草业学报 ›› 2025, Vol. 34 ›› Issue (3): 224-232.DOI: 10.11686/cyxb2024192
• 研究简报 • 上一篇
林心怡1(
), 王旎1, 陈拓2, 宋一岚3, 陆耀东3, 董朝霞1(
)
收稿日期:2024-05-21
修回日期:2024-07-09
出版日期:2025-03-20
发布日期:2025-01-02
通讯作者:
董朝霞
作者简介:E-mail: dongzhaoxia@scau.edu.cn基金资助:
Xin-yi LIN1(
), Ni WANG1, Tuo CHEN2, Yi-lan SONG3, Yao-dong LU3, Zhao-xia DONG1(
)
Received:2024-05-21
Revised:2024-07-09
Online:2025-03-20
Published:2025-01-02
Contact:
Zhao-xia DONG
摘要:
光照是草坪草进行光合作用的重要能源,是植物进行生长和养分合成的基础。然而,在城市中高楼大厦等建筑物的遮挡往往会对草坪造成影响,限制正常的生长发育。为优化遮荫环境下的草坪养护与管理,以“广绿”结缕草(‘Guanglv’)为试验材料,在人工遮荫条件(遮荫率80%)下,叶面喷施混合除草剂茚嗪氟草胺(50 mL·hm-2)+三氟啶磺隆(22.5 mL·hm-2)、多效唑(PBZ,120 mL·hm-2)和抗倒酯(TE,50 mL·hm-2),探讨其对“广绿”结缕草的外部形态和生理特性的影响,包括平均日生长速度、叶片宽度、叶片绿色程度、盖度、抗氧化酶活性和丙二醛含量。结果表明:“广绿”结缕草在长期遮荫条件下会出现徒长、叶片形态趋向于狭长、叶绿素相对含量下降、盖度大幅下降、丙二醛含量增加、抗氧化酶活性下降的态势。3种生长调节剂中,以喷施50 mL·hm-2茚嗪氟草胺+22.5 mL·hm-2三氟啶磺隆和50 mL·hm-2抗倒酯的效果较好,不仅可以改善弱光条件下结缕草的不良形态,还有效增强了草皮的环境适应性与抗逆性。
林心怡, 王旎, 陈拓, 宋一岚, 陆耀东, 董朝霞. 3种植物生长调节剂对结缕草耐荫性的影响[J]. 草业学报, 2025, 34(3): 224-232.
Xin-yi LIN, Ni WANG, Tuo CHEN, Yi-lan SONG, Yao-dong LU, Zhao-xia DONG. Effects of three plant growth regulators on shade tolerance of Zoysia japonica[J]. Acta Prataculturae Sinica, 2025, 34(3): 224-232.
处理编号 Number | 生长调节剂 Plant growth regulators | 有效成分用量 Active ingredient dosage |
|---|---|---|
| CK | \\ | \\ |
| T1 | 茚嗪氟草胺+三氟啶磺隆 Indaziflam+trifloxysulfuron | 50.0+22.5 |
| T2 | 多效唑Paclobutrazol | 120 |
| T3 | 抗倒酯Trinexapac-ethyl | 50 |
表1 试验设计与处理
Table 1 Experimental design and treatment (mL·hm-2)
处理编号 Number | 生长调节剂 Plant growth regulators | 有效成分用量 Active ingredient dosage |
|---|---|---|
| CK | \\ | \\ |
| T1 | 茚嗪氟草胺+三氟啶磺隆 Indaziflam+trifloxysulfuron | 50.0+22.5 |
| T2 | 多效唑Paclobutrazol | 120 |
| T3 | 抗倒酯Trinexapac-ethyl | 50 |
| 处理Treatments | 0~15 d | 16~30 d | 31~50 d |
|---|---|---|---|
| CK | 0.53±0.03a | 0.21±0.05a | 0.09±0.02a |
| T1 | 0.45±0.02ab | 0.13±0.02ab | 0.11±0.02a |
| T2 | 0.40±0.04b | 0.19±0.03ab | 0.10±0.02a |
| T3 | 0.43±0.03b | 0.11±0.01b | 0.10±0.02a |
表2 3种植物生长调节剂对遮荫条件下结缕草平均日生长速度的影响
Table 2 Effects of three plant growth regulators on the average daily growth rate of Z. japonica under shading conditions (mm·d-1)
| 处理Treatments | 0~15 d | 16~30 d | 31~50 d |
|---|---|---|---|
| CK | 0.53±0.03a | 0.21±0.05a | 0.09±0.02a |
| T1 | 0.45±0.02ab | 0.13±0.02ab | 0.11±0.02a |
| T2 | 0.40±0.04b | 0.19±0.03ab | 0.10±0.02a |
| T3 | 0.43±0.03b | 0.11±0.01b | 0.10±0.02a |
图1 3种植物生长调节剂对遮荫条件下结缕草叶宽的影响不同字母表示不同处理之间差异显著(P<0.05),下同。 Different letters indicate significant differences among different treatments (P<0.05). The same below.
