草业学报 ›› 2023, Vol. 32 ›› Issue (2): 160-177.DOI: 10.11686/cyxb2022263
• 综合评述 • 上一篇
叶雪玲(), 甘圳, 万燕, 向达兵, 邬晓勇, 吴琪, 刘长英, 范昱, 邹亮()
收稿日期:
2022-06-20
修回日期:
2022-07-29
出版日期:
2023-02-20
发布日期:
2022-12-01
通讯作者:
邹亮
作者简介:
E-mail: zouliang@cdu.edu.cn基金资助:
Xue-ling YE(), Zhen GAN, Yan WAN, Da-bing XIANG, Xiao-yong WU, Qi WU, Chang-ying LIU, Yu FAN, Liang ZOU()
Received:
2022-06-20
Revised:
2022-07-29
Online:
2023-02-20
Published:
2022-12-01
Contact:
Liang ZOU
摘要:
燕麦是一种一年生禾本科作物,具有耐瘠薄、耐盐碱、抗旱耐寒、适应性广等特性,可广泛种植于欧洲、北美洲和亚洲的北纬40°以北的温带地区。同时,燕麦产草量高、营养价值高、适口性好、消化率高、适于青贮和调制干草,因此,燕麦是一种粮饲兼用的重要杂粮作物。根据燕麦籽粒是否被麸皮包裹可分为皮燕麦和裸燕麦。目前,我国多种植不带麸皮的裸燕麦,主要用于食用,而国外以种植带麸皮的皮燕麦为主,主要用于饲喂牲畜。在大力发展畜牧业的今天,我国的饲用燕麦品种是严重不足的。因此,我国制定并实施了“草牧业”“粮改饲”“引草入田”等系列政策,促进了饲用燕麦产业的快速发展。在国家政策和产业需求的大力支持和引导下,饲用燕麦的种植面积不断扩大,对新品种的需求也日益迫切,对饲用燕麦的育种工作也提出更高的要求。本研究综述了国内外饲草燕麦的:1)种质资源收集、整理和鉴定评价;2)常规育种的4个发展阶段;3)分子技术在燕麦科研与育种中的利用。基于以上研究的梳理总结,明确当前饲用燕麦的育种需求,分析饲用燕麦育种的重点、难点和热点问题,为我国饲用燕麦育种的现代化发展提供重要参考。
叶雪玲, 甘圳, 万燕, 向达兵, 邬晓勇, 吴琪, 刘长英, 范昱, 邹亮. 饲用燕麦育种研究进展与展望[J]. 草业学报, 2023, 32(2): 160-177.
Xue-ling YE, Zhen GAN, Yan WAN, Da-bing XIANG, Xiao-yong WU, Qi WU, Chang-ying LIU, Yu FAN, Liang ZOU. Advances and perspectives in forage oat breeding[J]. Acta Prataculturae Sinica, 2023, 32(2): 160-177.
图1 2015-2021年中国燕麦干草进口情况统计数据来源:根据中国奶业协会、中商产业研究院数据整理分析所得。Data sources: The data from the China Dairy Association and China Business Industry Research Institute.
Fig.1 Statistics on the oat hay imports in China from 2015 to 2021
鉴定方法 Identification method | QTL数量 Number of QTL | 性状 Traits | 参考文献 Reference |
---|---|---|---|
连锁分析 Linkage analysis | 23 | 籽粒长、籽粒宽、籽粒表面积、脱壳率 Kernel length, kernel width, kernel area, groat percentage | [ |
34 | 抽穗期、株高、倒伏、视觉评分、籽粒产量、粒重、出粉率、容重、籽粒饱满度、粗β-葡聚糖含量、油脂含量、蛋白质含量Heading date, plant height, lodging, visual score, grain yield, kernel weight, milling yield, test weight, thin and plump kernels, groat β-glucan content, oil content, protein content | [ | |
4 | 耐铝性 Aluminum tolerance | [ | |
4 | 冠锈病抗性Resistance to crown rust | [ | |
34 | β-葡聚糖含量、含油量、蛋白质含量、叶斑病抗性、百升籽粒质量、千粒重、株高、产量、生育期、倒伏β-glucan content, oil content, protein content, leaf blotch resistance, hectolitre mass, thousand-grain weight, plant height, yield, days to maturity, lodging | [ | |
2 | 坚黑穗病抗性 Resistance to covered smut | [ | |
7 | 冠锈病抗性 Resistance to crown rust | [ | |
17 | 冬季田间存活率、冠层耐冻性、成熟度、春化作用、光周期、抽穗期、株高 Winter field survival, crown freezing tolerance, maturity, vernalization effect, photoperiod, heading date, plant height | [ | |
1 | 白粉病抗性 Resistance to powdery mildew | [ | |
12 | 株高、抽穗期、倒伏、蛋白质含量 Plant height, heading date, lodging, protein content | [ | |
42 | β-葡聚糖含量、含油量、蛋白质含量、千粒重、株高、产量、生育期、抽穗期、倒伏、种子饱满度、脱壳率 β-glucan content, oil content, protein content, thousand-grain weight, plant height, yield, days to maturity, heading date, lodging, plumpness, groat percentage | [ | |
19 | 抽穗期、株高、赤霉病抗性、脱氧雪腐镰刀菌烯醇含量、生育期 Heading date, plant height, resistance to fusarium head blight, deoxynivalenol content, days to maturity | [ | |
28 | 大麦(Hordeum vulgare)黄矮病抗性 Resistance to barley yellow dwarf virus | [ | |
33 | β-葡聚糖含量、抽穗期、皮壳率、籽粒重、倒伏、 粗油脂含量、株高、白粉病抗性、穗数、粗蛋白含量、计算产量、每hm2产量β-glucan content, heading date, hull content, kernel weight, lodging, groat lipid, plant height, resistance to powdery mildew, panicle number, groat protein, test weight, grain yield per ha | [ | |
1 | 冠锈病抗性 Resistance to crown rust | [ | |
17 | 籽粒长、籽粒宽、千粒重 Kernel length, kernel width, thousand-grain weight | [ | |
4 | β-葡聚糖含量 β-glucan content | [ | |
6 | 冠锈病抗性 Resistance to crown rust | [ | |
3 | 耐铝性 Aluminum tolerance | [ | |
2 | 裸粒 Naked grain | [ | |
1 | 冠锈病抗性 Resistance to crown rust | [ | |
2 | 白粉病抗性 Resistance to powdery mildew | [ | |
1 | 白粉病抗性 Resistance to powdery mildew | [ | |
43 | 光周期敏感性 Photoperiod sensitivity | [ | |
6 | 抽穗期、株高 Heading date, plant height | [ | |
2 | 冠锈病抗性 Resistance to crown rust | [ | |
3 | 白粉病抗性、冠锈病抗性Resistance to powdery mildew, resistance to crown rust | [ | |
14 | 抽穗期、株高、冠锈病抗性 Heading date, plant height, resistance to crown rust | [ | |
2 | 叶斑病抗性 Leaf blotch resistance | [ | |
1 | 白粉病抗性 Resistance to powdery mildew | [ | |
1 | 冠锈病抗性 Resistance to crown rust | [ | |
1 | 矮杆 Dwarf | [ | |
2 | 白粉病抗性、冠锈病抗性 Resistance to powdery mildew, resistance to crown rust | [ | |
全基因组 关联分析Genome- wide association studies (GWAS) | 3 | β-葡聚糖含量 β-glucan content | [ |
24 | β-葡聚糖含量 β-glucan content | [ | |
6 | 大麦黄矮病抗性 Resistance to barley yellow dwarf virus | [ | |
13 | 耐寒性、抽穗期 Frost tolerance, heading date | [ | |
22 | 芒、大麦黄矮病抗性、冠锈病抗性、到开花期天数、生长习性(冬春性)、外稃颜色、花序类型 Awn, resistance to barley yellow dwarf virus, resistance to crown rust, days to flowering, growth habit (winter vs. spring), lemma color, panicle type | [ | |
14 | 赤霉病抗性、脱氧雪腐镰刀菌烯醇含量 Resistance to fusarium head blight, deoxynivalenol content | [ | |
29 | 冠锈病抗性 Resistance to crown rust | [ | |
13 | 抗倒伏、株高 Lodging, plant height | [ | |
23 | 产量、生物量、收获指数、抽穗期、冠锈病抗性 Yield, biomass, harvest index, heading date, resistance to crown rust | [ | |
19 | 脂肪酸含量 Fatty acid content | [ | |
58 | β-葡聚糖含量β-glucan content | [ | |
3 | 赤霉病抗性 Resistance to fusarium head blight | [ | |
53 | 到开花天数、株高、干物质产量 Days to flowering, plant height, dry matter yield | [ | |
1 | 赤霉病霉菌浓度 Mycotoxin concentration | [ | |
7 | 冠锈病抗性 Resistance to crown rust | [ | |
4 | 裸粒 Naked kernel | [ | |
7 | β-葡聚糖含量β-glucan content | [ | |
4 | 籽粒长、籽粒宽 Kernel length, kernel width | [ | |
