PCs含量的影响
Fig.2 Effect of exogenous Cys on the contents of ASA, GSH, carotenoid and phytochelatins in naked oat leaves under La stress
处理 Treatment | 可溶性蛋白质含量Soluble protein content | 可溶性糖含量Soluble sugar content | 脯氨酸含量Proline content | |||
---|---|---|---|---|---|---|
7 d | 14 d | 7 d | 14 d | 7 d | 14 d | |
CK | 3.22±0.24b | 3.27±0.18b | 3.15±0.22b | 3.17±0.14b | 33.35±3.48d | 35.97±3.37e |
La | 3.24±0.09b | 2.47±0.15c | 2.13±0.03d | 2.45±0.17c | 46.44±3.49c | 63.96±5.43d |
La+0.5Cys | 3.44±0.21ab | 3.23±0.17b | 2.42±0.09d | 2.46±0.16c | 46.87±0.34c | 74.63±3.05c |
La+1.0Cys | 3.50±0.07a | 3.67±0.21a | 2.74±0.20bc | 3.22±0.24b | 54.78±1.94b | 81.01±3.87b |
La+2.5Cys | 3.55±0.15a | 3.75±0.14a | 3.62±0.35a | 3.67±0.10a | 65.02±1.40a | 92.41±4.06a |
La+5.0Cys | 3.44±0.15ab | 3.69±0.19a | 2.90±0.31b | 3.26±0.14b | 53.56±2.72b | 87.61±1.56a |
表3 外源Cys对镧胁迫下裸燕麦叶片可溶性蛋白质、可溶性糖和脯氨酸含量的影响
Table 3 Effect of exogenous Cys on contents of soluble protein, soluble sugar and proline in naked oat leaves under La stress (mg·g-1 FW)
处理 Treatment | 可溶性蛋白质含量Soluble protein content | 可溶性糖含量Soluble sugar content | 脯氨酸含量Proline content | |||
---|---|---|---|---|---|---|
7 d | 14 d | 7 d | 14 d | 7 d | 14 d | |
CK | 3.22±0.24b | 3.27±0.18b | 3.15±0.22b | 3.17±0.14b | 33.35±3.48d | 35.97±3.37e |
La | 3.24±0.09b | 2.47±0.15c | 2.13±0.03d | 2.45±0.17c | 46.44±3.49c | 63.96±5.43d |
La+0.5Cys | 3.44±0.21ab | 3.23±0.17b | 2.42±0.09d | 2.46±0.16c | 46.87±0.34c | 74.63±3.05c |
La+1.0Cys | 3.50±0.07a | 3.67±0.21a | 2.74±0.20bc | 3.22±0.24b | 54.78±1.94b | 81.01±3.87b |
La+2.5Cys | 3.55±0.15a | 3.75±0.14a | 3.62±0.35a | 3.67±0.10a | 65.02±1.40a | 92.41±4.06a |
La+5.0Cys | 3.44±0.15ab | 3.69±0.19a | 2.90±0.31b | 3.26±0.14b | 53.56±2.72b | 87.61±1.56a |
处理 Treatment | 株高 Plant height (cm) | 地上部生物量 Shoot biomass (g·pot -1) | 穗粒数 Grains per spike (grains·spike-1) | 穗粒重 Grain weight per spike (g·spike-1) | 千粒重 1000-grain weight (g) | 籽粒产量 Grain yield (g·pot-1) |
---|---|---|---|---|---|---|
CK | 85.9±4.7a | 210.7±18.9a | 38.9±3.0a | 0.51±0.04a | 17.32±0.57a | 34.59±5.55a |
La | 72.5±4.5b | 125.8±15.7d | 22.5±4.8c | 0.25±0.05c | 17.48±0.49a | 18.17±3.14c |
La+0.5Cys | 73.8±3.2b | 147.3±14.1cd | 27.2±3.1bc | 0.33±0.04bc | 17.32±0.66a | 24.18±3.86bc |
La+1.0Cys | 78.9±2.8ab | 163.4±15.5bc | 32.9±2.6b | 0.36±0.03b | 17.29±0.59a | 25.82±2.37b |
La+2.5Cys | 77.6±3.3b | 174.6±11.6b | 34.1±3.5a | 0.29±0.05bc | 17.31±0.62a | 25.96±2.14b |
La+5.0Cys | 76.5±2.6b | 154.2±16.3bcd | 30.0±4.7bc | 0.26±0.07c | 17.44±0.58a | 22.34±3.90bc |
表4 外源Cys对镧胁迫下裸燕麦生长和产量构成因素的影响