Fig.1 Effect of three plant growth regulators on leaf width of Z. japonica under shading condition
图5 3种植物生长调节剂对遮荫条件下结缕草超氧化物歧化酶和过氧化物酶活性的影响
Fig.5 Effects of three plant growth regulators on superoxide dismutase (SOD) and peroxidase (POD) activity of Z. japonica under shading condition
| 1 | Wang Y P, Fan B, Zhang H K, et al. Responses of Zoysia matrella growth, soil mineral nitrogen, and nitrogen balance to different levels of irrigation and mowing. Pratacultural Science, 2023, 40(11): 2787-2799. |
| 王云鹏, 范博, 张海阔, 等. 灌溉和修剪对沟叶结缕草生长、土壤无机氮及氮平衡的影响. 草业科学, 2023, 40(11): 2787-2799. | |
| 2 | Yang M, Mao K. The impact of shading on turfgrass. Pratacultural Science, 2002, 19(1): 60-63. |
| 杨渺, 毛凯. 遮荫对草坪草的影响. 草业科学, 2002, 19(1): 60-63. | |
| 3 | Singh B, Sindhu S S, Arora A, et al. Growth and physiological potential of various turf grass species under graded shade levels. The Indian Journal of Agricultural Sciences, 2021, 91(8): 1140-1145. |
| 4 | Dudeck A E, Peacock C H. Shade and turfgrass culture//Waddington D V, Carrow R N, Shearman R C. Turfgrass. Madison (WI), USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 1992, 32: 269-284. |
| 5 | Ma C Z, Cui H T, Hu Q N, et al. Research progress on regeneration system of turfgrass. Acta Agrestia Sinica, 2023, 31(8): 2241-2252. |
| 马承泽, 崔会婷, 胡倩楠, 等. 草坪草再生体系研究进展. 草地学报, 2023, 31(8): 2241-2252. | |
| 6 | Rademacher W. Plant growth regulators: Backgrounds and uses in plant production. Journal of Plant Growth Regulation, 2015, 34(4): 845-872. |
| 7 | Zhao Q J, Yang W H, Wang G H. The impact of paclobutrazol on the growth of seashore paspalum. Bulletin of Agricultural Science and Technology, 2014, 43(9): 125-127. |
| 赵庆杰, 杨文汉, 王桂花. 多效唑对海滨雀稗草坪草生长的影响. 农业科技通讯, 2014, 43(9): 125-127. | |
| 8 | Liu B W. The regulation effect of paclobutrazol on low light tolerance in tall fescue. Xianyang: Northwest A&F University, 2023. |
| 刘博文. 多效唑对高羊茅耐荫性的调控作用. 咸阳: 西北农林科技大学, 2023. | |
| 9 | Beyer W F, Fridovich I. Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry, 1987, 161(2): 559-566. |
| 10 | Amako K, Chen G, Asada K. Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidase in plants. Plant and Cell Physiology, 1994, 35(3): 497-504. |
| 11 | Puckette M C, Weng H, Mahalingam R. Physiological and biochemical responses to acute ozone-induced oxidative stress in Medicago truncatula. Plant Physiology and Biochemistry, 2007, 45(1): 70-79. |
| 12 | Hu Y, Shen Q P, Xu Q, et al. Effects of growth regulators isabion and primo on the shade tolerance and turf quality of Bermudagrass. Chinese Journal of Grassland, 2022, 44(8): 69-76. |
| 胡瑜, 申乔萍, 徐倩, 等. 生长调节剂绿比多和浦绿对狗牙根耐荫性和草坪质量的影响. 中国草地学报, 2022, 44(8): 69-76. | |
