草业学报 ›› 2021, Vol. 30 ›› Issue (2): 135-142.DOI: 10.11686/cyxb2020127
收稿日期:
2020-03-24
修回日期:
2020-04-29
出版日期:
2021-02-20
发布日期:
2021-01-19
通讯作者:
刘建新
作者简介:
刘建新(1964-),男,甘肃通渭人,教授,本科。E-mail: liujx1964@163.com基金资助:
Jian-xin LIU(), Rui-rui LIU, Hai-yan JIA, Ting BU, Na LI
Received:
2020-03-24
Revised:
2020-04-29
Online:
2021-02-20
Published:
2021-01-19
Contact:
Jian-xin LIU
摘要:
硫化氢(H2S)信号在作物种子萌发中发挥着重要作用。为探讨外源H2S供体NaHS引发提高作物种子活力的作用及其生理机制,以裸燕麦种子为材料,分别用不同浓度NaHS (0、50、100、200、400、800、1600 μmol·L-1)引发18 h和800 μmol·L-1 NaHS引发不同时间(6、9、12、15、18、21 h),分析其发芽势(GP)、发芽率(GR)、发芽指数(GI)、活力指数(VI)和幼苗干重(DW)的变化,以确定适宜的NaHS引发浓度和引发时间。以未引发种子为对照(CK),同时设置H2O引发,研究800 μmol·L-1 NaHS引发18 h对种子H2S产生、贮藏物质含量和活性氧代谢的影响。结果表明,800 μmol·L-1 NaHS引发18 h可显著提高裸燕麦种子的GP、GR、GI和VI,但对DW的影响不大。NaHS引发对种子淀粉、可溶性糖、可溶性蛋白质、还原型抗坏血酸(ASA)、脱氢抗坏血酸(DHA)含量及ASA/DHA和抗坏血酸过氧化物酶活性无显著影响,但显著提高H2S和氧化型谷胱甘肽(GSSG)含量及细胞色素氧化酶(COX)、超氧化物歧化酶、过氧化氢酶和过氧化物酶活性,分别比CK提高了113.5%、14.4%、103.3%、6.1%、112.0%和120.5%;降低α-淀粉酶和β-淀粉酶活性及超氧阴离子、过氧化氢、丙二醛、还原型谷胱甘肽(GSH)含量、GSH/GSSG和质膜相对透性,分别下降了39.8%、53.6%、34.7%、36.1%、37.6%、29.2%、38.1%和11.9%。由此表明,NaHS引发可能通过提高种子H2S含量,从而调控抗氧化系统和激活COX活性,降低活性氧对质膜的损伤,增强细胞有氧呼吸代谢,提高裸燕麦种子活力。
刘建新, 刘瑞瑞, 贾海燕, 卜婷, 李娜. NaHS引发提高裸燕麦种子活力的生理机制[J]. 草业学报, 2021, 30(2): 135-142.
Jian-xin LIU, Rui-rui LIU, Hai-yan JIA, Ting BU, Na LI. Physiological mechanism of NaHS priming improvement of seed vigor in naked oat[J]. Acta Prataculturae Sinica, 2021, 30(2): 135-142.