22 | 株高、穗长、单株分蘖、单株小穗数、旗叶长、旗叶宽、千粒重、干草重 Plant height, spike length, tillers per plant, number of spikelet per plant, flag leaf length, flag leaf width, thousand-grain weight, hay weight | [ | |
10 | 抽穗期 Heading date | [ | |
3 | 粒长、粒宽、粒厚 Kernel length, kernel width, kernel thickness | [ | |
33 | 发芽率、胚根长度、胚芽鞘长度、胚芽长度、种子活力指数 Germination rate, radicle length, coleoptile length, plumula length, seed vigor index | [ |
表1 燕麦基因定位信息统计
Table 1 Statistics of gene information in oat
鉴定方法 Identification method | QTL数量 Number of QTL | 性状 Traits | 参考文献 Reference |
---|---|---|---|
连锁分析 Linkage analysis | 23 | 籽粒长、籽粒宽、籽粒表面积、脱壳率 Kernel length, kernel width, kernel area, groat percentage | [ |
34 | 抽穗期、株高、倒伏、视觉评分、籽粒产量、粒重、出粉率、容重、籽粒饱满度、粗β-葡聚糖含量、油脂含量、蛋白质含量Heading date, plant height, lodging, visual score, grain yield, kernel weight, milling yield, test weight, thin and plump kernels, groat β-glucan content, oil content, protein content | [ | |
4 | 耐铝性 Aluminum tolerance | [ | |
4 | 冠锈病抗性Resistance to crown rust | [ | |
34 | β-葡聚糖含量、含油量、蛋白质含量、叶斑病抗性、百升籽粒质量、千粒重、株高、产量、生育期、倒伏β-glucan content, oil content, protein content, leaf blotch resistance, hectolitre mass, thousand-grain weight, plant height, yield, days to maturity, lodging | [ | |
2 | 坚黑穗病抗性 Resistance to covered smut | [ | |
7 | 冠锈病抗性 Resistance to crown rust | [ | |
17 | 冬季田间存活率、冠层耐冻性、成熟度、春化作用、光周期、抽穗期、株高 Winter field survival, crown freezing tolerance, maturity, vernalization effect, photoperiod, heading date, plant height | [ | |
1 | 白粉病抗性 Resistance to powdery mildew | [ | |
12 | 株高、抽穗期、倒伏、蛋白质含量 Plant height, heading date, lodging, protein content | [ | |
42 | β-葡聚糖含量、含油量、蛋白质含量、千粒重、株高、产量、生育期、抽穗期、倒伏、种子饱满度、脱壳率 β-glucan content, oil content, protein content, thousand-grain weight, plant height, yield, days to maturity, heading date, lodging, plumpness, groat percentage | [ | |
19 | 抽穗期、株高、赤霉病抗性、脱氧雪腐镰刀菌烯醇含量、生育期 Heading date, plant height, resistance to fusarium head blight, deoxynivalenol content, days to maturity | [ | |
28 | 大麦(Hordeum vulgare)黄矮病抗性 Resistance to barley yellow dwarf virus | [ | |
33 | β-葡聚糖含量、抽穗期、皮壳率、籽粒重、倒伏、 粗油脂含量、株高、白粉病抗性、穗数、粗蛋白含量、计算产量、每hm2产量β-glucan content, heading date, hull content, kernel weight, lodging, groat lipid, plant height, resistance to powdery mildew, panicle number, groat protein, test weight, grain yield per ha | [ | |
1 | 冠锈病抗性 Resistance to crown rust | [ | |
17 | 籽粒长、籽粒宽、千粒重 Kernel length, kernel width, thousand-grain weight | [ | |
4 | β-葡聚糖含量 β-glucan content | [ | |
6 | 冠锈病抗性 Resistance to crown rust | [ | |
3 | 耐铝性 Aluminum tolerance | [ | |
2 | 裸粒 Naked grain | [ | |
1 | 冠锈病抗性 Resistance to crown rust | [ | |
2 | 白粉病抗性 Resistance to powdery mildew | [ | |
1 | 白粉病抗性 Resistance to powdery mildew | [ | |
43 | 光周期敏感性 Photoperiod sensitivity | [ | |
6 | 抽穗期、株高 Heading date, plant height | [ | |
2 | 冠锈病抗性 Resistance to crown rust | [ | |
3 | 白粉病抗性、冠锈病抗性Resistance to powdery mildew, resistance to crown rust | [ | |
14 | 抽穗期、株高、冠锈病抗性 Heading date, plant height, resistance to crown rust | [ | |
2 | 叶斑病抗性 Leaf blotch resistance | [ | |
1 | 白粉病抗性 Resistance to powdery mildew | [ | |
1 | 冠锈病抗性 Resistance to crown rust | [ | |
1 | 矮杆 Dwarf | [ | |
2 | 白粉病抗性、冠锈病抗性 Resistance to powdery mildew, resistance to crown rust | [ | |
全基因组 关联分析Genome- wide association studies (GWAS) | 3 | β-葡聚糖含量 β-glucan content | [ |
24 | β-葡聚糖含量 β-glucan content | [ | |
6 | 大麦黄矮病抗性 Resistance to barley yellow dwarf virus | [ | |
13 | 耐寒性、抽穗期 Frost tolerance, heading date | [ | |
22 | 芒、大麦黄矮病抗性、冠锈病抗性、到开花期天数、生长习性(冬春性)、外稃颜色、花序类型 Awn, resistance to barley yellow dwarf virus, resistance to crown rust, days to flowering, growth habit (winter vs. spring), lemma color, panicle type | [ | |
14 | 赤霉病抗性、脱氧雪腐镰刀菌烯醇含量 Resistance to fusarium head blight, deoxynivalenol content | [ | |
29 | 冠锈病抗性 Resistance to crown rust | [ | |
13 | 抗倒伏、株高 Lodging, plant height | [ | |
23 | 产量、生物量、收获指数、抽穗期、冠锈病抗性 Yield, biomass, harvest index, heading date, resistance to crown rust | [ | |
19 | 脂肪酸含量 Fatty acid content | [ | |
58 | β-葡聚糖含量β-glucan content | [ | |
3 | 赤霉病抗性 Resistance to fusarium head blight | [ | |
53 | 到开花天数、株高、干物质产量 Days to flowering, plant height, dry matter yield | [ | |
1 | 赤霉病霉菌浓度 Mycotoxin concentration | [ | |
7 | 冠锈病抗性 Resistance to crown rust | [ | |
4 | 裸粒 Naked kernel | [ | |
7 | β-葡聚糖含量β-glucan content | [ | |
4 | 籽粒长、籽粒宽 Kernel length, kernel width | [ | |
22 | 株高、穗长、单株分蘖、单株小穗数、旗叶长、旗叶宽、千粒重、干草重 Plant height, spike length, tillers per plant, number of spikelet per plant, flag leaf length, flag leaf width, thousand-grain weight, hay weight | [ | |
10 | 抽穗期 Heading date | [ | |
3 | 粒长、粒宽、粒厚 Kernel length, kernel width, kernel thickness | [ | |
33 | 发芽率、胚根长度、胚芽鞘长度、胚芽长度、种子活力指数 Germination rate, radicle length, coleoptile length, plumula length, seed vigor index | [ |
1 | Zhou J P, Liu L L, Cui L. The breeding status and resources characteristics of oats in Shanxi Province. Journal of Shanxi Agricultural Sciences, 2010, 38(11): 6-9. |
周建萍, 刘龙龙, 崔林. 山西省燕麦育种现状及资源特点. 山西农业科学, 2010, 38(11): 6-9. | |
2 | Ren C Z, Cui L, Yang C, et al. Establishment and application of high efficient breeding technology system of oat in China. Journal of Agricultural Science and Technology, 2016, 18(1): 1-6. |
任长忠, 崔林, 杨才, 等. 我国燕麦高效育种技术体系创建与应用. 中国农业科技导报, 2016, 18(1): 1-6. | |
3 | Zheng D S, Zhang Z W. Introduction and utilization of foreign oat germplasm resources in China. Journal of Plant Genetic Resources, 2017, 18(6): 1001-1005. |
郑殿升, 张宗文. 中国燕麦种质资源国外引种与利用. 植物遗传资源学报, 2017, 18(6): 1001-1005. | |