| 13 | Li K H, Li Z D, Wu B Y, et al. Effects of light intensity on morphological change and lawn quality of wild Cynodon dactylon. Pratacultural Science, 2012, 29(5): 699-703. |
| 黎可华, 李志东, 吴碧云, 等. 不同光照强度对几种狗牙根形态与草坪品质的影响. 草业科学, 2012, 29(5): 699-703. | |
| 14 | Yang Y, Yang X H, Sun Y. Effect on turf characteristics of the Kentucky bluegrass turf under different shading intensities. Acta Agrestia Sinica, 2010, 18(3): 447-451. |
| 杨燕, 杨晓华, 孙彦. 不同遮荫强度对草地早熟禾草坪质量的影响. 草地学报, 2010, 18(3): 447-451. | |
| 15 | Chen C M, Lin Z L, Wang B B, et al. Effect of light intensity on turf performance of 19 tall fescue varieties//Proceedings of the 2013 academic conference of the Chinese Grassland Society. Tianjin: Chinese Grassland Society, 2013: 436-448. |
| 陈传明, 林之林, 王彬彬, 等. 光照强度对19份高羊茅材料坪用性状的影响//中国草学会2013学术年会论文集. 天津: 中国草学会, 2013: 436-448. | |
| 16 | Yang J. Effect of shading on Stenotaphrum Trin. plant morphology and physiology. Haikou: Hainan University, 2021. |
| 杨娟. 遮荫对钝叶草属植物形态与生理的影响. 海口: 海南大学, 2021. | |
| 17 | Fagerness M J, Penner D. 14C-trinexapac-ethyl absorption and translocation in Kentucky bluegrass. Crop Science, 1998, 38(4): 1023-1027. |
| 18 | Luo J Z, Li S M, Xiang Z X, et al. Effects of primo on shade tolerance of fairway turfgrass Zoysia japonica on golf course. Acta Agrestia Sinica, 2020, 28(3): 743-749. |
| 罗建章, 李双铭, 向佐湘, 等. 浦绿对高尔夫球道结缕草草坪耐荫性的影响. 草地学报, 2020, 28(3): 743-749. | |
| 19 | Castro-Camba R, Sánchez C, Vidal N, et al. Plant development and crop yield: The role of gibberellins. Plants, 2022, 11(19): 2650. |
| 20 | Cao D, Chabikwa T, Barbier F, et al. Auxin-independent effects of apical dominance induce changes in phytohormones correlated with bud outgrowth. Plant Physiology, 2023, 192(2): 1420-1434. |
| 21 | Zhang Q, Wang J, Wang L, et al. Gibberellin repression of axillary bud formation in Arabidopsis by modulation of DELLA‐SPL9 complex activity. Journal of Integrative Plant Biology, 2020, 62(4): 421-432. |
| 22 | Gao L, Liu G D. Advances in application of paclobutrazol to lawn grass. Chinese Journal of Tropical Agriculture, 2008, 28(4): 98-102. |
| 高玲, 刘国道. 植物生长调节剂——多效唑在草坪草上的应用进展. 热带农业科学, 2008, 28(4): 98-102. | |
| 23 | Desta B, Amare G. Paclobutrazol as a plant growth regulator. Chemical and Biological Technologies in Agriculture, 2021, 8(1): 1-15. |
| 24 | Shahzad M M, Akhtar G, Shehzad M A, et al. Paclobutrazol and maleic hydrazide-induced growth inhibition in warm season turfgrasses through structural and physiological differences. Kuwait Journal of Science, 2023, 50(4): 674-680. |
| 25 | Zhang S, Yuan W J, Song X M, et al. Effects of paclobutrazol on plant physiology and ecology and its application prospect in the field of desertification. Journal of Temperate Forestry Research, 2022, 5(1): 1-6, 11. |