Table 4 Effect of exogenous Cys on the growth and yield component factors in naked oat under La stress
处理 Treatment | 株高 Plant height (cm) | 地上部生物量 Shoot biomass (g·pot -1) | 穗粒数 Grains per spike (grains·spike-1) | 穗粒重 Grain weight per spike (g·spike-1) | 千粒重 1000-grain weight (g) | 籽粒产量 Grain yield (g·pot-1) |
---|---|---|---|---|---|---|
CK | 85.9±4.7a | 210.7±18.9a | 38.9±3.0a | 0.51±0.04a | 17.32±0.57a | 34.59±5.55a |
La | 72.5±4.5b | 125.8±15.7d | 22.5±4.8c | 0.25±0.05c | 17.48±0.49a | 18.17±3.14c |
La+0.5Cys | 73.8±3.2b | 147.3±14.1cd | 27.2±3.1bc | 0.33±0.04bc | 17.32±0.66a | 24.18±3.86bc |
La+1.0Cys | 78.9±2.8ab | 163.4±15.5bc | 32.9±2.6b | 0.36±0.03b | 17.29±0.59a | 25.82±2.37b |
La+2.5Cys | 77.6±3.3b | 174.6±11.6b | 34.1±3.5a | 0.29±0.05bc | 17.31±0.62a | 25.96±2.14b |
La+5.0Cys | 76.5±2.6b | 154.2±16.3bcd | 30.0±4.7bc | 0.26±0.07c | 17.44±0.58a | 22.34±3.90bc |
图3 外源Cys对La胁迫下裸燕麦La含量及富集系数和转运系数的影响
Fig.3 Effect of exogenous Cys on the lanthanum content, accumulator factor and translocation factor in naked oat under La stress
1 | Xu X, Zhu W, Wang Z, et al. Accumulation of rare earth elements in maize plants (Zea mays L.) after application of mixtures of rare earth elements and lanthanum. Plant and Soil, 2003, 252(2): 267-277. |
2 | Jin S L, Huang Y Z. A review on rare earth elements in farmland ecosystem. Acta Ecologica Sinica, 2013, 33(16): 4836-4845. |
金姝兰, 黄益宗. 稀土元素对农田生态系统的影响研究进展. 生态学报, 2013, 33(16): 4836-4845. | |
3 | Du Y, Wang Y J, Wu Y, et al. Effects of lanthanum on several important enzyme activities of earthworm. Journal of the Chinese Society of Rare Earth, 2014, 32(1): 84-93. |
杜宇, 王应军, 武阳, 等. 镧胁迫对蚯蚓几种重要酶活性的影响. 中国稀土学报, 2014, 32(1): 84-93. | |
4 | Liu J X, Ou X B,Wang J C. Effects of exogenous hydrogen peroxide on photosynthesis and reactive oxygen metabolism in leaves of Avena nuda L. seedlings under lanthanum stress. Journal of the Chinese Society of Rare Earth, 2019, 37(2): 123-133. |
刘建新, 欧晓彬, 王金成. 外源H2O2对镧胁迫下裸燕麦幼苗光合作用和活性氧代谢的影响. 中国稀土学报, 2019, 37(2): 123-133. | |
5 | Xi Z M, Wang Z Z, Hu Y, et al. Effects of 2,4-epibrassinolide on the antioxidant system and osmotic adjustment substance in grape seedlings (V. vinifera L.) under chilling stress. ScientiaAgricultura Sinica, 2013, 46(5): 1005-1013. |
惠竹梅, 王智真, 胡勇, 等. 2,4-表油菜素内酯对低温胁迫下葡萄幼苗抗氧化系统及渗透调节物质的影响. 中国农业科学, 2013, 46(5): 1005-1013. | |
6 | Shi P, Zeng F L, Deng R W. Effects of lanthanum on permeability and membrane lipid composition in cucumber seedling leaves. Journal of the Chinese Society of Rare Earth, 2004, 22(2): 61-63. |