4 | Hou L Y, Zhu Z Y, Yang J, et al. Current status, problems and potentials of forage oat in China. Journal of Southwest Minzu University (Natural Science Edition), 2019, 45(3): 248-253. |
侯龙鱼, 朱泽义, 杨杰, 等. 我国饲草用燕麦现状、问题和潜力. 西南民族大学学报(自然科学版), 2019, 45(3): 248-253. | |
5 | Yin X J, Nan M, Li J, et al. Genetic diversity and resistance evaluation of forage oat germplasm resources. China Seed Industry, 2021(10): 15-18. |
尹祥佳, 南铭, 李晶, 等. 饲用燕麦种质资源遗传多样性和抗性评价研究. 中国种业, 2021(10): 15-18. | |
6 | Liu Y C, Zhou Q P. Recent advances in oat research. Qinghai Science and Technology, 2011, 18(6): 20-23. |
刘迎春, 周青平. 燕麦研究最新进展. 青海科技, 2011, 18(6): 20-23. | |
7 | Wang M Y, Qi X L, Zhang F Y. Progress in the research of oat molecular biology abroad. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2001(4): 139-144. |
王茅雁, 齐秀丽, 张凤英. 国外燕麦分子生物学研究进展. 内蒙古农业大学学报(自然科学版), 2001(4): 139-144. | |
8 | Yang J, Xiang C Q. Brief introduction of oat research and development status and storage management. Grain and Oil Storage Technology Newsletter, 2016, 32(3): 49-52. |
杨静, 向长琼. 浅谈燕麦研发现状及储藏管理. 粮油仓储科技通讯, 2016, 32(3): 49-52. | |
9 | Wu B, Zheng D S, Yan W K, et al. Advances in molecular breeding of oats. Journal of Plant Genetic Resources, 2019, 20(3): 485-495. |
吴斌, 郑殿升, 严威凯, 等. 燕麦分子育种研究进展. 植物遗传资源学报, 2019, 20(3): 485-495. | |
10 | Dziubińska D, Bolc P, Kloc G, et al. A comprehensive dataset of Avena sativa L. landraces phenotypes and genotype. Data in Brief, 2022, 41: 107962. |
11 | Wang L Y. Research status, problems, and countermeasures of forage germplasm resources in Qinghai Province. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2002(5): 27-28. |
王柳英. 青海省牧草种质资源研究现状、问题及对策. 青海畜牧兽医杂志, 2002(5): 27-28. | |
12 | Yan H B, Zhou Q P, Liu W H. Present situation and development direction of forage breeding in Qinghai Province. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2009, 39(2): 35-37. |
颜红波, 周青平, 刘文辉. 青海省牧草育种现状及发展方向. 青海畜牧兽医杂志, 2009, 39(2): 35-37. | |
13 | Zhang K H. Analysis of the test results of high-quality American oats in Gansu Province and its enlightenment. World Agriculture, 2006(5): 48-49, 54. |
张克厚. 美国优质燕麦在甘肃省的试验结果分析及其启示. 世界农业, 2006(5): 48-49, 54. | |
14 | Qi B J. Study on genetic diversity of germplasm resources of oat (Avena sativa L.). Hohhot: Inner Mongolia Agricultural University, 2009. |
齐冰洁. 燕麦种质资源遗传多样性研究. 呼和浩特: 内蒙古农业大学, 2009. | |
15 | Zhang J, Li H X, Li J H, et al. Classification, origin and evolution of oat. Front in American Agriculture, 2020, 10(5): 1-7. |
张洁, 李慧霞, 黎建辉, 等. 燕麦分类, 起源与进化. 美洲农业研究前沿, 2020, 10(5): 1-7. | |
16 | Zheng D S, Wang X M, Zhang J. Specification and data standard for oat germplasm resource description. Beijing: China Agriculture Press, 2006. |
郑殿升, 王晓鸣, 张京. 燕麦种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. | |
17 | Zhao G Q, Mu P, Wei L M. Research progress in Avena sativa. Acta Prataculturae Sinica, 2007, 16(4): 116-125. |
赵桂琴, 慕平, 魏黎明. 饲用燕麦研究进展. 草业学报, 2007, 16(4): 116-125. | |
18 | Peterson D M, Wesenberg D M, Burrup D E. β-glucan content and its relationship to agronomic characteristics in elite oat germplasm. Crop Science, 1995, 35(4): 965-970. |
19 | Baohong G, Zhou X, Murphy J P. Genetic variation within Chinese and Western cultivated oat accessions. Cereal Research Communications, 2003, 31(3): 339-346. |
20 | Diederichsen A. Assessments of genetic diversity within a world collection of cultivated hexaploid oat (Avena sativa L.) based on qualitative morphological characters. Genetic Resources and Crop Evolution, 2008, 55(3): 419-440. |
21 | Boczkowska M, Zebrowski J, Nowosielski J, et al. Environmentally-related genotypic, phenotypic and metabolic diversity of oat (Avena sativa L.) landraces based on 67 Polish accessions. Genetic Resources and Crop Evolution, 2017, 64(8): 1829-1840. |
22 | Nan M, Zhao G Q, Chai J K. Phenotypic diversity and comprehensive evaluations of Avena sativa L. germplasm in semi-arid area of the Loess Plateau. Acta Agrestia Sinica, 2017, 25(6): 1197-1205. |
南铭, 赵桂琴, 柴继宽. 黄土高原半干旱区饲用燕麦种质表型性状遗传多样性分析及综合评价. 草地学报, 2017, 25(6): 1197-1205. | |
23 | Sadras V O, Mahadevan M, Zwer P K. Oat phenotypes for drought adaptation and yield potential. Field Crops Research, 2017, 212: 135-144. |
24 | Leišová-Svobodová L, Michel S, Tamm I, et al. Diversity and pre-breeding prospects for local adaptation in oat genetic resources. Sustainability, 2019, 11(24): 6950. |
25 | Negi H, Prasad B, Kumar A, et al. Simple correlation and phenotypic path coefficient analysis in oat germplasm. International Journal of Chemical Studies, 2019, 7(3): 1174-1178. |
26 | Wagh V R, Sonone A H, Damame S V. Assesement of genetic diversity in forage oat (Avena sativa L.). Forage Research, 2019, 45(3): 203-205. |
27 | Arora A, Sood V K, Chaudhary H K, et al. Genetic diversity analysis of oat (Avena sativa L.) germplasm revealed by agro-morphological and SSR markers. Range Management and Agroforestry, 2021, 42(1): 38-48. |
28 | Kaur G, Kapoor R, Sharma P, et al. Molecular characterization of oats (Avena sativa L.) germplasm with microsatellite markers. Indian Journal of Genetics and Plant Breeding, 2021, 81(1): 144-147. |
29 | Loskutov I G, Novikova L Y, Belskaya G V, et al. Long-term analysis of the variability of agronomic characters in the VIR oat germplasm collection in central black soil region of Russia. Agronomy, 2021, 11(3): 423. |