| 张帅, 原伟杰, 宋晓敏, 等. 多效唑对植物生理生态的影响及其在荒漠化领域的应用展望. 温带林业研究, 2022, 5(1): 1-6, 11. | |
| 26 | Ryu J H, Kim K S. Flurprimidol, paclobutrazol, and trinexapac-ethyl increased lateral development of ‘Zenith’ Zoysiagrass in a shade environment. Weed & Turfgrass Science, 2010, 24(2): 149-155. |
| 27 | Brabham C, Lei L, Gu Y, et al. Indaziflam herbicidal action: A potent cellulose biosynthesis inhibitor. Plant Physiology, 2014, 166(3): 1177-1185. |
| 28 | Sebastian D J, Fleming M B, Patterson E L, et al. Indaziflam: a new cellulose-biosynthesis-inhibiting herbicide provides longterm control of invasive winter annual grasses. Pest Management Science, 2017, 73(10): 2149-2162. |
| 29 | Brecke B J, Stephenson D O. Weed control in cotton (Gossypium hirsutum) with postemergence applications of trifloxysulfuron-sodium. Weed Technology, 2006, 20(2): 377-383. |
| 30 | Deng P C. Effects of plant growth regulators on growth characteristics and turf quality of bermudagrass. Acta Agriculturae Zhejiangensis, 2023, 35(4): 841-852. |
| 邓丕超. 植物生长调节剂对狗牙根生长特性及坪用质量的影响. 浙江农业学报, 2023, 35(4): 841-852. | |
| 31 | Dias R C, Dadazio T S, Tropaldi L, et al. Glyphosate as growth regulator for bahiagrass and broadleaf carpetgrass. Planta Daninha, 2019, 37(1): e019213829. |
| 32 | Zhang X L, Li Z M. Recent advances in cellulose biosynthesis inhibiting (CBI) herbicides. World Pesticides, 2013, 35(2): 10-15. |
| 张秀兰, 李正名. 纤维素生物合成抑制剂(CBI)类除草剂研究进展. 世界农药, 2013, 35(2): 10-15. | |
| 33 | Larson R T, McFarlane H E. Small but mighty: An update on small molecule plant cellulose biosynthesis inhibitors. Plant and Cell Physiology, 2021, 62(12): 1828-1838. |
| 34 | Nandula V K, Giacomini D A, Ray J D. Resistance to acetolactate synthase inhibitors is due to a W 574 to L amino acid substitution in the ALS gene of redroot pigweed and tall waterhemp. PLoS One, 2020, 15(6): e0235394. |
| 35 | Liu Y, He C. Regulation of plant reactive oxygen species (ROS) in stress responses: learning from AtRBOHD. Plant Cell Reports, 2016, 35(5): 995-1007. |
| 36 | Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling. Journal of Experimental Botany, 2014, 65(5): 1229-1240. |
| 37 | Heller J, Tudzynski P. Reactive oxygen species in phytopathogenic fungi: Signaling, development, and disease. Annual Review of Phytopathology, 2011, 49(1): 369-390. |
| 38 | Liu C X. Physiological response mechanism and expression of shade-related genes in Eremochloa ophiuroides under shading stress. Wuhan: Huazhong Agricultural University, 2023. |
| 刘传鑫. 假俭草遮荫胁迫生理响应机制及耐荫相关基因表达研究. 武汉: 华中农业大学, 2023. | |
