草业学报 ›› 2021, Vol. 30 ›› Issue (9): 203-213.DOI: 10.11686/cyxb2020345
• 研究简报 • 上一篇
吴路遥1(), 张建国1(), 常闻谦1, 张少磊1, 常青2
收稿日期:
2020-07-20
修回日期:
2020-09-21
出版日期:
2021-08-30
发布日期:
2021-08-30
通讯作者:
张建国
作者简介:
Corresponding author. E-mail: zhangjianguo21@nwafu.edu.cn基金资助:
Lu-yao WU1(), Jian-guo ZHANG1(), Wen-qian CHANG1, Shao-lei ZHANG1, Qing CHANG2
Received:
2020-07-20
Revised:
2020-09-21
Online:
2021-08-30
Published:
2021-08-30
Contact:
Jian-guo ZHANG
摘要:
利用Photosynq MultiseQ多功能植物测量仪测定塔克拉玛干沙漠腹地3种主要防护林植物头状沙拐枣、多枝柽柳和梭梭的叶绿素荧光参数日变化,探讨其与环境因子的关系,以揭示3种植物对极端环境的适应策略,为沙漠公路防护林的管护提供理论依据。结果表明:1)3种土壤都呈碱性;0~30 cm土层中的电导率(EC)远高于30 cm以下的土层。1 m内梭梭土层中的含水量高于多枝柽柳高于头状沙拐枣。2)3种植物的光合有效辐射(PAR)、叶片温度和线性电子传递(LEF)及植物周围的大气温度日变化均先升后降,且都在14:00达到最高;而大气湿度、实际光化学效率Y(II)日变化均呈‘V’型。3)PAR基本上与3种植物的LEF、非光化学淬灭系数(NPQ)、调节性能量耗散量子产量Y(NPQ)、非调节性能量耗散量子产量Y(NO)呈显著正相关,与实际光化学效率Y(II)呈显著负相关;3种植物的Y(II)与Y(NPQ)、Y(NO) 均呈极显著负相关。3种植物的LEF、Y(II)、Y(NPQ)的日均值差异不显著,但梭梭与多枝柽柳的NPQ和Y(NO)日均值差异显著。4)在3种植物的叶绿素荧光参数中,梭梭和头状沙拐枣的LEF、NPQ和Y(II)要高于多枝柽柳;而多枝柽柳的Y(NO)要显著高于头状沙拐枣和梭梭。因此,高温和高光均对3种植物造成了不同程度的影响,通过主成分分析表明,3种植物的抗逆性强弱顺序分别为梭梭>头状沙拐枣>多枝柽柳。
吴路遥, 张建国, 常闻谦, 张少磊, 常青. 三种荒漠植物叶绿素荧光参数日变化特征[J]. 草业学报, 2021, 30(9): 203-213.
Lu-yao WU, Jian-guo ZHANG, Wen-qian CHANG, Shao-lei ZHANG, Qing CHANG. Diurnal change in chlorophyll fluorescence parameters in three desert plants[J]. Acta Prataculturae Sinica, 2021, 30(9): 203-213.
图2 3种植物环境因子及叶片温度日变化A、B、C、D分别为3种植物PAR、大气湿度、大气温度和叶片温度3 d平均值的日变化;a、b、c、d分别为3种植物PAR、大气湿度、大气温度和叶片温度3 d的日变化。A, B, C and D are the diurnal changes of the 3 d average values of PAR, atmospheric humidity, atmospheric temperature and leaf temperature of the three plants; a, b, c and d are the diurnal changes of PAR, atmospheric humidity, atmospheric temperature and leaf temperature of the three plants.
Fig.2 Daily change of environmental factors and leaf temperature around three plant species
图3 线性电子传递(LEF)和非光化学淬灭系数(NPQ)日变化A、B分别为3种植物线性电子传递(LEF)和非光化学淬灭系数(NPQ)3 d平均值的日变化;a、b分别为3种植物线性电子传递和非光化学淬灭系数 3 d的日变化。A and B are the diurnal changes of the 3 d average values of linear electron transfer (LEF) and non-photochemical quenching coefficient (NPQ) of the three plants; a and b are the diurnal variations of linear electron transfer and non-photochemical quenching coefficient of the three plants.
