[1] Baumann U, Juttner J, Bian X, et al. Self-incompatibility in the grasses. Annals of Botany, 2000, 85(Supple 1): 203-209. [2] Ran Z W, Li B Y, Yang D Z, et al. Advance in gene mapping of self-incompatibility in Poaceae plants. Chinese Agricultural Science Bulletin, 2014, 30(3): 32-37. 冉志伟, 李保叶, 杨定照, 等. 禾本科植物自交不亲和基因定位进展. 中国农业通报, 2014, 30(3): 32-37. [3] Richter J.Mutations affecting self-incompatibility in Phalaris-coerulescens Desf (Poaceae). Heredity, 1992, 68(2): 495-503. [4] Li X, Paech N, Nield J, et al. Self-incompatibility in the grasses: Evolutionary relationship of the S gene from Phalaris coerulescens to homologous sequences in other grasses. Plant Molecular Biology, 1997, 34(2): 223-232. [5] Van Daele I, Van Bockstaele E, Martens C, et al. Identification of transcribed derived fragments involved in self-incompatibility in perennial ryegrass (Lolium perenne L.) using cDNA-Aflp. Euphytica, 2008, 163(1): 67-80. [6] Klaas M, Yang B, Bosch M, et al. Progress towards elucidating the mechanisms of self-incompatibility in the grasses: Further insights from studies in Lolium. Annals of Botany, 2011, 108(4): 677-685. [7] Yue G D, Gao Q, Luo L H, et al. Application of high-throughput sequencing in plant and animal research. Scientia Sinica Vitae, 2012, 42(2): 107-124. 岳桂东, 高强, 罗龙海, 等. 高通量测序技术在动植物研究领域中的应用. 中国科学: 生命科学, 2012, 42(2): 107-124. [8] Zhang W, Wei X, Meng H L, et al. Transcriptomic comparison of the self-pollinated and cross-pollinated flowers of Erigeron breviscapus to analyze candidate self-incompatibility associated genes. BMC Plant Biology, 2015, 15(1): 248. [9] Duncan R R, Carrow R.Seashore paspalum: The environmental turfgrass. Hoboken: John Wiley & Sons, inc., 1999: 4. [10] Huang B, Duncan R R, Carrow R N.Drought-resistance mechanisms of seven warm-season turfgrasses under surface soil drying: II. root aspects. Crop Science, 1997, 37(6): 1858-1863. [11] Lu S Y, Guo Z F.Physiological responses of turfgrass to abiotic stresses. Acta Prataculturae Sinica, 2003, 12(4): 7-13. 卢少云, 郭振飞. 草坪草逆境生理研究进展. 草业学报, 2003, 12(4): 7-13. [12] Lee G, Carrow R N, Duncan R R.Growth and water relation responses to salinity stress in halophytic seashore paspalum ecotypes. Scientia Horticulturae, 2005, 104(2): 221-236. [13] Chen J B, Chu X Q, Li S, et al. Effect of saline water irrigation on growth of 7 genera and 11 species of warm season turfgrasses and their salinity tolerance difference. Pratacultural Science, 2012, 29(8): 1185-1192. 陈静波, 褚晓晴, 李珊, 等. 盐水灌溉对7属11种暖季型草坪草生长的影响及抗盐性差异. 草业科学, 2012, 29(8): 1185-1192. [14] Cardona C A, Duncan R R, Lindstrom O.Low temperature tolerance assessment in Paspalum. Crop Science, 1997, 37(4): 1283-1291. [15] Xie X M, Lu X L.Good properties and values for utilization of seashore paspalum germplasm resource. Journal of South China Agricultural University, 2004, 25(Supple 2): 64-67. 解新明, 卢小良. 海雀稗种质资源的优良特性及其利用价值. 华南农业大学学报, 2004, 25(增刊2): 64-67. [16] Liu G D.Tropical forage plant resources in China. Beijing: China Agricultural University Press, 1999. 