NaHS浓度 NaHS concentration (μmol·L-1) | 发芽势 Germination potential (GP, %) | 发芽率 Germination rate (GR, %) | 发芽指数 Germination index (GI) | 活力指数 Vigor index (VI) | 单株干重 Dry weight (DW, mg·plant-1) |
---|---|---|---|---|---|
CK | 85.6±2.5b | 87.2±1.1c | 77.8±4.1c | 42.3±3.6b | 6.24±0.39ab |
0 | 86.4±3.6b | 87.2±3.1bc | 81.4±4.2bc | 45.4±3.2ab | 6.40±0.27ab |
50 | 87.0±3.5b | 87.6±3.1bc | 79.9±1.8c | 44.5±4.5ab | 6.34±0.37ab |
100 | 87.2±3.6b | 89.0±3.7ab | 79.8±3.0c | 44.8±2.5ab | 6.32±0.42ab |
200 | 86.6±3.0b | 86.8±3.1bc | 84.6±1.8ab | 45.1±6.5ab | 6.12±0.66b |
400 | 83.8±1.3b | 84.0±1.4c | 81.4±1.6bc | 45.7±3.5ab | 6.68±0.43ab |
800 | 90.8±1.9a | 91.2±2.3a | 87.3±2.2a | 50.7±7.1a | 6.36±0.71ab |
1600 | 85.4±1.5b | 85.6±1.3bc | 81.3±1.6bc | 47.6±1.7ab | 6.84±0.15a |
表 1 不同浓度NaHS引发对裸燕麦种子发芽指标的影响
Table 1 Effect of seed priming with different concentrations of NaHS on germination indexes of naked oat
NaHS浓度 NaHS concentration (μmol·L-1) | 发芽势 Germination potential (GP, %) | 发芽率 Germination rate (GR, %) | 发芽指数 Germination index (GI) | 活力指数 Vigor index (VI) | 单株干重 Dry weight (DW, mg·plant-1) |
---|---|---|---|---|---|
CK | 85.6±2.5b | 87.2±1.1c | 77.8±4.1c | 42.3±3.6b | 6.24±0.39ab |
0 | 86.4±3.6b | 87.2±3.1bc | 81.4±4.2bc | 45.4±3.2ab | 6.40±0.27ab |
50 | 87.0±3.5b | 87.6±3.1bc | 79.9±1.8c | 44.5±4.5ab | 6.34±0.37ab |
100 | 87.2±3.6b | 89.0±3.7ab | 79.8±3.0c | 44.8±2.5ab | 6.32±0.42ab |
200 | 86.6±3.0b | 86.8±3.1bc | 84.6±1.8ab | 45.1±6.5ab | 6.12±0.66b |
400 | 83.8±1.3b | 84.0±1.4c | 81.4±1.6bc | 45.7±3.5ab | 6.68±0.43ab |
800 | 90.8±1.9a | 91.2±2.3a | 87.3±2.2a | 50.7±7.1a | 6.36±0.71ab |
1600 | 85.4±1.5b | 85.6±1.3bc | 81.3±1.6bc | 47.6±1.7ab | 6.84±0.15a |
时间 Time (h) | 发芽势 Germination potential (GP, %) | 发芽率 Germination rate (GR, %) | 发芽指数 Germination index (GI) | 活力指数 Vigor index (VI) | 单株干重 Dry weight (DW, mg·plant-1) |
---|---|---|---|---|---|
6 | 89.0±2.9ab | 89.5±2.9ab | 61.7±1.6b | 28.3±2.1b | 5.11±0.17a |
9 | 88.0±3.8ab | 91.0±1.8ab | 62.9±1.3b | 29.1±1.3b | 5.10±0.31a |
12 | 86.0±1.2b | 88.0±2.9b | 63.6±0.9b | 29.7±1.6b | 5.30±0.13a |
15 | 88.8±1.9ab | 92.8±1.0a | 63.7±1.3b | 30.1±2.8b | 5.10±0.35a |
18 | 89.3±1.7ab | 91.8±1.3a | 68.8±1.2a | 33.6±1.6a | 5.33±0.10a |
21 | 91.5±2.5a | 92.8±1.5a | 68.6±1.6a | 33.5±1.8a | 5.28±0.14a |
表 2 用800 μmol·L-1 NaHS引发不同时间对裸燕麦种子发芽指标的影响
Table 2 Effect of 800 μmol·L-1 NaHS priming times on germination indexes of naked oat seeds
时间 Time (h) | 发芽势 Germination potential (GP, %) | 发芽率 Germination rate (GR, %) | 发芽指数 Germination index (GI) | 活力指数 Vigor index (VI) | 单株干重 Dry weight (DW, mg·plant-1) |
