草业学报 ›› 2024, Vol. 33 ›› Issue (2): 212-225.DOI: 10.11686/cyxb2023118
• 综合评述 • 上一篇
收稿日期:
2023-04-11
修回日期:
2023-05-22
出版日期:
2024-02-20
发布日期:
2023-12-12
通讯作者:
马晖玲
作者简介:
E-mail: mahl@gsau.edu.cn基金资助:
Fen-qi CHEN(), Jin-qing ZHANG, Hui-ling MA()
Received:
2023-04-11
Revised:
2023-05-22
Online:
2024-02-20
Published:
2023-12-12
Contact:
Hui-ling MA
摘要:
分枝/分蘖是植物株型的一个重要特征,也是腋芽起始和芽生长的结果,对经济作物的种子产量以及牧草产量均具有决定性作用。多种激素及其互作效应在植物分枝/分蘖的发生和生长发育过程中起着关键的调控作用,且环境因素也是通过改变植物体内激素含量及其平衡调控分枝的。本研究综述了多种激素对植物分枝/分蘖调控机制的多个方面,包括生长素、细胞分裂素、独脚金内酯、油菜素内酯、脱落酸和赤霉素、乙烯、茉莉酸及不同激素信号相互作用形成的复杂调控网络,旨在为利用激素调控机制培育具有理想株型的高产新作物品种奠定基础。同时分析了激素机制调控植物分枝/分蘖的现存问题,并展望了激素调控植物分枝/分蘖的研究方向,以期为通过激素调控改良作物株型提供理论依据。
陈奋奇, 张金青, 马晖玲. 激素调控植物分枝/分蘖的研究进展[J]. 草业学报, 2024, 33(2): 212-225.
Fen-qi CHEN, Jin-qing ZHANG, Hui-ling MA. Progress of research on hormone regulation of branching or tillering in plants[J]. Acta Prataculturae Sinica, 2024, 33(2): 212-225.
激素类型 Hormone type | 合成部位 Biosynthesis site | 调控机制 Regulation mechanism | 主要物种 Main species | 参考文献 References |
---|---|---|---|---|
生长素 Auxin (IAA) | 幼叶、茎尖 Young leaf, stem tip | 抑制分枝 Suppress branching | 拟南芥、番茄、玉米 Arabidopsis thaliana, tomato, maize | [ |
细胞分裂素 Cytokinin (CK) | 根 Root | 促进分枝 Promote branching | 拟南芥、水稻 Arabidopsis, rice | [ |
独脚金内酯 Strigolactones (SL) | 根 Root | 抑制分枝 Suppress branching | 拟南芥、水稻、小麦 Arabidopsis, rice, wheat | [ |
油菜素甾醇 Brassinosterol (BR) | 花粉、种子、茎和叶 Pollen, seed, stem, leaf | 抑制分枝 Suppress branching | 水稻和拟南芥 Rice and Arabidopsis | [ |
脱落酸 Abscisic acid (ABA) | 根冠 Root cap | 抑制分枝 Suppress branching | 水稻、拟南芥、棉花和大豆 Rice, Arabidopsis, cotton, soybeans | [ |
赤霉素 Gibberellin (GA) | 根尖,茎尖及幼叶 Root tip, stem tip, young leaf | 抑制分枝 Suppress branching | 豌豆 Pea | [ |
茉莉酸 Jasmonic acid (JA) | 子叶或叶片组织 Cotyledon or leaf tissue | 未知 Unknown | 野大麦 Hordeum brevisubulatum | [ |
表1 参与调控植物分枝/分蘖的主要激素类型
Table 1 Main hormone types involved in regulating plant branching/tillering
激素类型 Hormone type | 合成部位 Biosynthesis site | 调控机制 Regulation mechanism | 主要物种 Main species | 参考文献 References |
---|---|---|---|---|
生长素 Auxin (IAA) | 幼叶、茎尖 Young leaf, stem tip | 抑制分枝 Suppress branching | 拟南芥、番茄、玉米 Arabidopsis thaliana, tomato, maize | [ |
细胞分裂素 Cytokinin (CK) | 根 Root | 促进分枝 Promote branching | 拟南芥、水稻 Arabidopsis, rice | [ |
独脚金内酯 Strigolactones (SL) | 根 Root | 抑制分枝 Suppress branching | 拟南芥、水稻、小麦 Arabidopsis, rice, wheat | [ |
油菜素甾醇 Brassinosterol (BR) | 花粉、种子、茎和叶 Pollen, seed, stem, leaf | 抑制分枝 Suppress branching | 水稻和拟南芥 Rice and Arabidopsis | [ |
脱落酸 Abscisic acid (ABA) | 根冠 Root cap | 抑制分枝 Suppress branching | 水稻、拟南芥、棉花和大豆 Rice, Arabidopsis, cotton, soybeans | [ |
赤霉素 Gibberellin (GA) | 根尖,茎尖及幼叶 Root tip, stem tip, young leaf | 抑制分枝 Suppress branching | 豌豆 Pea | [ |
茉莉酸 Jasmonic acid (JA) | 子叶或叶片组织 Cotyledon or leaf tissue | 未知 Unknown | 野大麦 Hordeum brevisubulatum | [ |
激素类型 Hormone type | 基因 Gene | 功能描述 Function description | 调控方式 Regulatory method | 参考文献 Reference |
---|---|---|---|---|
生长素Indole-3-acetic acid, IAA | PIN3、PIN4、PIN7 | IAA输出载体IAA output carrier | 负调控Negative regulation | [ |
ABCB/PGP | IAA输出载体IAA output carrier | 负调控Negative regulation | [ | |
AUX/LAX | IAA输入协同转运因子IAA input co-transporter | 正调控Positive regulation | [ | |
DII | IAA信号转导相关基因IAA signal transduction related gene | 正调控Positive regulation | [ | |
DR5 | IAA信号转导基因IAA signal transduction gene | 负调控Negative regulation | [ | |
YUC | IAA合成基因IAA synthesis gene | 负调控Negative regulation | [ | |
细胞分裂素Cytokinin, CK | IPT | CK合成酶关键基因Key genes of CK synthase | 正调控Positive regulation | [ |