30 | Sanz M J, Jellen E N, Loarce Y, et al. A new chromosome nomenclature system for oat (Avena sativa L. and A. byzantina C. Koch) based on FISH analysis of monosomic lines. Theoretical and Applied Genetics, 2010, 121(8): 1541-1552. |
31 | Luo X, Tinker N A, Zhou Y, et al. A comparative cytogenetic study of 17 Avena species using Am1 and (GAA) 6 oligonucleotide FISH probes. Acta Physiologiae Plantarum, 2018, 40(8): 1-11. |
32 | Jiang W, Jiang C, Yuan W, et al. A universal karyotypic system for hexaploid and diploid Avena species brings oat cytogenetics into the genomics era. BMC Plant Biology, 2021, 21(1): 1-5. |
33 | Shelukhina O Y, Badaeva E D, Loskutov I G, et al. A comparative cytogenetic study of the tetraploid oat species with the A and C genomes: Avena insularis, A. magna, and A. murphyi. Russian Journal of Genetics, 2007, 43(6): 613-626. |
34 | Shelukhina O Y, Badaeva E D, Brezhneva T A, et al. Comparative analysis of diploid species of Avena L. using cytogenetic and biochemical markers: Avena canariensis Baum et Fedak and A. longiglumis Dur. Russian Journal of Genetics, 2008, 44(6): 694-701. |
35 | Badaeva E D, Shelukhina O Y, Goryunova S V, et al. Phylogenetic relationships of tetraploid AB-Genome Avena species evaluated by means of cytogenetic (C-Banding and FISH) and RAPD analyses. Journal of Botany, 2020, 2010: 1-13. |
36 | Liu W, Zhang Z W, Wu B. Karyotype analysis of diploid oat germplasm introduced from Canada. Journal of Plant Genetic Resources, 2013, 14(1): 141-145. |
刘伟, 张宗文, 吴斌. 加拿大引进的二倍体燕麦种质的核型鉴定. 植物遗传资源学报, 2013, 14(1): 141-145. | |
37 | Xu X Z, Zhao G Q, Wang J, et al. Karyotype analysis of oats with different ploidy. Grassland and Turf, 2018, 38(3): 90-95. |
许兴泽, 赵桂琴, 王军, 等. 不同倍性燕麦的核型分析. 草原与草坪, 2018, 38(3): 90-95. | |
38 | Liu Q, Li X, Zhou X, et al. The repetitive DNA landscape in Avena (Poaceae): Chromosome and genome evolution defined by major repeat classes in whole-genome sequence reads. BMC Plant Biology, 2019, 19(1): 1-7. |
39 | Fominaya A, Loarce Y, González J M, et al. Cytogenetic evidence supports Avena insularis being closely related to hexaploid oats. PLoS One, 2021, 16(10): e0257100. |
40 | Aung T, Zwer P, Park R, et al. Hybrids of Avena sativa with two diploid wild oats (CIav6956) and (CIav7233) resistant to crown rust. Euphytica, 2010, 174(2): 189-198. |
41 | Ishii T, Ueda T, Tanaka H, et al. Chromosome elimination by wide hybridization between Triticeae or oat plant and pearl millet: Pearl millet chromosome dynamics in hybrid embryo cells. Chromosome Research, 2010, 18(7): 821-831. |
42 | Ishii T, Sunamura N, Matsumoto A, et al. Preferential recruitment of the maternal centromere-specific histone H3 (CENH3) in oat (Avena sativa L.)× pearl millet (Pennisetum glaucum L.) hybrid embryos. Chromosome Research, 2015, 23(4): 709-718. |
43 | Ishii T. Wide hybridization between oat and pearl millet. New York: Humana Press, 2017: 31-42. |
44 | Nikoloudakis N, Katsiotis A. Comparative molecular and cytogenetic methods can clarify meiotic incongruities in Avena allopolyploid hybrids. Caryologia, 2015, 68(2): 84-91. |
45 | Skrzypek E, Warzecha T, Noga A, et al. Complex characterization of oat (Avena sativa L.) lines obtained by wide crossing with maize (Zea mays L.). PeerJ, 2018, 6: e5107. |
46 | Ahmad M, Jehangir I A, Rizvan R, et al. Phylogenetic relationship of oats (Avena sativa L): A guide to conservation and utilisation of genetic resources. International Journal of Current Microbiology and Applied Sciences, 2020, 9(11): 831-845. |
47 | Tomaszewska P, Kosina R. Cytogenetic events in the endosperm of amphiploid Avena magna×A. longiglumis. Journal of Plant Research, 2021, 134(5): 1047-1060. |
48 | Fu Y B, Peterson G W, Williams D, et al. Patterns of AFLP variation in a core subset of cultivated hexaploid oat germplasm. Theoretical and Applied Genetics, 2005, 111(3): 530-539. |
49 | Tinker N A, Kilian A, Wight C P, et al. New DArT markers for oat provide enhanced map coverage and global germplasm characterization. BMC Genomics, 2009, 10(1): 1-22. |
50 | He X, Bjørnstad Å. Diversity of North European oat analyzed by SSR, AFLP and DArT markers. Theoretical and Applied Genetics, 2012, 125(1): 57-70. |
51 | Al-Hajaj N, Peterson G W, Horbach C, et al. Genotyping-by-sequencing empowered genetic diversity analysis of Jordanian oat wild relative Avena sterilis. Genetic Resources and Crop Evolution, 2018, 65(8): 2069-2082. |
52 | Cömertpay G, Habyarimana E, Baloch F S, et al. Geographical description and molecular characterization of genetic structure and diversity using a 6K SNP array in Turkish oat germplasm. Canadian Journal of Plant Science, 2018, 99(1): 12-21. |
53 | Ihsan M, Nazir N, Ghafoor A, et al. Genetic diversity in local and exotic Avena sativa L.(oat) germplasm using multivariate analysis. Agronomy, 2021, 11(9): 1713. |
54 | Wang T. The difference analysis of drought tolerance and yield formation in naked oat genotypes released in different years. Lanzhou: Lanzhou University, 2017. |
王弢. 不同年代裸燕麦品种耐旱性和产量形成的差异性比较研究. 兰州: 兰州大学, 2017. | |
55 | Yang C Q, Chang Y J, Yang J, et al. Research progress of oats production and breeding selection technology. Journal of Triticeae Crops, 2022, 42(5): 578-584. |
杨崇庆, 常耀军, 杨娇, 等. 燕麦生产及品种选育技术研究进展. 麦类作物学报, 2022, 42(5): 578-584. | |
56 | Zhao S F, Wang Z G, Tian C Y, et al. Overview of the current situation and development countermeasures of the oat industry in Zhangjiakou. Hebei Agricultural Science and Technology, 2007(3): 50-51. |
赵世锋, 王志刚, 田长叶, 等. 张家口市燕麦产业现状及发展对策综述. 河北农业科技, 2007(3): 50-51. | |