---|---|---|---|---|---|
6 | 89.0±2.9ab | 89.5±2.9ab | 61.7±1.6b | 28.3±2.1b | 5.11±0.17a |
9 | 88.0±3.8ab | 91.0±1.8ab | 62.9±1.3b | 29.1±1.3b | 5.10±0.31a |
12 | 86.0±1.2b | 88.0±2.9b | 63.6±0.9b | 29.7±1.6b | 5.30±0.13a |
15 | 88.8±1.9ab | 92.8±1.0a | 63.7±1.3b | 30.1±2.8b | 5.10±0.35a |
18 | 89.3±1.7ab | 91.8±1.3a | 68.8±1.2a | 33.6±1.6a | 5.33±0.10a |
21 | 91.5±2.5a | 92.8±1.5a | 68.6±1.6a | 33.5±1.8a | 5.28±0.14a |
引发剂 Priming agent | 淀粉含量 Starch content | 可溶性糖含量 Soluble sugar content | 可溶性蛋白质含量Soluble protein content |
---|---|---|---|
CK | 270.0±32.9a | 21.4±2.99a | 10.7±0.46a |
H2O | 274.7±41.9a | 16.5±2.18b | 10.4±0.41a |
NaHS | 311.9±40.1a | 19.0±0.73ab | 10.5±0.27a |
表 3 不同引发剂对裸燕麦种子淀粉、可溶性糖和可溶性蛋白质含量的影响
Table 3 Effect of seed priming with different agents on the contents of starch, soluble sugar and soluble protein of naked oat seeds (mg·g-1)
引发剂 Priming agent | 淀粉含量 Starch content | 可溶性糖含量 Soluble sugar content | 可溶性蛋白质含量Soluble protein content |
---|---|---|---|
CK | 270.0±32.9a | 21.4±2.99a | 10.7±0.46a |
H2O | 274.7±41.9a | 16.5±2.18b | 10.4±0.41a |
NaHS | 311.9±40.1a | 19.0±0.73ab | 10.5±0.27a |
引发剂 Priming agent | 细胞色素氧化酶 Cytochrome oxidase (COX, OD510·g-1·min-1) | α-淀粉酶 α-amylase (mg·g-1·min-1) | β-淀粉酶 β-amylase (mg·g-1·min-1) | (α+β)淀粉酶 (α+β)-amylase (mg·g-1·min-1) |
---|---|---|---|---|
CK | 0.91±0.086c | 19.6±7.1a | 755.0±24.7a | 774.6±30.6a |
H2O | 1.55±0.222b | 11.0±4.0b | 631.0±102.1b | 642.0±103.6b |
NaHS | 1.85±0.028a | 9.1±2.5b | 454.8±53.8c | 463.9±56.0c |
表 4 不同引发剂对裸燕麦种子细胞色素氧化酶和淀粉酶活性的影响
Table 4 Effect of seed priming with different agents on the activities of cytochrome oxidase and amylase of naked oat seeds
引发剂 Priming agent | 细胞色素氧化酶 Cytochrome oxidase (COX, OD510·g-1·min-1) | α-淀粉酶 α-amylase (mg·g-1·min-1) | β-淀粉酶 β-amylase (mg·g-1·min-1) | (α+β)淀粉酶 (α+β)-amylase (mg·g-1·min-1) |
---|---|---|---|---|
CK | 0.91±0.086c | 19.6±7.1a | 755.0±24.7a | 774.6±30.6a |
H2O | 1.55±0.222b | 11.0±4.0b | 631.0±102.1b | 642.0±103.6b |
NaHS | 1.85±0.028a | 9.1±2.5b | 454.8±53.8c | 463.9±56.0c |
引发剂 Priming agent | 硫化氢 Hydrogen sulfide (H2S, μmol·g-1) | 超氧阴离子 Superoxide anion (O2·ˉ, μmol·g-1) | 过氧化氢 Hydrogen peroxide (H2O2, μmol·g-1) | 丙二醛 Malondialdehyde (MDA, nmol·g-1) | 质膜相对透性 Relative permeability of plasma membrane (RPPM, %) |
---|---|---|---|---|---|
CK | 8.68±0.89b | 9.10±0.43a | 52.6±5.8a | 4.39±0.37a | 46.6±1.8a |
H2O | 10.31±1.11b | 6.73±0.26b | 43.4±8.7a | 3.86±0.54a | 42.0±2.0b |
NaHS | 18.53±3.13a | 5.94±0.34c | 33.6±5.7b | 2.74±0.42b | 34.7±2.5c |
表 5 不同引发剂对裸燕麦种子H2S、O2·ˉ、H2O2、MDA含量和质膜相对透性的影响