Fig. 3 Daily change of LEF and NPQ
图4 光合荧光参数中光能的日变化A、B、C分别为3种植物Y(II)、Y(NPQ)和Y(NO)3 d平均值的日变化;a、b、c分别为3种植物Y(II)、Y(NPQ)和Y(NO) 3 d的日变化。A, B and C are the diurnal changes of the 3-day mean values of Y(II), Y(NPQ) and Y(NO) of three plants; a, b and c were the diurnal changes of Y(II), Y(NPQ) and Y(NO) of the three plants.Y(II):Actual photochemical efficiency; Y(NPQ):Adjusting energy dissipation quantum yield; Y(NO):Non-adjusting energy dissipation quantum yield.
Fig.4 Daily change of light energy in photosynthetic fluorescence parameters
植物类型 Plant type | 光合有效辐射 PAR | 线性电子传递 LEF | 非光化学淬灭 系数NPQ | 实际光化学效率 Y(II) | 调节性能量耗散量子产量Y(NPQ) | 非调节性能量耗散 量子产量Y(NO) |
---|---|---|---|---|---|---|
头状沙拐枣C. caput-medusae | 811.85±22.25b | 152.95±3.31a | 1.10±0.05ab | 0.47±0.01a | 0.28±0.01a | 0.26±0.01b |
梭梭H. ammodendron | 978.18±26.76a | 147.08±2.69a | 1.97±0.06a | 0.41±0.01a | 0.36±0.02a | 0.24±0.01b |
多枝柽柳T. ramosissima | 919.43±15.76a | 129.13±1.85a | 0.88±0.04b | 0.37±0.01a | 0.27±0.01a | 0.36±0.01a |
表1 3种植物的叶绿素荧光参数日均值
Table 1 Daily averages of chlorophyll fluorescence parameters of three plants
植物类型 Plant type | 光合有效辐射 PAR | 线性电子传递 LEF | 非光化学淬灭 系数NPQ | 实际光化学效率 Y(II) | 调节性能量耗散量子产量Y(NPQ) | 非调节性能量耗散 量子产量Y(NO) |
---|---|---|---|---|---|---|
头状沙拐枣C. caput-medusae | 811.85±22.25b | 152.95±3.31a | 1.10±0.05ab | 0.47±0.01a | 0.28±0.01a | 0.26±0.01b |
梭梭H. ammodendron | 978.18±26.76a | 147.08±2.69a | 1.97±0.06a | 0.41±0.01a | 0.36±0.02a | 0.24±0.01b |
多枝柽柳T. ramosissima | 919.43±15.76a | 129.13±1.85a | 0.88±0.04b | 0.37±0.01a | 0.27±0.01a | 0.36±0.01a |
植物类型 Plant type | 测定指标 Fluency indices | 大气湿度 Atmospheric humidity | 大气温度 Atmospheric temperature | 叶片温度 Leaf temperature | 光合有效辐射 PAR | 线性电子传递 LEF | 非光化学淬灭系数NPQ | 实际光化学效率 Y(II) | 调节性能量耗散量子产量Y(NPQ) |
---|---|---|---|---|---|---|---|---|---|
头状沙拐枣C. caput-medusae | 大气温度Atmospheric temperature | -0.851** | |||||||
叶片温度Leaf temperature | -0.884** | 0.956** | |||||||
光合有效辐射PAR | -0.347 | 0.549 | 0.653 | ||||||
线性电子传递LEF | -0.297 | 0.500 | 0.614 | 0.995** | |||||
非光化学淬灭系数NPQ | -0.427 | 0.554 | 0.677 | 0.859* | 0.891** | ||||
实际光化学效率Y(II) | 0.068 | -0.207 | -0.349 | -0.927** | -0.944** | -0.787* | |||
调节性能量耗散量子产量Y(NPQ) | -0.153 | 0.319 | 0.454 | 0.963** | 0.978** | 0.845* | -0.992** | ||
非调节性能量耗散量子产量Y(NO) | 0.108 | -0.041 | 0.095 | 0.785* | 0.803* | -0.594 | -0.951** | 0.905** | |
多枝柽柳T. ramosissima | 大气温度Atmospheric temperature | -0.955** | |||||||
叶片温度Leaf temperature | -0.898** | 0.977** | |||||||
光合有效辐射PAR | -0.386 | 0.525 | 0.609 | ||||||
线性电子传递LEF | -0.229 | 0.385 | 0.518 | 0.964** | |||||
非光化学淬灭系数NPQ | 0.693 | -0.641 | -0.487 | 0.119 | 0.342 | ||||