ARRs | CK下游的转录激活因子Transcription downstream activating factor of CK | 正调控Positive regulation | [ | |
OsCKX9 | CK降解基因CK degradation gene | 负调控Negative regulation | [ | |
独脚金内酯Strigolactone, SL | RMS、MAX、HTD1 | SLs合成基因SLs synthesis gene | 负调控Negative regulation | [ |
D3、D10、D17、D27、 CCD7、CCD8 | SLs合成相关基因SLs synthesis related gene | 负调控Negative regulation | [ | |
D53、D14 | SLs信号转导相关基因SLs signal transduction related gene | 正调控Positive regulation | [ | |
油菜素甾醇Brassinosterol, BR | BES1、BZR1、 BEH2、BEH3 | BR信号通路正调节因子 BR signaling pathway positive regulatory factor | 正调控Positive regulation | [ |
脱落酸Abscisic acid, ABA | NCED3 | ABA合成基因ABA synthesis gene | 负调控Negative regulation | [ |
TaPYL | ABA受体ABA receptor | 负调控Negative regulation | [ | |
TaPP2C | ABA信号转导蛋白ABA signal transduction protein | 负调控Negative regulation | [ |
表2 参与调控植物分枝/分蘖的主要激素相关基因
Table 2 Major hormone-related genes involved in the regulation of plant branching/tillering
激素类型 Hormone type | 基因 Gene | 功能描述 Function description | 调控方式 Regulatory method | 参考文献 Reference |
---|---|---|---|---|
生长素Indole-3-acetic acid, IAA | PIN3、PIN4、PIN7 | IAA输出载体IAA output carrier | 负调控Negative regulation | [ |
ABCB/PGP | IAA输出载体IAA output carrier | 负调控Negative regulation | [ | |
AUX/LAX | IAA输入协同转运因子IAA input co-transporter | 正调控Positive regulation | [ | |
DII | IAA信号转导相关基因IAA signal transduction related gene | 正调控Positive regulation | [ | |
DR5 | IAA信号转导基因IAA signal transduction gene | 负调控Negative regulation | [ | |
YUC | IAA合成基因IAA synthesis gene | 负调控Negative regulation | [ | |
细胞分裂素Cytokinin, CK | IPT | CK合成酶关键基因Key genes of CK synthase | 正调控Positive regulation | [ |
ARRs | CK下游的转录激活因子Transcription downstream activating factor of CK | 正调控Positive regulation | [ | |
OsCKX9 | CK降解基因CK degradation gene | 负调控Negative regulation | [ | |
独脚金内酯Strigolactone, SL | RMS、MAX、HTD1 | SLs合成基因SLs synthesis gene | 负调控Negative regulation | [ |
D3、D10、D17、D27、 CCD7、CCD8 | SLs合成相关基因SLs synthesis related gene | 负调控Negative regulation | [ | |
D53、D14 | SLs信号转导相关基因SLs signal transduction related gene | 正调控Positive regulation | [ | |
油菜素甾醇Brassinosterol, BR | BES1、BZR1、 BEH2、BEH3 | BR信号通路正调节因子 BR signaling pathway positive regulatory factor | 正调控Positive regulation | [ |
脱落酸Abscisic acid, ABA | NCED3 | ABA合成基因ABA synthesis gene | 负调控Negative regulation | [ |
TaPYL | ABA受体ABA receptor | 负调控Negative regulation | [ | |
TaPP2C | ABA信号转导蛋白ABA signal transduction protein | 负调控Negative regulation | [ |
1 | Hu J, Sun S, Wang X. Regulation of shoot branching by strigolactones and brassinosteroids: conserved and specific functions of Arabidopsis BES1 and rice BZR1. Molecular Plant, 2020, 13(6): 808-810. |
2 | Zhao D, Atlin G, Bastiaans L, et al. Developing selection protocols for weed competitiveness in aerobic rice. Field Crops Research, 2006, 97(2/3): 272-285. |
3 | Simon S, Morel K, Durand E, et al. Aphids at crossroads: when branch architecture alters aphid infestation patterns in the apple tree. Trees, 2012, 26(1): 273-282. |
4 | Doebley J, Gaut B, Smith B. The molecular genetics of crop domestication. Cell, 2006, 127(7): 1309-1321. |
5 | Duan E, Wang Y, Li X, et al. OsSHI1 regulates plant architecture through modulating the transcriptional activity of IPA1 in rice. The Plant Cell, 2019, 31(5): 1026-1042. |
6 | Bauer B, Von W N. Modulating tiller formation in cereal crops by the signaling function of fertilizer nitrogen forms. Scientific Reports, 2020, 10(1): 20504. |
7 | Li L, Xie C, Zong J, et al. Physiological and comparative transcriptome analyses of the high-tillering mutant mtn1 reveal regulatory mechanisms in the tillering of centipede grass [Eremochloa ophiuroides (Munro) Hack.]. International Journal of Molecular Sciences, 2022, 23(19): 11580. |