Table 5 Effect of seed priming with different agents on contents of H2S, O2·ˉ, H2O2, MDA and RPPM of naked oat seeds
引发剂 Priming agent | 硫化氢 Hydrogen sulfide (H2S, μmol·g-1) | 超氧阴离子 Superoxide anion (O2·ˉ, μmol·g-1) | 过氧化氢 Hydrogen peroxide (H2O2, μmol·g-1) | 丙二醛 Malondialdehyde (MDA, nmol·g-1) | 质膜相对透性 Relative permeability of plasma membrane (RPPM, %) |
---|---|---|---|---|---|
CK | 8.68±0.89b | 9.10±0.43a | 52.6±5.8a | 4.39±0.37a | 46.6±1.8a |
H2O | 10.31±1.11b | 6.73±0.26b | 43.4±8.7a | 3.86±0.54a | 42.0±2.0b |
NaHS | 18.53±3.13a | 5.94±0.34c | 33.6±5.7b | 2.74±0.42b | 34.7±2.5c |
引发剂 Priming agent | 超氧化物歧化酶 Superoxide dismutase (SOD, U·g-1) | 过氧化氢酶 Catalase (CAT, U·g-1·min-1) | 过氧化物酶 Peroxidase (POD, U·g-1·min-1) | 抗坏血酸过氧化物酶 Ascorbate peroxidase (APX, U·g-1·min-1) |
---|---|---|---|---|
CK | 101.0±3.17b | 12.5±1.70b | 38.0±5.15c | 26.3±8.39b |
H2O | 100.9±4.49b | 14.1±2.10b | 51.2±7.95b | 39.2±8.30a |
NaHS | 107.2±3.31a | 26.5±9.57a | 83.8±12.74a | 35.9±8.10ab |
表 6 不同引发剂对裸燕麦种子SOD、CAT、POD和APX活性的影响
Table 6 Effect of seed priming with different agents on activities of SOD, CAT, POD and APX of naked oat seeds
引发剂 Priming agent | 超氧化物歧化酶 Superoxide dismutase (SOD, U·g-1) | 过氧化氢酶 Catalase (CAT, U·g-1·min-1) | 过氧化物酶 Peroxidase (POD, U·g-1·min-1) | 抗坏血酸过氧化物酶 Ascorbate peroxidase (APX, U·g-1·min-1) |
---|---|---|---|---|
CK | 101.0±3.17b | 12.5±1.70b | 38.0±5.15c | 26.3±8.39b |
H2O | 100.9±4.49b | 14.1±2.10b | 51.2±7.95b | 39.2±8.30a |
NaHS | 107.2±3.31a | 26.5±9.57a | 83.8±12.74a | 35.9±8.10ab |
引发剂 Priming agent | 还原型抗坏血酸 Reduced ascorbic acid (ASA, mg·g-1) | 脱氢抗坏血酸 Dehydroascorbic acid (DHA, mg·g-1) | ASA/DHA | 还原型谷胱甘肽 Reduced glutathione (GSH, μmol·g-1) | 氧化型谷胱甘肽 Oxidized glutathione (GSSG, μmol·g-1) | GSH/GSSG |
---|---|---|---|---|---|---|
CK | 2.22±0.048a | 0.85±0.021a | 2.610±0.10a | 16.8±1.45a | 4.10±0.11b | 4.12±0.46a |
H2O | 2.21±0.039a | 0.85±0.032a | 2.611±0.11a | 11.5±2.02b | 4.88±0.22a | 2.38±0.52b |
NaHS | 2.25±0.046a | 0.84±0.023a | 2.671±0.12a | 11.9±0.88b | 4.69±0.14a | 2.55±0.26b |
表 7 不同引发剂对裸燕麦种子抗氧化物质含量的影响
Table 7 Effect of seed priming with different agents on the antioxidant contents of naked oat seeds
引发剂 Priming agent | 还原型抗坏血酸 Reduced ascorbic acid (ASA, mg·g-1) | 脱氢抗坏血酸 Dehydroascorbic acid (DHA, mg·g-1) | ASA/DHA | 还原型谷胱甘肽 Reduced glutathione (GSH, μmol·g-1) | 氧化型谷胱甘肽 Oxidized glutathione (GSSG, μmol·g-1) | GSH/GSSG |
---|---|---|---|---|---|---|
CK | 2.22±0.048a | 0.85±0.021a | 2.610±0.10a | 16.8±1.45a | 4.10±0.11b | 4.12±0.46a |
H2O | 2.21±0.039a | 0.85±0.032a | 2.611±0.11a | 11.5±2.02b | 4.88±0.22a | 2.38±0.52b |