57 | Cao L X, Hou L Y, Zhao S F, et al. Comparative studies on forage production and quality of 20 oat cultivars. Journal of Southwest Minzu University (Natural Science Edition), 2021, 47(4): 335-341. |
曹丽霞, 侯龙鱼, 赵世锋, 等. 20个燕麦品种饲草产量和品质比较分析. 西南民族大学学报(自然科学版), 2021, 47(4): 335-341. | |
58 | Qiao Y M, Yin D H, Pei H K. Breeding of early-maturing variety oat No. 1. Pratacultural Science, 2003, 20(3): 34-38. |
乔有明, 尹大海, 裴海昆. 早熟1号燕麦品种的选育. 草业科学, 2003, 20(3): 34-38. | |
59 | Wu Y Z, Tian C Y, Li Y X, et al. Breeding and utilization of new high quality processing naked oat variety Bayou No.9. Journal of Hebei Agricultural Sciences, 2010, 14(3): 50-51, 56. |
武永祯, 田长叶, 李云霞, 等. 优质加工型裸燕麦新品种坝莜九号的选育和利用. 河北农业科学, 2010, 14(3): 50-51, 56. | |
60 | Zhou H T, Li T L, Zhang X J, et al. Breeding, characteristics and cultivation techniques of new oat variety ‘Yuanza No.1’ (Avena sativa) for grain and forage production. Journal of Anhui Agricultural Sciences, 2012, 40(19): 10040-10042. |
周海涛, 李天亮, 张新军, 等. 粮草兼用型莜麦新品种“远杂一号”的选育·特征特性·栽培技术. 安徽农业科学, 2012, 40(19): 10040-10042. | |
61 | Zhang C L, Han B, Zhao Y L, et al. Breeding of early-maturing variety forage oat variety ‘Mengsi No.5’. China Seed Industry, 2021(12): 102-104. |
张春林, 韩冰, 赵瑛琳, 等. 早熟饲草新品种蒙饲5号燕麦的选育. 中国种业, 2021(12): 102-104. | |
62 | Stuthman D D. Oat breeding and genetics. London: Springer Dordrecht, 1995: 150-176. |
63 | Shirreff P. Improvement of the cereals. Cereals. Edinburgh: William Blackwood and Sons, 1873: 1-26. |
64 | Brown C M, Patterson F L. Conventional oat breeding. Oat Science and Technology, 1992, 33: 613-656. |
65 | Coffman F A, Murphy H C, Chapman W H. Oat breeding. Oats and Oat Improvement. Madison: The American Society of Agronomy, 1961: 263-329. |
66 | Hu W X. Overview of oat production and scientific research abroad in recent years (Ⅲ). Inner Mongolia Agricultural Science and Technology, 1980(3): 42-45. |
胡文绣. 近年来国外燕麦生产和科研概况(三). 内蒙古农业科技, 1980(3): 42-45. | |
67 | Ye F J. Advances in oat research abroad. Inner Mongolia Agricultural Science and Technology, 1983(1): 44-48. |
叶福钧. 国外燕麦科研动态. 内蒙古农业科技, 1983(1): 44-48. | |
68 | Stewart D, McDougall G. Oat agriculture, cultivation and breeding targets: Implications for human nutrition and health. British Journal of Nutrition, 2014, 112(S2): S50-S57. |
69 | Loskutov I G, Khlestkina E K. Wheat, barley, and oat breeding for health benefit components in grain. Plants, 2021, 10(1): 86. |
70 | Kamal N, Tsardakas R N, Bentzer J, et al. The mosaic oat genome gives insights into a uniquely healthy cereal crop. Nature, 2022, 606(7912): 113-119. |
71 | Peng Y, Yan H, Guo L, et al. Reference genome assemblies reveal the origin and evolution of allohexaploid oat. Nature Genetics, 2022, 54: 1248-1258. |
72 | Penner G A, Chong J, Wight C P, et al. Identification of an RAPD marker for the crown rust resistance gene Pc68 in oats. Genome, 1993, 36(5): 818-820. |
73 | O’Donoughue L S, Sorrells M E, Tanksley S D, et al. A molecular linkage map of cultivated oat. Genome, 1995, 38(2): 368-380. |
74 | Xu W, Zhang Z W, Zhang E L, et al. A genetic linkage map for naked oat (Avena nuda L.). Journal of Plant Genetic Resources, 2013, 14(4): 673-678. |
徐微, 张宗文, 张恩来, 等. 大粒裸燕麦(Avena nuda L.)遗传连锁图谱的构建. 植物遗传资源学报, 2013, 14(4): 673-678. | |
75 | Wu B, Zhang Q, Song G Y, et al. Construction of SSR genetic linkage map and analysis of QTLs related to β-glucan content of naked oat (Avena nuda L.). Scientia Agricultura Sinica, 2014, 47(6): 1208-1215. |
吴斌, 张茜, 宋高原, 等. 裸燕麦SSR标记连锁群图谱的构建及β-葡聚糖含量QTL的定位. 中国农业科学, 2014, 47(6): 1208-1215. | |
76 | Groh S, Kianian S F, Phillips R L, et al. Analysis of factors influencing milling yield and their association to other traits by QTL analysis in two hexaploid oat populations. Theoretical and Applied Genetics, 2001, 103(1): 9-18. |
77 | De Koeyer D L, Tinker N A, Wight C P, et al. A molecular linkage map with associated QTLs from a hulless×covered spring oat population. Theoretical and Applied Genetics, 2004, 108(7): 1285-1298. |
78 | Wight C P, Kibite S, Tinker N A, et al. Identification of molecular markers for aluminium tolerance in diploid oat through comparative mapping and QTL analysis. Theoretical and Applied Genetics, 2006, 112(2): 222-231. |
79 | Jackson E W, Obert D E, Avant J B, et al. Quantitative trait loci in the Ogle/TAM O-301 oat mapping population controlling resistance to Puccinia coronata in the field. Phytopathology, 2010, 100(5): 484-492. |
80 | Tanhuanpää P, Manninen O, Kiviharju E. QTLs for important breeding characteristics in the doubled haploid oat progeny. Genome, 2010, 53(6): 482-493. |
81 | Xiang H J. Assessment of genetic diversity and mapping QTLs for resistance to covered smut in oat. Beijing: Chinese Academy of Agricultural Sciences, 2010. |
相怀军. 燕麦种质遗传多样性及坚黑穗病抗性QTL定位. 北京: 中国农业科学院, 2010. | |
82 | Acevedo M, Jackson E W, Chong J, et al. Identification and validation of quantitative trait loci for partial resistance to crown rust in oat. Phytopathology, 2010, 100(5): 511-521. |
83 | Maloney P V, Lyerly J H, Wooten D R, et al. Marker development and quantitative trait loci in a fall-sown oat recombinant inbred population. Crop Science, 2011, 51(2): 490-502. |
84 | Hagmann E, von Post L, von Post R, et al. QTL mapping of powdery mildew resistance in oats using DArT markers//Proceedings of 15th International EWAC Conference. Novi Sad: European Cereals Genetics Co-operative Newsletter, 2012: 91-94. |