8 | Gou J, Debnath S, Sun L, et al. From model to crop: functional characterization of SPL8 in M. truncatula led to genetic improvement of biomass yield and abiotic stress tolerance in alfalfa. Plant Biotechnology Journal, 2018, 16(4): 951-962. |
9 | Xia Y T, Wang C, Hao N, et al. Research progress on plant branchiness and its application in vegetable breeding. China Vegetables, 2022(1): 31-40. |
夏雨桐, 王琛, 郝宁, 等. 植物分枝性研究进展及其在蔬菜育种中的应用. 中国蔬菜, 2022(1): 31-40. | |
10 | Liu T, Wang T H, Chun Y, et al. Research progresses on epigenetic regulation of plant branching/tillering. Chinese Bulletin of Botany, 2022, 57(4): 532-548. |
刘婷, 王天浩, 淳雁, 等. 表观遗传调控植物分枝/分蘖研究进展. 植物学报, 2022, 57(4): 532-548. | |
11 | Wang B, Smith S M, Li J. Genetic regulation of shoot architecture. Annual Review of Plant Biology, 2018, 69: 437-468. |
12 | Ward S P, Leyser O. Shoot branching. Current Opinion in Plant Biology, 2004, 7(1): 73-78. |
13 | Guo D, Zhang J, Wang X, et al. The WRKY transcription factor WRKY71/EXB1 controls shoot branching by transcriptionally regulating RAX genes in Arabidopsis. The Plant Cell, 2015, 27(11): 3112-3127. |
14 | Lu Z, Yu H, Xiong G, et al. Genome-wide binding analysis of the transcription activator ideal plant architecture 1 reveals a complex network regulating rice plant architecture. The Plant Cell, 2013, 25(10): 3743-3759. |
15 | González-Grandío E, Pajoro A, Franco-Zorrilla J M, et al. Abscisic acid signaling is controlled by a BRANCHED1/HD-ZIP I cascade in Arabidopsis axillary buds. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(2): E245-E254. |
16 | Wang M, Le Moigne M A, Bertheloot J, et al. BRANCHED1: a key hub of shoot branching. Frontiers in Plant Science, 2019, 10: 76. |
17 | Zhang X, Lin Z, Wang J, et al. The tin1 gene retains the function of promoting tillering in maize. Nature Communications, 2019, 10(1): 5608. |
18 | Rameau C, Bertheloot J, Leduc N, et al. Multiple pathways regulate shoot branching. Frontiers in Plant Science, 2014, 5: 741. |
19 | Kariali E, Mohapatra P K. Hormonal regulation of tiller dynamics in differentially-tillering rice cultivars. Plant Growth Regulation, 2007, 53(3): 215-223. |
20 | Dun E A, Ferguson B J, Beveridge C A. Apical dominance and shoot branching. Divergent opinions or divergent mechanisms? Plant Physiology, 2006, 142(3): 812-819. |
21 | Seale M, Bennett T, Leyser O. BRC1 expression regulates bud activation potential but is not necessary or sufficient for bud growth inhibition in Arabidopsis. Development, 2017, 144(9): 1661-1673. |
22 | Xia X, Dong H, Yin Y, et al. Brassinosteroid signaling integrates multiple pathways to release apical dominance in tomato. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(11): e2004384118. |
23 | Xu J, Zha M, Li Y, et al. The interaction between nitrogen availability and auxin, cytokinin, and strigolactone in the control of shoot branching in rice (Oryza sativa L.). Plant Cell Reports, 2015, 34(9): 1647-1662. |
24 | Blakeslee J J, Bandyopadhyay A, Lee O R, et al. Interactions among PIN-FORMED and P-glycoprotein auxin transporters in Arabidopsis. The Plant Cell, 2007, 19(1): 131-147. |
25 | Bennett T, Sieberer T, Willett B, et al. The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Current Biology, 2006, 16(6): 553-563. |
26 | Wang Q, Kohlen W, Rossmann S, et al. Auxin depletion from the leaf axil conditions competence for axillary meristem formation in Arabidopsis and tomato. The Plant Cell, 2014, 26(5): 2068-2079. |