| 39 | Yin Y Q, Hu J B, Deng M J. Latest development of antioxidant system and responses to stress in plant leaves. Chinese Agricultural Science Bulletin, 2007, 24(1): 105-110. |
| 尹永强, 胡建斌, 邓明军. 植物叶片抗氧化系统及其对逆境胁迫的响应研究进展. 中国农学通报, 2007, 24(1): 105-110. | |
| 40 | Li X, Yue H, Wang S, et al. Research of different effects on activity of plant antioxidant enzymes. China Journal of Chinese Materia Medica, 2013, 38(7): 973-978. |
| 李璇, 岳红, 王升, 等. 影响植物抗氧化酶活性的因素及其研究热点和现状. 中国中药杂志, 2013, 38(7): 973-978. | |
| 41 | Lee D H, Lee C B. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Science, 2000, 159(1): 75-85. |
| 42 | Ekmekçi Y, Tanyolaç D, Ayhan B. Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. Journal of Plant Physiology, 2008, 165(6): 600-611. |
| 43 | Du C H. Study on physiological response and shade tolerance of three species of Aglaonema commutatun to low light stress. Changsha: Central South University of Forestry and Technology, 2023. |
| 杜春辉. 三种粗肋草对弱光胁迫生理响应及耐荫性研究. 长沙: 中南林业科技大学, 2023. | |
| 44 | Nagar S, Singh V P, Arora A, et al. Understanding the role of gibberellic acid and paclobutrazol in terminal heat stress tolerance in wheat. Frontiers in Plant Science, 2021, 12(2): 692252. |
| [1] | 管瑾, 郭一荻, 刘凌云, 尹淑霞, 滕珂. 结缕草叶肉细胞原生质体瞬时基因表达系统的构建[J]. 草业学报, 2023, 32(7): 61-71. |
| [2] | 韩云华, 米素娟, 石晓琪, 钟天航. 纳米粒子的植物促生效应[J]. 草业学报, 2022, 31(11): 204-213. |
| [3] | 汪智宇, 李莹, 刘金平, 伍德, 苟蓉. 高温冲击对受丝茅入侵的细叶结缕草现实和潜在竞争力的影响[J]. 草业学报, 2019, 28(8): 106-118. |
| [4] | 滕珂, 张蕊, 檀鹏辉, 岳跃森, 范希峰, 武菊英. 日本结缕草ZjERF1的克隆、转录激活活性、亚细胞定位及表达分析[J]. 草业学报, 2019, 28(6): 56-65. |
| [5] | 张旭, 聂刚, 黄琳凯, 唐露, 周洲, 刘福, 周洁, 邹静, 任思彦, 张新全. 植物生长调节剂对鸭茅种子产量的影响[J]. 草业学报, 2019, 28(6): 93-100. |
| [6] | 姜红岩, 滕珂, 檀鹏辉, 尹淑霞. 日本结缕草ZjZFN1基因对拟南芥的转化及其耐旱性分析[J]. 草业学报, 2019, 28(4): 129-138. |
| [7] | 曾晓琳, 李莹, 刘金平, 游明鸿, 黄曦叶, 黄柳. 干旱对细叶结缕草和入侵杂草丝茅的竞争、生长及抗旱性的影响[J]. 草业学报, 2019, 28(11): 46-59. |
| [8] | 汪智宇, 李莹, 刘金平, 杨小琴, 何林江. 不同修剪频次和丝茅入侵量对细叶结缕草竞争力和草坪质量的影响[J]. 草业学报, 2019, 28(10): 53-65. |
| [9] | 史经昂, 张兵, 肖晓琳, 马晶晶, 杨向阳, 刘建秀. 结缕草肉桂醇脱氢酶基因家族全基因组序列鉴定和表达分析[J]. 草业学报, 2017, 26(6): 111-119. |
| [10] | 檀鹏辉, 袁丽丽, 樊波, 于安东, 董笛, 滕珂, 晁跃辉. 日本结缕草滞绿基因 ZjSGR 对烟草的转化及功能分析[J]. 草业学报, 2017, 26(5): 155-162. |
| [11] | 张雪, 孙鑫博, 樊波, 张胤冰, 韩烈保, 许立新. 结缕草ZjCSD基因的克隆及表达分析[J]. 草业学报, 2017, 26(2): 102-110. |
| [12] | 董笛, 滕珂, 于安东, 檀鹏辉, 梁小红, 韩烈保. 沟叶结缕草八氢番茄红素基因ZmPSY的克隆、亚细胞定位及表达分析[J]. 草业学报, 2017, 26(11): 69-76. |
| [13] | 宋华伟, 刘颖, 王宸, 刘天增, 张巨明. 不同坪床基质物理性质变化及对兰引Ⅲ号结缕草生长的影响[J]. 草业学报, 2016, 25(7): 177-185. |
| [14] | 汪毅, 郭海林, 陈静波, 宗俊勤, 李丹丹, 姜亦巍, 刘建秀. 国审品种‘苏植1号’杂交结缕草抗旱性初步评价与分析[J]. 草业学报, 2016, 25(5): 30-39. |
| [15] | 张胤冰, 孙鑫博, 樊波, 韩烈保, 张雪, 袁建波, 许立新. 结缕草ZjNAC基因的克隆与表达分析[J]. 草业学报, 2016, 25(4): 239-245. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||