史萍, 曾福礼, 邓汝温. 镧对黄瓜幼苗叶片细胞透性及膜脂的影响. 中国稀土学报, 2004, 22(2): 61-63. | |
7 | Wang L F, Li L B, Bai K Z, et al. Inhibitory effect of high concentration LaCl3 on photosystem II activity of cucumber (Cucumis sativus Linn). Journal of the Chinese Society of Rare Earth, 2005, 23(6): 770-774. |
王立丰, 李良壁, 白克智, 等. 高浓度LaCl3抑制黄瓜(Cucumis sativus Linn)光系统Ⅱ(PSⅡ)活性. 中国稀土学报, 2005, 23(6): 770-774. | |
8 | Chen W J, Gu Y H, Wang S B, et al. Effect of lanthanum on RuBPcase activity of tobacco seedlings. Journal of the Chinese Society of Rare Earth, 2000, 18(3): 258-261. |
陈为钧, 顾月华, 王圣兵, 等. 镧对烟草 RuBPCase活性影响的研究. 中国稀土学报, 2000, 18(3): 258-261. | |
9 | Liu J X, Wang J C, Liu X L. Effect of exogenous nitric oxide on active oxygen metabolism and mineral contents in oat seedlings under lanthanum stress. Acta Prataculturae Sinica, 2017, 26(5): 135-143. |
刘建新, 王金成, 刘秀丽. 外源NO对镧胁迫下燕麦幼苗活性氧代谢和矿质元素含量的影响. 草业学报, 2017, 26(5): 135-143. | |
10 | Liu J X, Wang J C, Wang R J, et al. Effects of SNP on carbon and nitrogen metabolism and antioxidant system in ryegrass seedling leaves under lanthanum stress. Journal of the Chinese Society of Rare Earth, 2012, 30(3): 365-372. |
刘建新, 王金成, 王瑞娟, 等. 硝普钠对镧胁迫下黑麦草幼苗叶片碳氮代谢和抗氧化系统的影响. 中国稀土学报, 2012, 30(3): 365-372. | |
11 | Chen W J, Tao Y, Gu Y H, et al. Effect of lanthanide chloride on photosynthesis and dry matter accumulation in tobacco seedlings. Biological Trace Element Research, 2001, 79(2): 169-176. |
12 | Shang Y T, Zhang N N, Shangguan Z P, et al. Physiological function and mechanism of hydrogen sulfide in plants. Chinese Bulletin of Botany, 2018, 53(4): 565-574. |
尚玉婷, 张妮娜, 上官周平, 等. 硫化氢在植物中的生理功能及作用机制. 植物学报, 2018, 53(4): 565-574. | |
13 | Alvarez C, Bermudez M, Romero L C, et al. Cysteine homeostasis plays an essential role in plant immunity. New Phytologist, 2012, 193(1): 165-177. |
14 | Zhang L, Sun D, Wang X, et al. Research progress on cysteine participation in heavy metal resistance in organism. Biotechnology Bulletin, 2017, 33(5): 26-33. |
张礼, 孙堆, 王晓, 等. 半胱氨酸参与生物体重金属抗性的研究进展. 生物技术通报, 2017, 33(5): 26-33. | |
15 | Wedemeyer W J, Welker E, Narayan M, et al. Disulfide bonds and protein folding. Biochemistry, 2000, 39(15): 4207-4216. |
16 | Dong J H, Sun M Z. Effects of L-cysteine, ascorbic acid and indoleacetic acid on delay senescence of hevea leaves induced by exogenous ethylene. Chinese Journal of Tropical Crops, 1989, 10(2): 1-7. |
董建华, 孙明增. L-半胱氨酸、抗坏血酸和吲哚乙酸延缓外施乙烯促进橡胶叶片衰老的效应. 热带作物学报, 1989, 10(2): 1-7. | |
17 | Yi H L, Liu J. Protective effects of cysteine against SO2-induced oxidative damage in barley. Journal of Shanxi University (Natural Science Edition), 2007, 30(2): 270-273. |