27 | Wang Y, Wang J, Shi B, et al. The stem cell niche in leaf axils is established by auxin and cytokinin in Arabidopsis. The Plant Cell, 2014, 26(5): 2055-2067. |
28 | Booker J, Chatfield S, Leyser O. Auxin acts in xylem-associated or medullary cells to mediate apical dominance. The Plant Cell, 2003, 15(2): 495-507. |
29 | Waldie T, Mcculloch H, Leyser O. Strigolactones and the control of plant development: lessons from shoot branching. The Plant Journal, 2014, 79(4): 607-622. |
30 | Ferguson B J, Beveridge C A. Roles for auxin, cytokinin, and strigolactone in regulating shoot branching. Plant Physiology, 2009, 149(4): 1929-1944. |
31 | Ongaro V, Bainbridge K, Williamson L, et al. Interactions between axillary branches of Arabidopsis. Molecular Plant, 2008, 1(2): 388-400. |
32 | Xu M, Zhu L, Shou H, et al. A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant and Cell Physiology, 2005, 46(10): 1674-1681. |
33 | Liu W, Yi Z L, Chen Z Y. Research advances in hormone regulation of tillering in rice. Hybrid Rice, 2013, 28(1): 1-4, 10. |
刘伟, 易自力, 陈智勇. 水稻分蘖的激素调控研究进展. 杂交水稻, 2013, 28(1): 1-4, 10. | |
34 | Wu X, Mcsteen P. The role of auxin transport during inflorescence development in maize (Zea mays, Poaceae). American Journal of Botany, 2007, 94(11): 1745-1755. |
35 | Fang Z G, Yang Q, Xie J T, et al. The role and mechanism of cytokinin in phytoremediation of heavy metal contaminated soil. Acta Ecologica Sinica, 2022, 42(8): 3056-3065. |
方治国, 杨青, 谢俊婷, 等. 重金属污染土壤植物修复中细胞分裂素的作用与机制. 生态学报, 2022, 42(8): 3056-3065. | |
36 | Zürcher E, Müller B. Cytokinin synthesis, signaling, and function-advances and new insights. International Review of Cell and Molecular Biology, 2016, 324: 1-38. |
37 | Cai T, Meng X, Liu X, et al. Exogenous hormonal application regulates the occurrence of wheat tillers by changing endogenous hormones. Frontiers in Plant Science, 2018, 9: 1886. |
38 | Dun E A, De Saint G A, Rameau C, et al. Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiology, 2012, 158(1): 487-498. |
39 | Müller D, Waldie T, Miyawaki K, et al. Cytokinin is required for escape but not release from auxin mediated apical dominance. The Plant Journal, 2015, 82(5): 874-886. |
40 | Tantikanjana T, Yong J W, Letham D S, et al. Control of axillary bud initiation and shoot architecture in Arabidopsis through the SUPERSHOOT gene. Genes and Development, 2001, 15(12): 1577-1588. |
41 | Young N F, Ferguson B J, Antoniadi I, et al. Conditional auxin response and differential cytokinin profiles in shoot branching mutants. Plant Physiology, 2014, 165(4): 1723-1736. |
42 | Roman H, Girault T, Barbier F, et al. Cytokinins are initial targets of light in the control of bud outgrowth. Plant Physiology, 2016, 172(1): 489-509. |
43 | Guo Y, Gan S. AtMYB2 regulates whole plant senescence by inhibiting cytokinin-mediated branching at late stages of development in Arabidopsis. Plant Physiology, 2011, 156(3): 1612-1619. |
44 | Tanaka W, Ohmori Y, Ushijima T, et al. Axillary meristem formation in rice requires the WUSCHEL ortholog TILLERS ABSENT1. The Plant Cell, 2015, 27(4): 1173-1184. |
45 | Xin W, Wang Z, Liang Y, et al. Dynamic expression reveals a two-step patterning of WUS and CLV3 during axillary shoot meristem formation in Arabidopsis. Journal of Plant Physiology, 2017, 214: 1-6. |
46 | Wang J, Tian C, Zhang C, et al. Cytokinin signaling activates WUSCHEL expression during axillary meristem initiation. The Plant Cell, 2017, 29(6): 1373-1387. |