NaHS | 2.25±0.046a | 0.84±0.023a | 2.671±0.12a | 11.9±0.88b | 4.69±0.14a | 2.55±0.26b |
1 | Xia F S, Wang T T, Dong Q L, et al. Effects of exogenous H2O2 treatment on the vigor of oat seeds. Acta Prataculturae Sinica, 2018, 27(3): 201-207. |
夏方山, 王婷婷, 董秋丽, 等. 外源H2O2处理对燕麦种子活力的影响. 草业学报, 2018, 27(3): 201-207. | |
2 | Zhao L M, Bai Y S, Gao B D. Effect of Zn and Se fertilizer as seed manure on yield and mineral elements in naked oat seed. Journal of Triticeae Crops, 2017, 37(9): 1240-1245. |
赵利梅, 白艳姝, 高炳德. 锌、硒种肥配施对裸燕麦产量及矿质元素含量的影响. 麦类作物学报, 2017, 37(9): 1240-1245. | |
3 | Roubroeks J P, Andersson R, Mastromauro D I, et al. Molecular weight, structure and shape of oat (1 to 3), (1 to 4)-beta-D-glucan fractions obtained by enzymatic degradation with (1 to 4)-beta-D-glucan 4-glucanohydrolase from Trichoderma reesei. Carbohydrate Polymers, 2001, 46(3): 275-285. |
4 | Niu X X, Mu M, Li B H, et al. Physiological mechanism of FeSO4 priming improvement of seed germination performances of Gentiana macrophylla. Chinese Journal of Eco-Agriculture, 2018, 26(12): 1828-1835. |
牛晓雪, 牟萌, 李保华, 等. FeSO4引发提高秦艽种子萌发的生理机制. 中国生态农业学报, 2018, 26(12): 1828-1835. | |
5 | Heydecker W, Higgins J, Gulliver R L. Accelerated germination by osmotic seed treatment. Nature, 1973, 246: 42-44. |
6 | Min D D, Pan J, Fan Y, et al. Effect of priming on seed germination and seedling growth. Pratacultural Science, 2016, 33(9): 1728-1738. |
闵丹丹, 潘佳, 范燕, 等. 引发对种子萌发和幼苗生长特性的影响. 草业科学, 2016, 33(9): 1728-1738. | |
7 | Wang Y R, Zhang J Q, Liu H X, et al. Physiological and ecological responses of alfalfa and milkvetch seed to PEG priming. Acta Ecologica Sinica , 2004, 24(3): 402-408. |
王彦荣, 张建全, 刘慧霞, 等. PEG引发紫花苜蓿和沙打旺种子的生理生态效应. 生态学报, 2004, 24(3): 402-408. | |
8 | Zhu W B, Wang C L. Effect of seed priming on seedling quality of Prunella vulgaris on saline-alkali land. Jiangsu Agricultural Sciences, 2017, 45(4): 106-108. |
朱文彬, 王长林. 种子引发对盐碱地夏枯草出苗质量的影响. 江苏农业科学, 2017, 45(4): 106-108. | |
9 | Zhang Y P, Liu H H, Shen S X, et al. Effect of polyamine priming on seed vigor and seedling chilling tolerance in eggplant. Acta Horticulturae Sinica, 2010, 37(11): 1783-1788. |
张彦萍, 刘海河, 申书兴, 等. 多胺引发处理对茄子种子活力及幼苗耐冷性的影响. 园艺学报, 2010, 37(11): 1783-1788. | |
10 | Ma C, Kong B B, Zhang J, et al. Effects of seed priming with different agents on seed germination and seedling physiological characteristics of wheat under dehydration stress. Journal of Nuclear Agricultural Sciences, 2017, 31(2): 357-363. |
马超, 孔蓓蓓, 张均, 等. 不同引发剂处理对水分胁迫下小麦发芽及幼苗生理特性的影响. 核农学报, 2017, 31(2): 357-363. | |