实际光化学效率Y(II) | 0.073 | -0.157 | -0.284 | -0.884** | -0.939** | -0.511 | |||
调节性能量耗散量子产量Y(NPQ) | 0.063 | 0.053 | 0.223 | 0.747* | 0.884** | 0.710 | -0.918** | ||
非调节性能量耗散量子产量Y(NO) | -0.189 | 0.208 | 0.248 | 0.830* | 0.773* | 0.168 | -0.866** | 0.599 | |
梭梭 H. ammodendron | 大气温度Atmospheric temperature | -0.935** | |||||||
叶片温度Leaf temperature | -0.908** | 0.961** | |||||||
光合有效辐射PAR | -0.358 | 0.470 | 0.509 | ||||||
线性电子传递LEF | -0.268 | 0.402 | 0.476 | 0.986** | |||||
非光化学淬灭系数NPQ | -0.565 | 0.664 | 0.737 | 0.831* | 0.818* | ||||
实际光化学效率Y(II) | 0.269 | -0.343 | -0.406 | -0.985** | -0.979** | -0.783* | |||
调节性能量耗散量子产量Y(NPQ) | -0.450 | 0.500 | 0.570 | 0.880** | 0.856* | 0.961** | -0.869** | ||
非调节性能量耗散量子产量Y(NO) | 0.446 | -0.369 | -0.314 | 0.501 | 0.560 | -0.008 | -0.581 | 0.138 |
表2 3种植物的叶绿素荧光参数与外界环境的相关性
Table 2 Correlation between chlorophyll fluorescence parameters of three plant species and external environmental factors
植物类型 Plant type | 测定指标 Fluency indices | 大气湿度 Atmospheric humidity | 大气温度 Atmospheric temperature | 叶片温度 Leaf temperature | 光合有效辐射 PAR | 线性电子传递 LEF | 非光化学淬灭系数NPQ | 实际光化学效率 Y(II) | 调节性能量耗散量子产量Y(NPQ) |
---|---|---|---|---|---|---|---|---|---|
头状沙拐枣C. caput-medusae | 大气温度Atmospheric temperature | -0.851** | |||||||
叶片温度Leaf temperature | -0.884** | 0.956** | |||||||
光合有效辐射PAR | -0.347 | 0.549 | 0.653 | ||||||
线性电子传递LEF | -0.297 | 0.500 | 0.614 | 0.995** | |||||
非光化学淬灭系数NPQ | -0.427 | 0.554 | 0.677 | 0.859* | 0.891** | ||||
实际光化学效率Y(II) | 0.068 | -0.207 | -0.349 | -0.927** | -0.944** | -0.787* | |||
调节性能量耗散量子产量Y(NPQ) | -0.153 | 0.319 | 0.454 | 0.963** | 0.978** | 0.845* | -0.992** | ||
非调节性能量耗散量子产量Y(NO) | 0.108 | -0.041 | 0.095 | 0.785* | 0.803* | -0.594 | -0.951** | 0.905** | |
多枝柽柳T. ramosissima | 大气温度Atmospheric temperature | -0.955** | |||||||
叶片温度Leaf temperature | -0.898** | 0.977** | |||||||
光合有效辐射PAR | -0.386 | 0.525 | 0.609 | ||||||
线性电子传递LEF | -0.229 | 0.385 | 0.518 | 0.964** | |||||
非光化学淬灭系数NPQ | 0.693 | -0.641 | -0.487 | 0.119 | 0.342 | ||||
实际光化学效率Y(II) | 0.073 | -0.157 | -0.284 | -0.884** | -0.939** | -0.511 | |||
调节性能量耗散量子产量Y(NPQ) | 0.063 | 0.053 | 0.223 | 0.747* | 0.884** | 0.710 | -0.918** | ||
非调节性能量耗散量子产量Y(NO) | -0.189 | 0.208 | 0.248 | 0.830* | 0.773* | 0.168 | -0.866** | 0.599 | |
梭梭 H. ammodendron | 大气温度Atmospheric temperature | -0.935** | |||||||
叶片温度Leaf temperature | -0.908** | 0.961** | |||||||
光合有效辐射PAR | -0.358 | 0.470 | 0.509 | ||||||
线性电子传递LEF | -0.268 | 0.402 | 0.476 | 0.986** | |||||
非光化学淬灭系数NPQ | -0.565 | 0.664 | 0.737 | 0.831* | 0.818* | ||||
实际光化学效率Y(II) | 0.269 | -0.343 | -0.406 | -0.985** | -0.979** | -0.783* | |||
调节性能量耗散量子产量Y(NPQ) | -0.450 | 0.500 | 0.570 | 0.880** | 0.856* | 0.961** | -0.869** | ||