47 | Wang H, Li X, Wolabu T, et al. WOX family transcriptional regulators modulate cytokinin homeostasis during leaf blade development in Medicago truncatula and Nicotiana sylvestris. The Plant Cell, 2022, 34(10): 3737-3753. |
48 | Zhang T Q, Lian H, Zhou C M, et al. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration. The Plant Cell, 2017, 29(5): 1073-1087. |
49 | Meng W J, Cheng Z J, Sang Y L, et al. Type-B Arabidopsis response regulators specify the shoot stem cell niche by dual regulation of WUSCHEL. The Plant Cell, 2017, 29(6): 1357-1372. |
50 | Zwanenburg B, Pospíšil T, Ćavar Z S. Strigolactones: new plant hormones in action. Planta, 2016, 243(6): 1311-1326. |
51 | Gomez-roldan V, Fermas S, Brewer P B, et al. Strigolactone inhibition of shoot branching. Nature, 2008, 455(7210): 189-194. |
52 | Umehara M, Hanada A, Yoshida S, et al. Inhibition of shoot branching by new terpenoid plant hormones. Nature, 2008, 455(7210): 195-200. |
53 | Chabikwa T G, Brewer P B, Beveridge C A. Initial bud outgrowth occurs independent of auxin flow from out of buds. Plant Physiology, 2019, 179(1): 55-65. |
54 | Braun N, De Saint G A, Pillot J P, et al. The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching. Plant Physiology, 2012, 158(1): 225-238. |
55 | Arite T, Iwata H, Ohshima K, et al. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. The Plant Journal, 2007, 51(6): 1019-1029. |
56 | Al-babili S, Bouwmeester H J. Strigolactones, a novel carotenoid-derived plant hormone. Annual Review of Plant Biology, 2015, 66: 161-186. |
57 | Waters M T, Gutjahr C, Bennett T, et al. Strigolactone signaling and evolution. Annual Review of Plant Biology, 2017, 68: 291-322. |
58 | Minakuchi K, Kameoka H, Yasuno N, et al. FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant and Cell Physiology, 2010, 51(7): 1127-1135. |
59 | Chevalier F, Nieminen K, Sánchez-ferrero J C, et al. Strigolactone promotes degradation of DWARF14, an α/β hydrolase essential for strigolactone signaling in Arabidopsis. The Plant Cell, 2014, 26(3): 1134-1150. |
60 | Fang Z, Ji Y, Hu J, et al. Strigolactones and brassinosteroids antagonistically regulate the stability of the D53-OsBZR1 complex to determine FC1 expression in rice tillering. Molecular Plant, 2020, 13(4): 586-597. |
61 | Hu J, Ji Y, Hu X, et al. BES1 functions as the co-regulator of D53-like SMXLs to inhibit BRC1 expression in strigolactone-regulated shoot branching in Arabidopsis. Plant Communications, 2020, 1(3): 100014. |
62 | Machin D C, Hamon-josse M, Bennett T. Fellowship of the rings: a saga of strigolactones and other small signals. The New Phytologist, 2020, 225(2): 621-636. |
63 | Yao R, Ming Z, Yan L, et al. DWARF14 is a non-canonical hormone receptor for strigolactone. Nature, 2016, 536(7617): 469-473. |
64 | Wang L, Wang B, Jiang L, et al. Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-Like SMXL repressor proteins for ubiquitination and degradation. The Plant Cell, 2015, 27(11): 3128-3142. |
65 | Zhao B, Wu T T, Ma S S, et al. TaD27-B gene controls the tiller number in hexaploid wheat. Plant Biotechnology Journal, 2020, 18(2): 513-525. |
66 | Wang L, Wang B, Yu H, et al. Transcriptional regulation of strigolactone signalling in Arabidopsis. Nature, 2020, 583(7815): 277-281. |
67 | Soundappan I, Bennett T, Morffy N, et al. SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis. The Plant Cell, 2015, 27(11): 3143-3159. |
68 | Liang Y, Ward S, Li P, et al. SMAX1-LIKE7 signals from the nucleus to regulate shoot development in Arabidopsis via partially ear motif-independent mechanisms. The Plant Cell, 2016, 28(7): 1581-1601. |