刘国道. 中国热带饲用植物资源. 北京: 中国农业大学出版社, 1999. [17] Xu M, Lu T G.Research progress of plant mutagenesis technology. Current Biotechnology, 2011, 1(2): 90-97. 徐明, 路铁刚. 植物诱变技术的研究进展. 生物技术进展, 2011, 1(2): 90-97. [18] Zhong X X, Liu Z W, Chang P P, et al. Acquirement of self-compatible somatic mutants induced by colchicine in Paspalum vaginatum. Acta Prataculturae Sinica, 2013, 22(6): 205-212. 钟小仙, 刘智微, 常盼盼, 等. 秋水仙素诱导获得自交结实的海滨雀稗体细胞突变体. 草业学报, 2013, 22(6): 205-212. [19] Jing Z B, Wei L, Yu J, et al. Transcription sequencing and its application prospective on discovering the gene resources of forage. Pratacultural Science, 2011, 28(7): 1364-1369. 井赵斌, 魏琳, 俞靓, 等. 转录组测序及其在牧草基因资源发掘中的应用前景. 草业科学, 2011, 28(7): 1364-1369. [20] Niu J H, Lu X M, Tang J H, et al. Self-incompatibility in Poaceae and its advancement in molecular biological research. Molecular Plant Breeding, 2006, 4(2): 269-274. 牛俊海, 鲁晓民, 汤继华, 等. 禾本科植物自交不亲和性及其分子生物学研究进展. 分子植物育种, 2006, 4(2): 269-274. [21] Jia X P, Ye X Q, Liang L J, et al. Transcriptome characteristics of Paspalum vaginatum analyzed with illumina sequencing technology. Acta Prataculturae Sinica, 2014, 23(6): 242-252. 贾新平, 叶晓青, 梁丽建, 等. 基于高通量测序的海滨雀稗转录组学研究. 草业学报, 2014, 23(6): 242-252. [22] Zhang J C, Meng Y H, Song Y H, et al. Research developments of Ca(2+)-CaM signal system and its regulation in plant. Journal of Chongqing Normal University (Natural Science Edition), 2005, 22(4): 49-52. 张君诚, 孟玉环, 宋育红, 等. 植物Ca(2+)-CaM信号系统及其调控研究进展. 重庆师范大学学报(自然科学版), 2005, 22(4): 49-52. [23] Straatman K R, Dove S K, Holdaway-Clarke T, et al. Calcium signalling in pollen of Papaver rhoeas undergoing the self-incompatibility (Si) response. Sexual Plant Reproduction, 2001, 14(1/2): 105-110. [24] Snowman B N, Geitmann A, Clarke S R, et al. Signalling and the cytoskeleton of pollen tubes of Papaver rhoeas. Annals of Botany, 2000, 85(Supple A): 49-57. [25] Staiger C, Franklin-Tong V.The actin cytoskeleton is a target of the self-incompatibility response in Papaver rhoeas. Journal of Experimental Botany, 2003, 54: 103-113. [26] Yang H Y.The role of calcium in the fertilization process in flowering plants. Acta Botannica Sinica, 1999, 41(10): 1027-1035. 杨弘远. 钙在有花植物受精过程中的作用. 植物学报, 1999, 41(10): 1027-1035. [27] Franklin-Tong V E, Ride J P, Read N D, et al. The self-incompatibility response in Papaver rhoeas is mediated by cytosolic free calcium. The Plant Journal, 1993, 4(1): 163-177. [28] Jordan N D, Ride J P, Rudd J J, et al. Inhibition of self-incompatible pollen in Papaver rhoeas involves a complex series of cellular events. Annals of Botany, 2000, 85(Supple A): 197-202. [29] Wehling P, Hackauf B, Wricke G.Identification of S-Locus linked pcr fragments in rye (Secale cereale L.) by denaturing gradient gel electrophoresis. The Plant Journal, 1994, 5(6): 891-893. [30] Kao T H, Tsukamoto T.The molecular and genetic bases of S-RNase-based self-incompatibility. Plant Cell, 2004, 16(16): 72-83. |