11 | Mao P S, Zhang Y, Song Y M, et al. Effects of melatonin priming on seeds germination characteristics in Aohan alfalfa under saline stress. Seed, 2019, 38(6): 36-42. |
毛培胜, 张晔, 宋玉梅, 等. 褪黑素引发对盐胁迫敖汉苜蓿种子发芽特性的影响. 种子, 2019, 38(6): 36-42. | |
12 | Jin Z P, Wang Z Q, Ma Q X, et al. Hydrogen sulfide mediates ion fluxes inducing stomatal closure in response to drought stress in Arabidopsis thaliana. Plant and Soil, 2017, 419: 141-152. |
13 | Zhang H, Dou W, Jiang C X, et al. Hydrogen sulfide stimulates β-amylase activity during early stages of wheat grain germination. Plant Signaling & Behavior, 2010, 5(8): 1031-1033. |
14 | Liu J, Zhang H T, Yin Y, et al. Effects of exogenous hydrogen sulfide on antioxidant metabolism of rice seed germinated under drought stress. Journal of Southern Agriculture, 2017, 48(1): 31-37. |
刘晶, 张鹤婷, 殷悦, 等. 外源硫化氢对干旱胁迫下萌发水稻种子抗氧化代谢的影响. 南方农业学报, 2017, 48(1): 31-37. | |
15 | Wang Y Q, Li L, Cui W T, et al. Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway. Plant and Soil, 2012, 351(1): 107-119. |
16 | Zheng Z Y, Lin H R, Cui H M. Effects of exogenous hydrogen sulfide on salt tolerance and antioxidant enzymes of processing tomato seeds. Agricultural Research in the Arid Areas, 2017, 35(5): 236-241. |
郑州元, 林海荣, 崔辉梅. 外源硫化氢对加工番茄种子耐盐性及抗氧化酶的影响. 干旱地区农业研究, 2017, 35(5): 236-241. | |
17 | Crop seeds Standardization Technical Committees of China. GB/T3543.4-1995 Rules for agricultural seed testing: Germination test. Beijing: Chinese Standards Press, 1995. |
全国农作物种子标准化技术委员会. GB/T3543. 4-1995农作物种子检验规程: 发芽试验. 北京: 中国标准出版社, 1995. | |
18 | Liu Z Q, Pei Y X, Fang H H, et al. H2S regulates foxtail millet responsing to stress by protein S-sulfhydration. Chinese Journal of Biochemistry and Molecular Biology, 2015, 31(10): 1085-1091. |
刘志强, 裴雁曦, 方慧慧, 等. H2S巯基化修饰蛋白质调节谷子响应逆境胁迫. 中国生物化学与分子生物学报, 2015, 31(10): 1085-1091. | |
19 | Gao J F. Plant physiology experiment guide. Beijing: Higher Education Press, 2006: 126-222. |
高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006: 126-222. | |
20 | Sergiev I, Alexieva V, Karanov E. Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Comptes Rendus de I’ Academie Bulgare des Sciences, 1997, 51(2): 121-124. |
21 | Chen J X, Wang X F. Plant physiology experiment instruction. Guangzhou: South China University of Technology Press, 2006: 68-73. |
陈建勋, 王晓峰. 植物生理学实验指导. 广州: 华南理工大学出版社, 2006: 68-73. | |
22 | Yang Y L, Lv L R, Li J, et al. Comparison of ascorbic acid-glutathione cycle in two wheat seedlings under salt stress. Journal of Northwest Normal University (Natural Science), 2018, 54(3): 65-70. |