69 | Xu J, Ding C, Ding Y. A proteomic approach to analyze differential regulation of proteins during bud outgrowth under apical dominance based on the auxin transport canalization model in rice (Oryza sativa L.). Journal of Plant Growth Regulation, 2015, 34(1): 122-136. |
70 | Dun E A, De Saint G A, Rameau C, et al. Dynamics of strigolactone function and shoot branching responses in Pisum sativum. Molecular Plant, 2013, 6(1): 128-140. |
71 | De Saint G A, Ligerot Y, Dun E A, et al. Strigolactones stimulate internode elongation independently of gibberellins. Plant Physiology, 2013, 163(2): 1012-1025. |
72 | Yamada Y, Furusawa S, Nagasaka S, et al. Strigolactone signaling regulates rice leaf senescence in response to a phosphate deficiency. Planta, 2014, 240(2): 399-408. |
73 | Kapulnik Y, Resnick N, Mayzlish-Gati E, et al. Strigolactones interact with ethylene and auxin in regulating root-hair elongation in Arabidopsis. Journal of Experimental Botany, 2011, 62(8): 2915-2924. |
74 | Rasmussen A, Mason M G, De Cuyper C, et al. Strigolactones suppress adventitious rooting in Arabidopsis and pea. Plant Physiology, 2012, 158(4): 1976-1987. |
75 | Rasmussen A, Heugebaert T, Matthys C, et al. A fluorescent alternative to the synthetic strigolactone GR24. Molecular Plant, 2013, 6(1): 100-112. |
76 | Agusti J, Herold S, Schwarz M, et al. Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 20242-20247. |
77 | Wang Y, Shang L, Yu H, et al. A strigolactone biosynthesis gene contributed to the green revolution in rice. Molecular Plant, 2020, 13(6): 923-932. |
78 | Lu Z, Shao G, Xiong J, et al. MONOCULM 3, an ortholog of WUSCHEL in rice, is required for tiller bud formation. Journal of Genetics and Genomics, 2015, 42(2): 71-78. |
79 | Mjomba F M, Zheng Y, Liu H, et al. Homeobox is pivotal for OsWUS controlling tiller development and female fertility in rice. G3 (Bethesda), 2016, 6(7): 2013-2021. |
80 | Jiang L, Liu X, Xiong G, et al. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature, 2013, 504(7480): 401-405. |
81 | Zhou F, Lin Q, Zhu L, et al. D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling. Nature, 2013, 504(7480): 406-410. |
82 | Sharma I, Ching E, Saini S, et al. Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiology and Biochemistry, 2013, 69: 17-26. |
83 | Yin Y, Wang Z Y, Mora-Garcia S, et al. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell, 2002, 109(2): 181-191. |
84 | Yin Y, Vafeados D, Tao Y, et al. A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell, 2005, 120(2): 249-259. |
85 | Wang Y, Sun S, Zhu W, et al. Strigolactone/MAX2-induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching. Developmental Cell, 2013, 27(6): 681-688. |
86 | Guo W, Chen L, Herrera-Estrella L, et al. Altering plant architecture to improve performance and resistance. Trends in Plant Science, 2020, 25(11): 1154-1170. |
87 | Yao C, Finlayson S A. Abscisic acid is a general negative regulator of Arabidopsis axillary bud growth. Plant Physiology, 2015, 169(1): 611-626. |
88 | Liu X, Hu Q, Yan J, et al. ζ-carotene isomerase suppresses tillering in rice through the coordinated biosynthesis of strigolactone and abscisic acid. Molecular Plant, 2020, 13(12): 1784-1801. |
89 | Zhan J, Chu Y, Wang Y, et al. The miR164-GhCUC2-GhBRC1 module regulates plant architecture through abscisic acid in cotton. Plant Biotechnology Journal, 2021, 19(9): 1839-1851. |