非调节性能量耗散量子产量Y(NO) | 0.446 | -0.369 | -0.314 | 0.501 | 0.560 | -0.008 | -0.581 | 0.138 |
项目 Item | 头状沙拐枣 C. caput-medusae | 梭梭 H. ammodendron | 多枝柽柳 T. ramosissima |
---|---|---|---|
总得分Total score | -0.508 | 1.763 | -1.252 |
排名Ranking | 2 | 1 | 3 |
表3 3种植物的抗逆性综合评价
Table 3 Comprehensive evaluation of stress resistance of three plants
项目 Item | 头状沙拐枣 C. caput-medusae | 梭梭 H. ammodendron | 多枝柽柳 T. ramosissima |
---|---|---|---|
总得分Total score | -0.508 | 1.763 | -1.252 |
排名Ranking | 2 | 1 | 3 |
1 | Li Y, Pan M, He F, et al. Effect of different substrates on parameters of chlorophye Ⅱ a fluorescence induction kinetics and net photosynthesis rate of Ottelia acuminate. Acta Ecologica Sinica, 2017, 37(8): 2809-2817. |
李杨, 潘珉, 何锋, 等. 不同底质对海菜花叶绿素荧光诱导动力学参数及净光合速率的影响. 生态学报, 2017, 37(8): 2809-2817. | |
2 | Yao J, Sun D, Cen H, et al. Phenotyping of Arabidopsis drought stress response using kinetic chlorophyll fluorescence and multicolor fluorescence imaging. Frontiers in Plant Science, 2018, 9: 603. |
3 | Ghorbani A, Razavi S M, Omran V O G, et al. Piriformospora indica inoculation alleviates the adverse effect of NaCl stress on growth, gas exchange and chlorophyll fluorescence in tomato (Solanum lycopersicum L.). Plant Biology, 2018, 20(4): 729-736. |
4 | Xin C P, Yang J, Zhu X G. A model of chlorophyll a fluorescence induction kinetics with explicit description of structural constraints of individual photosystem llunits. Photosynthesis Research, 2013, 117(1): 339-354. |
5 | Krasnovsky A A, Kovalev Y V. Spectral and kinetic parameters of phosphorescence of triplet chlorophyll a in the photosynthetic apparatus of plants. Biochemistry, 2014, 79(4): 349-361. |
6 | Liu H D, Liu J, Zhao Y, et al. Effects of Haloxylon ammodendron and Calligonum mogolicum on water-heat-salt dynamics in sandy soil. Journal of Soil and Water Conservation, 2017, 31(3): 169-175, 181. |
刘海东, 刘娇, 赵英, 等. 梭梭和沙拐枣对风沙土壤水热盐动态的影响. 水土保持学报, 2017, 31(3): 169-175, 181. | |
7 | Zhang J G, Xu X W, Lei J Q, et al. Injury of unexpected strong precipitation to Calligonum under different factors: A cast of the shelterbelt eco-project along the Tarim Desert highway. Arid Land Geography, 2009, 32(3): 346-352. |
张建国, 徐新文, 雷加强, 等. 不同因素影响下突发性强降雨对沙拐枣的危害——以塔里木沙漠公路防护林生态工程为例. 干旱区地理, 2009, 32(3): 346-352. | |
8 | Huang C B, Zeng F J, Lei J Q, et al. Comparison of drought resistance among three Calligonum in the southern fringe of the Taklamakan Desert. Acta Prataculturae Sinica, 2014, 23(3): 136-143. |
黄彩变, 曾凡江, 雷加强, 等. 塔克拉玛干沙漠南缘3个沙拐枣种的抗旱特性比较. 草业学报, 2014, 23(3): 136-143. | |