杨颖丽, 吕丽荣, 李晶, 等. 盐胁迫下2种小麦幼苗抗坏血酸-谷胱甘肽循环的比较. 西北师范大学学报(自然科学版), 2018, 54(3): 65-70. | |
23 | Xu J X,Yang J,Wu J,et al. Effects of simulated drought stress by polyethylene glycol (PEG-6000) on seed germination and seedling growth of Taraxacum kok-saghyz Rodin (TKS) in Xinjiang. Agricultural Research in the Arid Areas, 2015, 33(5): 96-100. |
徐建欣, 杨洁, 吴景, 等. 聚乙二醇模拟干旱对新疆橡胶草种子萌发与幼苗生长的影响. 干旱地区农业研究, 2015, 33(5): 96-100. | |
24 | Ruan S L, Xue Q Z, Wang Q H. Physiological effects of seed priming on salt-tolerance of seedlings in hybrid rice (Oryza sativa L.). Scientia Agricultura Sinica, 2003, 36(4): 463-468. |
阮松林, 薛庆中, 王清华. 种子引发对杂交水稻幼苗耐盐性的生理效应. 中国农业科学, 2003, 36(4): 463-468. | |
25 | Zhang Z B, Mao Z Q, Zhu S H. Effects of phenolic acids on mitochondria and the activity of antioxidant enzymes in roots of seedlings of Malus hupehensis Rehd. Scientia Agricultura Sinica, 2011, 44(15): 3177-3184. |
张兆波, 毛志泉, 朱树华. 6种酚酸类物质对平邑甜茶幼苗根系线粒体及抗氧化酶活性的影响. 中国农业科学, 2011, 44(15): 3177-3184. | |
26 | Yang X H, Ma J H, Guo S J, et al. Effect of seed priming on sorghum (Sorghum bicolor L.) seed germination and seedling growth under salt stress. Chinese Journal of Eco-Agriculture, 2011, 19(1): 103-109. |
杨小环, 马金虎, 郭数进, 等. 种子引发对盐胁迫下高粱种子萌发及幼苗生长的影响. 中国生态农业学报, 2011, 19(1): 103-109. |
[1] | 刘建新, 欧晓彬, 王金成, 刘瑞瑞, 贾海燕. 镉胁迫下裸燕麦幼苗对外源H2O2的生理响应[J]. 草业学报, 2020, 29(1): 125-134. |
[2] | 王茜, 李志坚, 李晶, 周帮伟. 不同类型燕麦农艺和饲草品质性状分析[J]. 草业学报, 2019, 28(12): 149-158. |
[3] | 孙铭, 王思琪, 艾尔肯·达吾提, 毛培胜. 抗氧化剂引发对无芒雀麦老化种子发芽及幼苗生长的影响[J]. 草业学报, 2019, 28(11): 105-113. |
[4] | 孙秋瑾, 吕燕燕, 韩云华, 王彦荣. 高丹草种子半透特性的研究[J]. 草业学报, 2018, 27(5): 162-169. |
[5] | 董秋丽,夏方山,李晓禹,王明亚,毛培胜,朱慧森,佟莉蓉,杜利霞. 抗坏血酸引发对NaCl胁迫燕麦种子活力的影响[J]. 草业学报, 2018, 27(4): 202-208. |
[6] | 夏方山, 王婷婷, 董秋丽, 毛培胜, 朱慧森, 杜利霞, 佟莉蓉. 外源H2O2处理对燕麦种子活力的影响[J]. 草业学报, 2018, 27(3): 201-207. |
[7] | 杨发荣, 刘文瑜, 黄杰, 魏玉明, 金茜. 不同藜麦品种对盐胁迫的生理响应及耐盐性评价[J]. 草业学报, 2017, 26(12): 77-88. |
[8] | 莫青, 吕燕燕, 王彦荣. 箭筈豌豆种子人工加速老化条件筛选的研究[J]. 草业学报, 2017, 26(11): 131-138. |
[9] | 耿帆, 周青平, 梁国玲, 贾志锋, 刘文辉, 丁成翔, 刘勇, 颜红波. 8个大粒裸燕麦品种核型研究[J]. 草业学报, 2016, 25(3): 120-125. |
[10] | 刘文辉. 高寒地区播期对三种裸燕麦品种灌浆特性影响的研究[J]. 草业学报, 2016, 25(3): 143-153. |
[11] | 刘建新, 王金成, 王瑞娟, 贾海燕. 外源一氧化氮提高裸燕麦幼苗的耐碱性[J]. 草业学报, 2015, 24(8): 110-117. |
[12] | 葛剑, 杨翠军, 刘贵河, 杨志敏, 白雪梅. 添加剂和混合比例对裸燕麦和紫花苜蓿混贮品质的影响[J]. 草业学报, 2015, 24(6): 116-124. |
[13] | 葛剑,杨翠军,杨志敏,白雪梅,赵海香,刘贵河. 紫花苜蓿和裸燕麦混贮发酵品质和营养成分分析[J]. 草业学报, 2015, 24(4): 104-113. |
[14] | 夏方山, 闫慧芳, 毛培胜, 王明亚, 郑慧敏, 陈泉竹. PEG引发对燕麦老化种子活力的影响[J]. 草业学报, 2015, 24(11): 234-239. |
[15] | 吴娜,胡跃高,任长忠,刘吉利. 两种灌溉方式下保水剂用量对春播裸燕麦土壤氮素的影响[J]. 草业学报, 2014, 23(2): 346-351. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||