90 | Cline M G, Oh C. A reappraisal of the role of abscisic acid and its interaction with auxin in apical dominance. Annals of Botany, 2006, 98(4): 891-897. |
91 | Chatfield S P, Stirnberg P, Forde B G, et al. The hormonal regulation of axillary bud growth in Arabidopsis. The Plant Journal, 2000, 24(2): 159-169. |
92 | Liu Y, Ding Y F, Wang Q S, et al. Effect of hormones on the growth of rice tiller bud and the expression of the genes related to tiller growth. Plant Physiology Journal, 2011, 47(4): 367-372. |
刘杨, 丁艳锋, 王强盛, 等. 激素对水稻分蘖芽生长和分蘖相关基因表达的调控效应. 植物生理学报, 2011, 47(4): 367-372. | |
93 | Foo E, Bullier E, Goussot M, et al. The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. The Plant Cell, 2005, 17(2): 464-474. |
94 | Confraria A, Muñoz-Gasca A, Ferreira L, et al. Shoot branching phenotyping in Arabidopsis and tomato. Methods in Molecular Biology, 2022, 2494: 47-59. |
95 | Dong C, Zhang L, Zhang Q, et al. Tiller number 1 encodes an ankyrin repeat protein that controls tillering in bread wheat. Nature Communications, 2023, 14(1): 836. |
96 | Lo S F, Yang S Y, Chen K T, et al. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. The Plant Cell, 2008, 20(10): 2603-2618. |
97 | Zhang Q Q, Wang J G, Wang L Y, et al. Gibberellin repression of axillary bud formation in Arabidopsis by modulation of DELLA-SPL9 complex activity. Journal of Integrative Plant Biology, 2020, 62(4): 421-432. |
98 | Davière J M, Achard P. Gibberellin signaling in plants. Development, 2013, 140(6): 1147-1151. |
99 | Ni J, Gao C, Chen M S, et al. Gibberellin promotes shoot branching in the perennial woody plant Jatropha curcas. Plant and Cell Physiology, 2015, 56(8): 1655-1666. |
100 | Lin Q, Zhang Z, Wu F, et al. The APC/C(TE) E3 ubiquitin ligase complex mediates the antagonistic regulation of root growth and tillering by ABA and GA. The Plant Cell, 2020, 32(6): 1973-1987. |
101 | Liao Z, Yu H, Duan J, et al. SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice. Nature Communications, 2019, 10(1): 2738. |
102 | Cai T, Xu H C, Yin Y P, et al. Mechanisms of tiller occurrence affected by exogenous IAA, GA3, and ABA in wheat with different spike-types. Acta Agronomica Sinica, 2013, 39(10): 1835-1842. |
蔡铁, 徐海成, 尹燕枰, 等. 外源IAA、GA3和ABA影响不同穗型小麦分蘖发生的机制. 作物学报, 2013, 39(10): 1835-1842. | |
103 | Zhou Y F, Yan T, Zhang J, et al. Effects of exogenous IAA application on endogenous hormone contents and tillering in sorghum. Chinese Journal of Ecology, 2017, 36(8): 2191-2197. |
周宇飞, 闫彤, 张姣, 等. 外源IAA对高粱幼苗内源激素含量及分蘖发生的影响. 生态学杂志, 2017, 36(8): 2191-2197. | |
104 | Zhang W D, Zhao L F, Gao Q R, et al. Study on ethylene regulation pathways in the development of young spike branching in wheat// The crop science society of China: 2012 academic annual meeting of the Chinese crop society. Nanchang: The Crop Science Society of China, 2012: 1. |
张卫东, 赵兰飞, 高庆荣, 等. 小麦幼穗分枝发育中乙烯调控途径研究// 中国作物学会: 2012年中国作物学会学术年会论文摘要集.南昌: 中国作物学会, 2012: 1. | |
105 | Cao Y. Effects of interaction between jasmonic acid and endophytic fungi on wild barley under salt stress. Lanzhou: Lanzhou University, 2018. |
曹莹. 盐胁迫下茉莉酸与内生真菌互作对野大麦的影响. 兰州: 兰州大学, 2018. | |
106 | Shen J, Zhang Y, Ge D, et al. CsBRC1 inhibits axillary bud outgrowth by directly repressing the auxin efflux carrier CsPIN3 in cucumber. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(34): 17105-17114. |
107 | Waldie T, Leyser O. Cytokinin targets auxin transport to promote shoot branching. Plant Physiology, 2018, 177(2): 803-818. |
108 | Barbier F, Dun E, Kerr S, et al. An update on the signals controlling shoot branching. Trends in Plant Science, 2019, 24(3): 220-236. |