仪慧兰, 刘静. 半胱氨酸对SO2致大麦氧化损伤的缓解作用. 山西大学学报(自然科学版), 2007, 30(2): 270-273. | |
18 | Peng X Y, Song M. Effects of exogenous cysteine on growth, copper accumulation and antioxidative systems in wheat seedlings under Cu stress. Acta Ecologica Sinica, 2011, 31(12): 3504-3511. |
彭向永, 宋敏. 外源半胱氨酸对铜胁迫下小麦幼苗生长、铜积累量及抗氧化系统的影响. 生态学报, 2011, 31(12): 3504-3511. | |
19 | Cognat C, Shepherd T, Verrall S R, et al. Comparison of two headspace sampling techniques for the analysis of off-flavour volatiles from oat based products. Food Chemistry, 2012, 134(3): 1592-1600. |
20 | Guo W, Fu R Y, Zhao R X, et al. Distribution characteristics and current situation of soil rare earth contamination in the Bayan Obo Mining Area and Baotou tailing reservoir in Inner Mongolia. Environmental Science, 2013, 34(5): 1895-1900. |
郭伟, 付瑞英, 赵仁鑫, 等. 内蒙古包头白云鄂博矿区及尾矿区周围土壤稀土污染现状和分布特征. 环境科学, 2013, 34(5): 1895-1900. | |
21 | Yu X Y, Song Y C, Wei G P, et al. Phytomycorrhizal synergistic remediation of soil polluted by lanthanum and cerium. Chinese Rare Earths, 2021, 42(4): 91-100. |
于晓燕, 宋宇辰, 魏光普, 等. 镧、铈污染土壤中植物-菌根协同修复效应. 稀土, 2021, 42(4): 91-100. | |
22 | Gao J F. Plant physiology experiment guide. Beijing: Higher Education Press, 2006. |
高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006. | |
23 | Sergiev I, Alexieva V, Karanov E. Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Comptes Rendus de I’ Academie Bulgare des Sciences, 1997, 51(2): 121-124. |
24 | Chen J X, Wang X F. Plant physiology experiment instruction. Guangzhou: South China University of Technology Press, 2002. |
陈建勋, 王晓峰. 植物生理学实验指导. 广州: 华南理工大学出版社, 2002. | |
25 | Bai X J, Liu L J, Zhang C H, et al. Effect of H2O2 pretreatment on Cd tolerance of different rice cultivars. Chinese Journal of Rice Science, 2010, 24(4): 391-397. |
白晓娟, 刘丽娟, 张春华, 等. H2O2预处理对不同水稻品种Cd耐性的影响. 中国水稻科学, 2010, 24(4): 391-397. | |
26 | Jiang Z W, Weng B Q, Huang Y F, et al. Comparison of effects of lanthanum application on growth by spraying and soil dressing in Chamaecrista rotundifolia. Acta Agronomica Sinica, 2008(7): 1273-1279. |
姜照伟, 翁伯琦, 黄元仿, 等. 喷施和土施镧对圆叶决明生长影响的比较. 作物学报, 2008(7): 1273-1279. | |
27 | De Knecht J A, Koevoets P L M, Verkleij J A C, et al. Evidence against a role for phytochelatins in naturally selected increased cadmium tolerance in Silene vulgaris (Moench) Garcke. New Phytologist, 1992, 122(4): 681-688. |
28 | Hu G, Xu Q R, Liang C J, et al. Injury effect and mechanism of high dose rare-earth La (Ⅲ) and acid-rain on growth of soybean seedling. Chinese Journal of Eco-Agriculture, 2010, 18(3): 680-682. |