85 | Hizbai B T, Gardner K M, Wight C P, et al. Quantitative trait loci affecting oil content, oil composition, and other agronomically important traits in oat. The Plant Genome, 2012, 5(3): 164-175. |
86 | Tanhuanpää P, Manninen O, Beattie A, et al. An updated doubled haploid oat linkage map and QTL mapping of agronomic and grain quality traits from Canadian field trials. Genome, 2012, 55(4): 289-301. |
87 | He X, Skinnes H, Oliver R E, et al. Linkage mapping and identification of QTL affecting deoxynivalenol (DON) content (Fusarium resistance) in oats (Avena sativa L.). Theoretical and Applied Genetics, 2013, 126(10): 2655-2670. |
88 | Sanz M J, Loarce Y, Fominaya A, et al. Identification of RFLP and NBS/PK profiling markers for disease resistance loci in genetic maps of oats. Theoretical and Applied Genetics, 2013, 126(1): 203-218. |
89 | Herrmann M H, Yu J, Beuch S, et al. Quantitative trait loci for quality and agronomic traits in two advanced backcross populations in oat (Avena sativa L.). Plant Breeding, 2014, 133(5): 588-601. |
90 | Lin Y, Gnanesh B N, Chong J, et al. A major quantitative trait locus conferring adult plant partial resistance to crown rust in oat. BMC Plant Biology, 2014, 14(1): 1-11. |
91 | Song G Y, Huo P J, Wu B, et al. Study on QTLs for grain traits in hexaploid naked oat. Journal of Plant Genetic Resources, 2014, 15(5): 1034-1039. |
宋高原, 霍朋杰, 吴斌, 等. 裸燕麦籽粒性状的QTL分析. 植物遗传资源学报, 2014, 15(5): 1034-1039. | |
92 | Babiker E M, Gordon T C, Jackson E W, et al. Quantitative trait loci from two genotypes of oat (Avena sativa) conditioning resistance to Puccinia coronata. Phytopathology, 2015, 105(2): 239-245. |
93 | Schneider A B, Nava I C, Hervé C B, et al. Chromosome-anchored QTL conferring aluminum tolerance in hexaploid oat. Molecular Breeding, 2015, 35(5): 1-15. |
94 | Ubert I P, Zimmer C M, Pellizzaro K, et al. Genetics and molecular mapping of the naked grains in hexaploid oat. Euphytica, 2017, 213(2): 1-6. |
95 | Admassu-Yimer B, Bonman J M, Esvelt Klos K. Mapping of crown rust resistance gene Pc53 in oat (Avena sativa). PLoS One, 2018, 13(12): e0209105. |
96 | Herrmann M H, Mohler V. Locating two novel genes for resistance to powdery mildew from Avena byzantina in the oat genome. Plant Breeding, 2018, 137(6): 832-838. |
97 | Okoń S M, Ociepa T, Nucia A. Molecular identification of Pm4 powdery mildew resistant gene in oat. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2018, 46(2): 350-355. |
98 | Ren C Z, Yuan Y P, Liang W, et al. Cloning, expression, and QTL mapping of light-insensitive genes in oat. Baicheng: Baicheng Academy of Agricultural Sciences, 2018. |
任长忠, 原亚萍, 梁卫, 等. 燕麦光照不敏感基因的克隆、表达及QTL定位. 白城: 吉林省白城市农业科学院, 2018. | |
99 | Zimmer C M, Ubert I P, Pacheco M T, et al. Molecular and comparative mapping for heading date and plant height in oat. Euphytica, 2018, 214(6): 1-9. |
100 | Admassu-Yimer B, Gordon T, Bonman J M, et al. Development and validation of a quantitative PCR assay method of assessing relative resistance of oat (Avena sativa) to crown rust (Puccinia coronata f. sp. avenae). Plant Pathology, 2019, 68(4): 669-677. |
101 | Mohler V, Stadlmeier M, Sood A, et al. Genetic analysis of new sources of seedling resistance to powdery mildew and crown rust in oat//Resistance Breeding-from Pathogen Epidemilogy to Molecular Breeding. Tagungsband der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs, 69. Jahrestagung. Tulln: Department für Nutzpflanzenwissenschaften Universität für Bodenkultur Wien, 2019: 29-31. |
102 | Sunstrum F G, Bekele W A, Wight C P, et al. A genetic linkage map in southern-by-spring oat identifies multiple quantitative trait loci for adaptation and rust resistance. Plant Breeding, 2019, 138(1): 82-94. |
103 | Woitas A, Grewal T S, McCartney C A, et al. Genetic mapping of a seedling resistance QTL effective against the oat leaf blotch pathogen Pyrenophora avenae. In Plant and Animal Genome XXVII Conference, 2019. https://oatnews.org/oatnews_pdfs/2018etc/AOWC2018_Poster_12_Beattie.pdf. |
104 | Ociepa T, Okoń S, Nucia A, et al. Molecular identification and chromosomal localization of new powdery mildew resistance gene Pm11 in oat. Theoretical and Applied Genetics, 2020, 133(1): 179-185. |
105 | Zhao J, Kebede A Z, Bekele W A, et al. Mapping of the oat crown rust resistance gene Pc39 relative to single nucleotide polymorphism markers. Plant Disease, 2020, 104(5): 1507-1513. |
106 | Yan H, Yu K, Xu Y, et al. Position validation of the dwarfing gene Dw6 in oat (Avena sativa L.) and its correlated effects on agronomic traits. Frontiers in Plant Science, 2021, 12: 668847. |
107 | Admassu-Yimer B, Klos K E, Griffiths I, et al. Mapping of crown rust (Puccinia coronata f. sp. avenae) resistance gene Pc54 and a novel quantitative trait locus effective against powdery mildew (Blumeria graminis f. sp. avenae) in the oat (Avena sativa) line Pc54. Phytopathology, 2022, 112(6): 1316-1322. |
108 | Newell M A, Asoro F G, Scott M P, et al. Genome-wide association study for oat (Avena sativa L.) beta-glucan concentration using germplasm of worldwide origin. Theoretical and Applied Genetics, 2012, 125(8): 1687-1696. |
109 | Asoro F G, Newell M A, Scott M P, et al. Genome-wide association study for beta-glucan concentration in elite North American oat. Crop Science, 2013, 53(2): 542-553. |