9 | Li C, Lei J, Zhao Y, et al. Effect of saline water irrigation on soil development and plant growth in the Taklimakan Desert Highway shelterbelt. Soil & Tillage Research, 2015, 146: 99-107. |
10 | Gao H H, Zeng F J, Lu Y, et al. Effect of different treatments on the growth and physiological characteristics of Alhagi sparsifolia. Acta Prataculturae Sinica, 2015, 24(2): 202-207. |
高欢欢, 曾凡江, 鲁艳, 等.不同干扰方式对疏叶骆驼刺生长及生理特征的影响.草业学报, 2015, 24(2): 202-207. | |
11 | Shan L S, Li Y, Zhang X M, et al. Research on water-consumption characteristics of Calligonum arborescens under different irrigation amounts. Journal of Natural Resources, 2012, 27(3): 440-449. |
单立山, 李毅, 张希明, 等. 不同灌溉量条件下乔木状沙拐枣蒸腾耗水特性的研究. 自然资源学报, 2012, 27(3): 440-449. | |
12 | Yan H L, Zhang X M, Xu H, et al. Photosynthetic characteristics responses of three plants to drought stress in Tarim Desert Highway Shelterbelt. Acta Ecologica Sinica, 2010, 30(10): 2519-2528. |
闫海龙, 张希明, 许浩, 等. 塔里木沙漠公路防护林3种植物光合特性对干旱胁迫的响应. 生态学报, 2010, 30(10): 2519-2528. | |
13 | Yan H L, Zhang X M, Xu H, et al. Responses of Calligonum arborescens photosynthesis to water stress in Tarim Highway Shelterbeil. Journal of Desert Resertrch, 2007, 27(3): 460-465. |
闫海龙, 张希明, 许浩, 等. 塔里木沙漠公路防护林植物沙拐枣气体交换特性对干旱胁迫的响应. 中国沙漠, 2007, 27(3): 460-465. | |
14 | Zhang X M, Wang Y D, Xu X W, et al. Biomass, composition and dynamics of litterfall in Taklimakan Desert Highway Shelterbelt. Journal of Desert Research, 2017, 37(6): 1142-1149. |
张雪梅, 王永东, 徐新文, 等. 沙漠公路防护林凋落物量、组成及动态. 中国沙漠, 2017, 37(6): 1142-1149. | |
15 | Zhang D D, Jin Z Z, Xu X W, et al. Study on water holding capacity of litters in Shelterbelt along the Tarim Desert Highway. Arid Zone Research, 2012, 29(6): 1046-1053. |
张栋栋, 靳正忠, 徐新文, 等. 塔里木沙漠公路防护林凋落物的持水特性. 干旱区研究, 2012, 29(6): 1046-1053. | |
16 | Zhou X Y, Jia J, Liu G Q, et al. Characteristics of precipitation at hinterland of Taklimakan Desert in China from 1997 to 2017. Journal of Desert Research, 2019, 39(1): 187-194. |
周雪英, 贾健, 刘国强, 等. 1997-2017年塔克拉玛干沙漠腹地降水特征. 中国沙漠, 2019, 39(1): 187-194. | |
17 | Zhang Q, Zhang J G, Wang L M, et al. Vertical distribution of soil organic and inorganic carbon in the Taklimakan Desert Highway Shelterbelt Drip-irrigated with different mineralization water. Journal of Northwest Forestry University, 2019, 34(4): 1-7. |
张谦, 张建国, 王丽梅, 等. 塔克拉玛干沙漠公路防护林不同咸水滴灌下土壤有机碳与无机碳垂直分布特征. 西北林学院学报, 2019, 34(4): 1-7. | |
18 | Wang X, Xu X W, Lei J Q, et al. The vertical distribution of the root system of the desert highway shelterbelt in the hinterland of the Taklimakan Desert. Chinese Science Bulletin, 2008, 53(S2): 79-83. |