109 | Van R, Bennett T, Ticchiarelli F, et al. Connective auxin transport contributes to strigolactone-mediated shoot branching control independent of the transcription factor BRC1. PLoS Genetics, 2019, 15(3): e1008023. |
110 | Domagalska M, Leyser O. Signal integration in the control of shoot branching. Nature Reviews Molecular Cell Biology, 2011, 12(4): 211-221. |
111 | Saeed W, Naseem S, Ali Z. Strigolactones biosynthesis and their role in abiotic stress resilience in plants: A critical review. Frontiers in Plant Science, 2017, 8: 1487. |
112 | Waters M T, Brewer P B, Bussell J D, et al. The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones. Plant Physiology, 2012, 159(3): 1073-1085. |
113 | Shinohara N, Taylor C, Leyser O. Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLoS Biology, 2013, 11(1): e1001474. |
114 | Ligerot Y, De Saint G A, Waldie T, et al. The pea branching RMS2 gene encodes the PsAFB4/5 auxin receptor and is involved in an auxin-strigolactone regulation loop. PLoS Genetics, 2017, 13(12): e1007089. |
115 | Brewer P B, Dun E A, Ferguson B J, et al. Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiology, 2009, 150(1): 482-493. |
116 | Crawford S, Shinohara N, Sieberer T, et al. Strigolactones enhance competition between shoot branches by dampening auxin transport. Development, 2010, 137(17): 2905-2913. |
117 | Prusinkiewicz P, Crawford S, Smith R S, et al. Control of bud activation by an auxin transport switch. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(41): 17431-17436. |
118 | Liang J, Zhao L, Challis R, et al. Strigolactone regulation of shoot branching in chrysanthemum (Dendranthema grandiflorum). Journal of Experimental Botany, 2010, 61(11): 3069-3078. |
119 | Mason M G, Ross J J, Babst B A, et al. Sugar demand, not auxin, is the initial regulator of apical dominance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(16): 6092-6097. |
120 | Duan J, Yu H, Yuan K, et al. Strigolactone promotes cytokinin degradation through transcriptional activation of CYTOKININ OXIDASE/DEHYDROGENASE 9 in rice. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(28): 14319-14324. |
121 | Bennett T, Hines G, Van Rongen M, et al. Connective auxin transport in the shoot facilitates communication between shoot apices. PLoS Biology, 2016, 14(4): e1002446. |
122 | Brewer P B, Dun E A, Gui R, et al. Strigolactone inhibition of branching independent of polar auxin transport. Plant Physiology, 2015, 168(4): 1820-1829. |
123 | Song X, Lu Z, Yu H, et al. IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice. Cell Research, 2017, 27(9): 1128-1141. |
124 | Wu K, Wang S, Song W, et al. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science, 2020, 367(6478): eaaz2046. |
[1] | 郑甲成, 余婕, 李凡, 黄小奕, 李杰勤, 陈海州, 王歆, 詹秋文, 徐兆师. SbER10_X1调控饲用高粱光合作用和生物产量的功能特性分析[J]. 草业学报, 2023, 32(4): 91-100. |
[2] | 刘晓婷, 姚拓. 高寒草地耐低温植物根际促生菌的筛选鉴定及特性研究[J]. 草业学报, 2022, 31(8): 178-187. |
[3] | 李佳林, 姜升林, 李云霞, 全晓艳, 王文波, 单秋丽, 解纯娟, 尹宁, 秦余香, 张立华, 李洪梅, 何文兴. 禾本科草本植物根状茎发育调控机理研究进展[J]. 草业学报, 2022, 31(8): 211-220. |
[4] | 杨志民, 邢瑞, 丁鋆嘉, 庄黎丽. 基于转录组测序的高羊茅分蘖与株高相关差异表达基因分析[J]. 草业学报, 2022, 31(1): 145-163. |
[5] | 张雨桐, 石凤翎. 株型形成及牧草株型相关研究进展[J]. 草业学报, 2020, 29(9): 203-214. |
[6] | 赵小强, 陆晏天, 白明兴, 徐明霞, 彭云玲, 丁永福, 庄泽龙, 陈奋奇, 张大志. 不同株型玉米基因型对干旱胁迫的响应分析[J]. 草业学报, 2020, 29(2): 149-162. |
[7] | 王晓瑜, 丁婷婷, 李彦忠, 段廷玉. AM真菌与根瘤菌对紫花苜蓿镰刀菌萎蔫和根腐病的影响[J]. 草业学报, 2019, 28(8): 139-149. |
[8] | 王若梦,董宽虎,李钰莹,李晨,杨静芳. 外源植物激素对NaCl胁迫下苦马豆苗期脯氨酸代谢的影响[J]. 草业学报, 2014, 23(2): 189-195. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||