110 | Foresman B J, Oliver R E, Jackson E W, et al. Genome-wide association mapping of barley yellow dwarf virus tolerance in spring oat (Avena sativa L.). PLoS One, 2016, 11(5): e0155376. |
111 | Tumino G, Voorrips R E, Rizza F, et al. Population structure and genome-wide association analysis for frost tolerance in oat using continuous SNP array signal intensity ratios. Theoretical and Applied Genetics, 2016, 129(9): 1711-1724. |
112 | Winkler L R, Michael Bonman J, Chao S, et al. Population structure and genotype-phenotype associations in a collection of oat landraces and historic cultivars. Frontiers in Plant Science, 2016, 7: 1077. |
113 | Bjørnstad Å, He X, Tekle S, et al. Genetic variation and associations involving Fusarium head blight and deoxynivalenol accumulation in cultivated oat (Avena sativa L.). Plant Breeding, 2017, 136(5): 620-636. |
114 | Klos K E, Yimer B A, Babiker E M, et al. Genome‐wide association mapping of crown rust resistance in oat elite germplasm. Plant Genome, 2017, 10(2): 1-13. |
115 | Tumino G, Voorrips R E, Morcia C, et al. Genome-wide association analysis for lodging tolerance and plant height in a diverse European hexaploid oat collection. Euphytica, 2017, 213(8): 1-12. |
116 | Rispail N, Montilla-Bascón G, Sánchez-Martín J, et al. Multi-environmental trials reveal genetic plasticity of oat agronomic traits associated with climate variable changes. Frontiers in Plant Science, 2018, 9: 1358. |
117 | Carlson M O, Montilla-Bascon G, Hoekenga O A, et al. Multivariate genome-wide association analyses reveal the genetic basis of seed fatty acid composition in oat (Avena sativa L.). G3-Genes Genomes Genetics, 2019, 9(9): 2963-2975. |
118 | Fogarty M C, Smith S M, Sheridan J L, et al. Identification of mixed linkage β‐glucan quantitative trait loci and evaluation of AsCslF6 homoeologs in hexaploid oat. Crop Science, 2020, 60(2): 914-933. |
119 | Haikka H, Manninen O, Hautsalo J, et al. Genome-wide association study and genomic prediction for Fusarium graminearum resistance traits in nordic oat (Avena sativa L.). Agronomy, 2020, 10(2): 174. |
120 | Huang C W, Liang W H, Esvelt Klos K, et al. Evaluation of agronomic performance and exploratory genome‐wide association study of a diverse oat panel for forage use in Taiwan. Grassland Science, 2020, 66(4): 249-260. |
121 | Isidro‐Sánchez J, D’Arcy Cusack K, Verheecke‐Vaessen C, et al. Genome‐wide association mapping of Fusarium langsethiae infection and mycotoxin accumulation in oat (Avena sativa L.). The Plant Genome, 2020, 13(2): e20023. |
122 | McNish I G, Zimmer C M, Susko A Q, et al. Mapping crown rust resistance at multiple time points in elite oat germplasm. The Plant Genome, 2020, 13(1): e20007. |
123 | Yan H, Zhou P, Peng Y, et al. Genetic diversity and genome-wide association analysis in Chinese hulless oat germplasm. Theoretical and Applied Genetics, 2020, 133(12): 3365-3380. |
124 | Zimmer C M, McNish I G, Klos K E, et al. Genome-wide association for β-glucan content, population structure, and linkage disequilibrium in elite oat germplasm adapted to subtropical environments. Molecular Breeding, 2020, 40(11): 1-6. |
125 | Carlson K. Genome wide association study on kernel size in Avena sativa (oats). Brookings: South Dakota State University, 2021. |
126 | Yang H. Character evaluation and SSR genetic diversity analysis of wild oat germplasm resources in Israel. Guiyang: Guizhou University, 2021. |
杨浩. 以色列野生燕麦种质资源性状评价及SSR遗传多样性分析. 贵阳: 贵州大学, 2021. | |
127 | Zimmer C M, Oliveira G, Arruda K M, et al. Genome-wide association mapping for heading date in oats under subtropical environments. Scientia Agricola, 2021, 79(3): 1-8. |
128 | Zimmer C M, McNish I G, Esvelt Klos K, et al. Genome‐wide association mapping for kernel shape and its association with β‐glucan content in oats. Crop Science, 2021, 61(6): 3986-3999. |
129 | Kocak B A, Kilinc F M, Bardak A, et al. Association mapping of germination and some early seedling stage traits of a Turkish origin oat collection. Turkish Journal of Field Crops, 2022, 27(1): 41-50. |
130 | Newell M A, Cook D, Tinker N A, et al. Population structure and linkage disequilibrium in oat (Avena sativa L.): Implications for genome-wide association studies. Theoretical and Applied Genetics, 2011, 122(3): 623-632. |
131 | Asoro F G, Newell M A, Beavis W D, et al. Genomic, marker-assisted, and pedigree‐BLUP selection methods for β‐glucan concentration in elite oat. Crop Science, 2013, 53(5): 1894-1906. |
132 | Mohammed S, Abd Samad A, Rahmat Z. Agrobacterium-mediated transformation of rice: Constraints and possible solutions. Rice Science, 2019, 26(3): 133-146. |
133 | Hayta S, Smedley M A, Clarke M, et al. An efficient Agrobacterium-mediated transformation protocol for hexaploid and tetraploid wheat. Current Protocols, 2021, 1(3): e58. |
134 | Jiao P, Jin S, Chen N, et al. Improvement of cold tolerance in maize (Zea mays L.) using Agrobacterium-mediated transformation of ZmSAMDC gene. GM Crops & Food, 2022, 13(1): 131-141. |
135 | Somers D A, Rines H W, Gu W, et al. Fertile, transgenic oat plants. Nature Biotechnology, 1992, 10(12): 1589-1594. |
136 | Gless C, Lorz H, Jahne G A. Transgenic oat plants obtained at high efficiency by microprojectile bombardment of leaf base segments. Journal of Plant Physiology, 1998, 152: 151-157. |
137 | Koev G, Mohan B R, Dinesh-Kumar S P, et al. Extreme reduction of disease in oats transformed with the 5′ half of the barley yellow dwarf virus-PAV genome. Phytopathology, 1998, 88(10): 1013-1019. |