19 | Ren X L, He H L, Zhang L, et al. Assessment of the spatiotemporal variations of diffuse photosynthetic active radiation in China from 1981 to 2010. Acta Geographica Sinica, 2014, 69(3): 323-333. |
任小丽, 何洪林, 张黎, 等. 1981-2010年中国散射光合有效辐射的估算及时空特征分析. 地理学报, 2014, 69(3): 323-333. | |
20 | Hajkova M, Kurnmerova M, Zezulka S, et al. Diclofenac as an environmental threat: Impact on the photosynthetic processes of Lemna minor chloroplasts. Chemosphere, 2019, 224(6): 892-899. |
21 | Cai J G, Wei M Q, Zhang Y, et al. Effects of shading on photosynthetic characteristics and chlorophyll fluorescence parameters in leaves of Hydrangea macrophylla. Chinese Journal of Plant Ecology, 2017, 41(5): 570-576. |
蔡建国, 韦孟琪, 章毅, 等. 遮阴对绣球光合特性和叶绿素荧光参数的影响. 植物生态学报, 2017, 41(5): 570-576. | |
22 | Guo J H, Li C J, Zeng F J, et al. Relationship between root biomass distribution and soil moisture, nutrient for two desert plant species. Arid Zone Research, 2016, 33(1): 166-171. |
郭京衡, 李尝君, 曾凡江, 等. 2种荒漠植物根系生物量分布与土壤水分、养分的关系. 干旱区研究, 2016, 33(1): 166-171. | |
23 | Zhang H, Kang Y R, Xu C H, et al. Photosynthettic characteristics of 4 wild plants in Yintan wetland in Lanzhou section of yellow River. Pratacultural Science, 2016, 33(4): 622-634. |
张华, 康雅茸, 徐春华, 等. 兰州银滩黄河湿地4种植物的光合特性. 草业科学, 2016, 33(4): 622-634. | |
24 | Xia G W, Sun X M, Chen D S, et al. Spatial heterogeneity of photosynthetic and physiological parameters in Larix kaempferi crown. Forest Research, 2019, 55(6): 13-21. |
夏国威, 孙晓梅, 陈东升, 等. 日本落叶松冠层光合特性的空间变化. 林业科学, 2019, 55(6): 13-21. | |
25 | Qiao M M, Liu X, Lou L, et al. Diurnal changes in the chlorophyll fluorescence of Lycium ruthenicum. Northern Horticulture, 2017(12): 167-173. |
乔梅梅, 刘翔, 罗龙, 等. 黑果枸杞叶绿素荧光参数日变化研究. 北方园艺, 2017(12): 167-173. | |
26 | Deng P Y, Liu W, Qiu Y K, et al. Diurnal dynamics of photosynthetic parameters of Viola baoshanensis and V. vedoensis. Journal of South China Normal University (Natural Science Edition), 2009(2): 96-99, 105. |
邓培雁, 刘威, 邱元凯, 等. 宝山堇菜(Viola baoshanensis)和紫花地丁(V. yedoensis)叶绿素荧光参数的日变化. 华南师范大学学报(自然科学版), 2009(2): 96-99, 105. | |
27 | Lu T, Shi J, Sun Z, et al. Response of linear and cyclic electron flux to moderate high temperature and high light stress in tomato. Journal of Zhejiang University-Science B (Biomedicine & Biotechnology), 2017, 18(7): 635-648. |
28 | Zhou Y X, Ju T Z, Wang Y D, et al. Diurnal variation of chlorophyll fluorescence parameters of three xerophytes. Journal of Arid Land Resources and Environment, 2019, 33(5): 164-170. |
周玉霞, 巨天珍, 王引弟, 等. 3种旱生植物的叶绿素荧光参数日变化研究. 干旱区资源与环境, 2019, 33(5): 164-170. | |
29 | Guan X, Gu S. Photorespiration and photoprotection of grapevine under water stress. Photosynthetica (Prague), 2009, 47(3): 437-444. |