胡刚, 徐秋荣, 梁婵娟, 等. 高剂量稀土La(Ⅲ)与酸雨对大豆幼苗生长的复合伤害效应及机理. 中国生态农业学报, 2010, 18(3): 680-682. | |
29 | Yang X Y, Liu Z W, Hu F J, et al. Soil rare earth element and nitride pollution on plant growth and physiology. Journal of the Chinese Society of Rare Earth, 2019, 37(1): 1-11. |
杨秀英, 刘祖文, 胡方洁, 等. 土壤稀土元素和氮化物污染对植物生长及生理的影响. 中国稀土学报, 2019, 37(1): 1-11. | |
30 | Zeng Q, Zhu J G, Cheng H L, et al. Ecophysiological response of rice to lanthanum accumulation in red earth. Acta Scientiae Circumstance, 2003, 23(1): 17-21. |
曾青, 朱建国, 成后龙, 等. 红壤中镧积累对水稻的生理生态效应. 环境科学学报, 2003, 23(1): 17-21. | |
31 | Deng X P, Xia Y, Hu W, et al. Cadmium-induced oxidative damage and protective effects of N-acetyl-L-cysteine against cadmium toxicity in Solanum nigrum L. Journal of Hazardous Materials, 2010, 180(1/2/3): 722-729. |
32 | Zhang X D, Meng J G, Zhao K X, et al. Annotation and characterization of Cd-responsive metal transporter genes in rapeseed (Brassica napus). Biometals, 2018, 31(1): 107-121. |
33 | Surasak S, Samuel T, Desh P S V, et al. Molecular mechanisms of proline-mediated tolerance to toxic heavy metals intransgenic microalgae. Plant Cell, 2002, 14(11): 2837-2847. |
[1] | 谭真真, 张夏香, 杨志民. 冷季型草坪草耐热性研究进展[J]. 草业学报, 2021, 30(9): 193-202. |
[2] | 聂秀美, 慕平, 赵桂琴, 何海鹏, 吴文斌, 蔺豆豆, 苏伟娟, 张丽睿. 贮藏年限对裸燕麦种带真菌和真菌毒素的影响[J]. 草业学报, 2021, 30(6): 106-120. |
[3] | 刘建新, 刘瑞瑞, 贾海燕, 卜婷, 李娜. NaHS引发提高裸燕麦种子活力的生理机制[J]. 草业学报, 2021, 30(2): 135-142. |
[4] | 刘建新, 欧晓彬, 王金成, 刘瑞瑞, 贾海燕. 镉胁迫下裸燕麦幼苗对外源H2O2的生理响应[J]. 草业学报, 2020, 29(1): 125-134. |
[5] | 王茜, 李志坚, 李晶, 周帮伟. 不同类型燕麦农艺和饲草品质性状分析[J]. 草业学报, 2019, 28(12): 149-158. |
[6] | 柯丹霞, 彭昆鹏, 张孟珂, 贾妍. 大豆GmCYS20基因在百脉根共生结瘤过程中的功能研究[J]. 草业学报, 2018, 27(9): 132-141. |
[7] | 刘建新, 王金成, 刘秀丽. 外源NO对镧胁迫下燕麦幼苗活性氧代谢和矿质元素含量的影响[J]. 草业学报, 2017, 26(5): 135-143. |
[8] | 杨发荣, 刘文瑜, 黄杰, 魏玉明, 金茜. 不同藜麦品种对盐胁迫的生理响应及耐盐性评价[J]. 草业学报, 2017, 26(12): 77-88. |
[9] | 魏树强, 孙振元, 代小梅, 钱永强. 多年生黑麦草LpGCS基因克隆及其在烟草中的初步功能验证[J]. 草业学报, 2016, 25(4): 121-132. |
[10] | 耿帆, 周青平, 梁国玲, 贾志锋, 刘文辉, 丁成翔, 刘勇, 颜红波. 8个大粒裸燕麦品种核型研究[J]. 草业学报, 2016, 25(3): 120-125. |
[11] | 刘文辉. 高寒地区播期对三种裸燕麦品种灌浆特性影响的研究[J]. 草业学报, 2016, 25(3): 143-153. |
[12] | 刘建新, 王金成, 王瑞娟, 贾海燕. 外源一氧化氮提高裸燕麦幼苗的耐碱性[J]. 草业学报, 2015, 24(8): 110-117. |
[13] | 葛剑, 杨翠军, 刘贵河, 杨志敏, 白雪梅. 添加剂和混合比例对裸燕麦和紫花苜蓿混贮品质的影响[J]. 草业学报, 2015, 24(6): 116-124. |
[14] | 葛剑,杨翠军,杨志敏,白雪梅,赵海香,刘贵河. 紫花苜蓿和裸燕麦混贮发酵品质和营养成分分析[J]. 草业学报, 2015, 24(4): 104-113. |
[15] | 吴娜,胡跃高,任长忠,刘吉利. 两种灌溉方式下保水剂用量对春播裸燕麦土壤氮素的影响[J]. 草业学报, 2014, 23(2): 346-351. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||