138 | Cho M J, Jiang W, Lemaux P G. High frequency transformation of oat via microprojectile bombardment of seed-derived highly regenerative cultures. Plant Science, 1999, 148(1): 9-17. |
139 | Kaeppler H F, Menon G K, Skadsen R W, et al. Transgenic oat plants via visual selection of cells expressing green fluorescent protein. Plant Cell Reports, 2000, 19(7): 661-666. |
140 | Maqbool S, Zhong H, El-Maghraby Y, et al. Competence of oat (Avena sativa L.) shoot apical meristems for integrative transformation, inherited expression, and osmotic tolerance of transgenic lines containing hva1. Theoretical and Applied Genetics, 2002, 105(2): 201-208. |
141 | Rout M S, Mishra S G, Nandi A. Biotechnological applications of fertile, transgenic oat plant. International Journal of Modern Agriculture, 2020, 9(3): 688-693. |
142 | Pawlowski W P, Torbert K A, Rines H W, et al. Irregular patterns of transgene silencing in allohexaploid oat. Plant Molecular Biology, 1998, 38(4): 597-607. |
143 | Choi H W, Lemaux P G, Cho M J. High frequency of cytogenetic aberration in transgenic oat (Avena sativa L.) plants. Plant Science, 2000, 156(1): 85-94. |
144 | Svitashev S, Ananiev E, Pawlowski W P, et al. Association of transgene integration sites with chromosome rearrangements in hexaploid oat. Theoretical and Applied Genetics, 2000, 100(6): 872-880. |
145 | Cho M J, Choi H, Okamoto D, et al. Expression of green fluorescent protein and its inheritance in transgenic oat plants generated from shoot meristematic cultures. Plant Cell Reports, 2003, 21(5): 467-474. |
146 | Gasparis S, Bregier C, Orczyk W, et al. Agrobacterium-mediated transformation of oat (Avena sativa L.) cultivars via immature embryo and leaf explants. Plant Cell Reports, 2008, 27(11): 1721-1729. |
147 | Oraby H, Ahmad R. Physiological and biochemical changes of CBF3 transgenic oat in response to salinity stress. Plant Science, 2012, 185: 331-339. |
148 | Wan S M. Inheritance and expression of a foreign gene (bar) in the progenies of transgenic oat plants. Journal of Fudan University (Natural Science), 1998, 37(4): 450-454. |
万士梅. 外源基因(bar)在转基因燕麦(Avena sativa L.)后代中的遗传与表达. 复旦学报(自然科学版), 1998, 37(4): 450-454. | |
149 | Zhang Y. Establishment of the genetic transformation system of oat and establishment of the regeneration system of lyme grass. Chengdu: Sichuan University, 2007. |
张艺. 燕麦遗传转化体系的建立和披碱草再生体系的建立. 成都: 四川大学, 2007. | |
150 | Wang X J. The tissue culture and construction of agrobacterium-mediated transformation system for oat. Changchun: Northeast Normal University, 2012. |
王迅婧. 燕麦组织培养和农杆菌介导的燕麦遗传转化体系的建立. 长春: 东北师范大学, 2012. | |
151 | Zhang L J, Liu L L, Sun Y, et al. Study on transformation system of oat trauma embryo with agrobacterium mediated method. Journal of Hebei Agricultural Sciences, 2015, 19(3): 49-54, 76. |
张丽君, 刘龙龙, 孙毅, 等. 农杆菌介导的燕麦创伤胚转化体系研究. 河北农业科学, 2015, 19(3): 49-54, 76. | |
152 | Li Q H. Establishment and optimization the transgenic system of Avena nuda. Hohhot: Inner Mongolia Agricultural University, 2021. |
李庆华. 裸燕麦转基因体系的建立与优化. 呼和浩特: 内蒙古农业大学, 2021. | |
153 | Liang X D, Shalapy M, Zhao S F, et al. A stress-responsive transcription factor PeNAC1 regulating beta-d-glucan biosynthetic genes enhances salt tolerance in oat. Planta, 2021, 254(6): 1-14. |
154 | Wu Z J. Cloning of CT region of Acetyl-coenzyme A carboxylase gene from Avena sativa L. and establishment of CRISPR/Cas9 technology system. Hohhot: Inner Mongolia Agricultural University, 2018. |
武志娟. 燕麦乙酰辅酶A羧化酶基因CT区的克隆及CRISPR/Cas9技术体系建立. 呼和浩特: 内蒙古农业大学, 2018. | |
155 | Yu D Y, Wang F W, Rong X P, et al. Editing of acetyl CoA carboxylase (ACCase) gene in oat by CRISPR/Cas9. Molecular Plant Breeding, 2019, 17(19): 6356-6362. |
于东洋, 王凤梧, 融晓萍, 等. 利用CRISPR/Cas9技术对燕麦乙酰辅酶 A 羧化酶(ACCase)基因的编辑. 分子植物育种, 2019, 17(19): 6356-6362. | |
156 | Wang B L, Wei Y L, Li R G, et al. Significance and method of wheat shuttle breeding. Modern Agricultural Science and Technology, 2014(17): 65-66. |
王彬龙, 魏艳丽, 李瑞国, 等. 小麦穿梭育种的意义及方法. 现代农业科技, 2014(17): 65-66. |
[1] | 南志标, 王彦荣, 贺金生, 胡小文, 刘志鹏, 李春杰, 聂斌, 夏超. 我国草种业的成就、挑战与展望[J]. 草业学报, 2022, 31(6): 1-10. |
[2] | 高鹏, 魏江铭, 李瑶, 张丽红, 赵祥, 杜利霞, 韩伟. 山西省大同市早播饲用燕麦叶部真菌病害病原鉴定及影响因素分析[J]. 草业学报, 2021, 30(6): 82-93. |
[3] | 刘志鹏, 周强, 刘文献, 张吉宇, 谢文刚, 方龙发, 王彦荣, 南志标. 中国牧草育种中的若干科学问题[J]. 草业学报, 2021, 30(12): 184-193. |
[4] | 张雨桐, 石凤翎. 株型形成及牧草株型相关研究进展[J]. 草业学报, 2020, 29(9): 203-214. |
[5] | 雷雄, 游明鸿, 白史且, 陈丽丽, 邓培华, 熊毅, 熊艳丽, 余青青, 马啸, 杨建, 张昌兵. 川西北高原50份燕麦种质农艺性状遗传多样性分析及综合评价[J]. 草业学报, 2020, 29(7): 131-142. |
[6] | 许留兴, 唐国建, 胡亚琴, 张建国. 饲用小麦生产与利用研究现状及发展前景[J]. 草业学报, 2020, 29(10): 192-199. |
[7] | 王建丽, 马利超, 申忠宝, 刘杰淋, 朱瑞芬, 韩微波, 钟鹏, 邸桂俐, 韩贵清, 郭长虹. 基于遗传多样性评估燕麦品种的农艺性状[J]. 草业学报, 2019, 28(2): 133-141. |
[8] | 武自念, 侯向阳, 任卫波, 王照兰, 常春, 杨玉平, 杨艳婷. 基于MaxEnt模型的羊草适生区预测及种质资源收集与保护[J]. 草业学报, 2018, 27(10): 125-135. |
[9] | 包爱科, 白天惠, 赵天璇, 苏家豪. CRISPR/Cas9系统:基因组定点编辑技术及其在植物基因功能研究中的应用[J]. 草业学报, 2017, 26(7): 190-200. |
[10] | 王芳, 高秋, 王杰, 马金星, 孙娟. 利用SSR标记分析高粱属种质资源的遗传多样性[J]. 草业学报, 2016, 25(5): 125-133. |
[11] | 赵富强, 张海琴, 孙宗华, 焦振飞, 刘晓燕, 陈韦寰, 陈国跃, 周永红. 鹅观草不同居群条锈病和白粉病抗性评价[J]. 草业学报, 2016, 25(4): 149-158. |
[12] | 田沛, 张光明, 南志标. 禾草内生真菌研究及应用进展[J]. 草业学报, 2016, 25(12): 206-220. |
[13] | 孟丽娟,赵桂琴. 国外引进红三叶种质在甘肃中部地区的生长特性及生产性能初步评价[J]. 草业学报, 2015, 24(9): 30-42. |
[14] | 杨红善,常根柱,周学辉. 航天诱变航苜1号紫花苜蓿兰州品种比较试验[J]. 草业学报, 2015, 24(9): 138-145. |
[15] | 徐立明,张振葆,梁晓玲,卢文,张辰路,黄凤珠,王雷,张素芝. 植物抗旱基因工程研究进展[J]. 草业学报, 2014, 23(6): 293-303. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||