30 | Kramer D M, Johnson G, Kiirats O, et al. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis Research, 2004, 79(2): 209-218. |
31 | Ye Z P, Suggett D J, Robakowski P, et al. A mechanistic model for the photosynthesis-light response based on the photosynthetic electron transport of photosystem II in C3 and C4 species. New Phytologist, 2013, 199(1): 110-120. |
32 | Li Q M, Liu B B, Wu Y, et al. Interactive effects of drought stresses and elevated CO2 concentration on photochemistry efficiency of cucumber seedlings. Journal of Integrative Plant Biology, 2008, 10: 1307-1317. |
33 | Zhang M Y, Jia X, Zha T S, et al. PSⅡphotochemical efficiency of Artemisia ordosica in response to rainfall exclusion. Journal of Desert Research, 2017, 37(3): 475-482. |
张明艳, 贾昕, 查天山, 等. 油蒿(Artemisia ordosica)光系统Ⅱ光化学效率对去除降雨的响应. 中国沙漠, 2017, 37(3): 475-482. | |
34 | Ren Z P, Wang J L, Shi B S, et al. Effect of heat stress on photosystemⅡ activity in leaves of Forsythia suspensa. Forest Research, 2015, 51(4): 44-51. |
任子蓓, 王俊玲, 史宝胜. 热胁迫对连翘离体叶圆片光系统Ⅱ活性的影响. 林业科学, 2015, 51(4): 44-51. | |
35 | Wang H Z, Chen J L, Han L, et al. Effect of groundwater levels on photosynthetic pigments and light response of chlorophyⅡfluorescence parameters of Populus euphratica and Popolus pruinose. Journal of Desert Research, 2013, 33(4): 1054-1063. |
王海珍, 陈加利, 韩路, 等. 地下水位对胡杨和灰胡杨叶绿素荧光响应与光合色素含量的影响. 中国沙漠, 2013, 33(4): 1054-1063. |
[1] | 别尔达吾列提·希哈依, 董乙强, 安沙舟, 魏鹏. 短期封育对白梭梭荒漠和盐生假木贼荒漠土壤营养成分的影响[J]. 草业学报, 2020, 29(9): 56-62. |
[2] | 石正海, 刘文辉, 张永超, 秦燕, 魏小星. 氮磷肥配施对西北羊茅开花期叶片光合特性日变化的影响[J]. 草业学报, 2019, 28(11): 75-85. |
[3] | 周晓兵, 陶冶, 张元明. 塔克拉玛干沙漠南缘荒漠绿洲过渡带不同土地利用影响下优势植物化学计量特征[J]. 草业学报, 2018, 27(5): 15-26. |
[4] | 刘江, 徐先英, 张荣娟, 崔文天, 赵鹏, 丁爱强, 付贵全. 不同退化程度人工梭梭林对土壤理化性质与生物学特性的影响[J]. 草业学报, 2017, 26(12): 1-12. |
[5] | 吕豪豪, 马晓东, 张瑞群, 钟小莉, 朱成刚, 杨余辉. 水分胁迫下不同氮素对多枝柽柳幼苗生长及生理的影响[J]. 草业学报, 2016, 25(9): 54-63. |
[6] | 席军强, 杨自辉, 郭树江, 王强强, 张剑挥, 王多泽. 人工梭梭林对沙地土壤理化性质和微生物的影响[J]. 草业学报, 2015, 24(5): 44-52. |
[7] | 丁效东, 张士荣, 刘阳超, 冯固. 真盐生植物梭梭和囊果碱蓬幼苗耐干旱能力的研究[J]. 草业学报, 2015, 24(11): 240-246. |
[8] | 王碧霞,胥晓,李霄锋. 葎草幼苗光合生理特性对铬胁迫的响应[J]. 草业学报, 2014, 23(4): 181-188. |
[9] | 鲁艳,雷加强,曾凡江,徐立帅,彭守兰,刘国军. NaCl处理对梭梭生长及生理生态特征的影响[J]. 草业学报, 2014, 23(3): 152-159. |
[10] | 王丹,龚春霞,苟亚峰,周路,朱军保,高剑峰. 塔克拉玛干沙漠生物结皮中几种藻类的系统发育分析[J]. 草业学报, 2014, 23(3): 97-103. |
[11] | 陶冶,张元明. 荒漠灌木生物量多尺度估测——以梭梭为例[J]. 草业学报, 2013, 22(6): 1-10. |
[12] | 李兴,蒋进,宋春武,闵首军,张恒,姜有为. 保水剂对梭梭幼苗生长及根系形态的影响[J]. 草业学报, 2012, 21(6): 51-56. |
[13] | 康建军,王锁民,赵明,杨自辉. 苗期施用钠复合肥增强梭梭抗逆性的初步研究[J]. 草业学报, 2011, 20(2): 127-133. |
[14] | 莫亿伟,郭振飞,谢江辉. 温度胁迫对柱花草叶绿素荧光参数和光合速率的影响[J]. 草业学报, 2011, 20(1): 96-101. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||