[1] Zhan J S, Huo J H, Hu L Z, et al. Progress on ratio of protein to energy in diet of ruminant. Feed Review, 2018, (2): 9-11, 15. 占今舜, 霍俊宏, 胡利珍, 等. 反刍动物日粮蛋白质能量比的研究进展. 饲料博览, 2018, (2): 9-11, 15. [2] Song S D, Rao K Q, Guo C H, et al. Progress on the application of dietary concentration-roughage ratio in the production of mutton sheep. Animal Husbandry & Veterinary Medicine, 2015, 47(5): 135-139. 宋善丹, 饶开晴, 郭春华, 等. 日粮精粗比在肉羊生产中应用的研究进展. 畜牧与兽医, 2015, 47(5): 135-139. [3] Wang Y Y. Effects of dietary nutrient levels on the bacterial flora, pH and VFA levels in rumen of Tan sheep. Yangling: Northwest A & F University, 2017. 王尧悦. 日粮营养水平对滩羊瘤胃细菌区系及pH和VFA的影响. 杨凌: 西北农林科技大学, 2017. [4] Wang H R. The effect of different forage to concentrate ratio and N sources on the population of sheep rumen cellulolytic microbes and fiber digestion. Hohhot: Inner Mongolia Agricultural University, 2006. 王海荣. 不同日粮精粗比及氮源对绵羊瘤胃纤维降解菌群和纤维物质降解的影响. 呼和浩特: 内蒙古农业大学, 2006. [5] Romero-Pérez G A, Ominski K H, Mcallister T A, et al. Effect of environmental factors and influence of rumen and hindgut biogeography on bacterial communities in steers. Applied and Environmental Microbiology, 2011, 77(1): 258-268. [6] Gao L Q, Zhan J S, Hu Y, et al. Effects of total mixed ration with different concentration-roughage ratios on growth performance, serum hormone concentrations and slaughter performance of Hu sheep. Chinese Journal of Animal Nutrition, 2019, 31(4): 213-221. 高林青, 占今舜, 胡耀, 等. 不同精粗比全混合日粮对湖羊生长性能、血清激素浓度和屠宰性能的影响. 动物营养学报, 2019, 31(4): 213-221. [7] Wang J Q, Lu D X, Yang H J, et al. Feeding standard of meat-producing sheep and goats, NY-T 816-2004. Beijing: Ministry of Agriculture and Rural Affairs of the People's Republic of China, 2004. 王加启, 卢德勋, 杨红建, 等. 肉羊饲养标准, NY-T 816-2004. 北京: 中华人民共和国农业部, 2004. [8] Wang J Q. Methods in ruminant nutrition research. Beijing: Modern Education Press, 2011. 王加启. 反刍动物营养学研究方法. 北京: 现代教育出版社, 2011. [9] Guo W S, Schaefer D M, Guo X X, et al. Use of nitrate nitrogen as a sole dietary nitrogen source to inhibit ruminal methanogenesis and to improve microbial nitrogen synthesis in vitro. Asian-Australasian Journal of Animal Sciences, 2009, 22(4): 542-549. [10] Zhan J S, Liu M M, Wu C X, et al. Effects of alfalfa flavonoids extract on the microbial flora of dairy cow rumen. Asian-Australasian Journal of Animal Sciences, 2017, 30(9): 1261-1269. [11] Weng X X. The study on rumen fermentation, volatile fatty acid absorption characteristics and receiving different types of diets. Lanzhou: Gansu Agricultural University, 2013. 翁秀秀. 饲喂不同日粮奶牛瘤胃发酵和VFA吸收特性及其相关基因表达的研究. 兰州: 甘肃农业大学, 2013. [12] Iliĉ Z, Stojkoviĉ J, Dokoviĉ R, et al. The effect of the roughage to concentrate ratio on ruminal pH and ammonia nitrogen concentration. Acta Agriculturae Serbica, 2009, 27: 35-41. [13] Wang S L, Wang H F, Gai Y D, et al. Advances in research on the production of VFA by ruminants. China Herbivore Science, 2019, 5: 46-49. 王淑玲, 王后福, 盖叶顶, 等. 反刍动物生成VFA的研究进展. 中国草食动物科学, 2019, 5: 46-49. [14] Liu J B, Li F D, Wang F, et al. Influences of total mixed diets with different concentrate-roughage ratio on pH and activity of digestive enzymes in alimentary canal of fattening lambs at Tibetan Plateau. Journal of Animal and Veterinary Advances, 2012, 11(12): 2129-2137. [15] Merchen N R, Firkins J L, Berger L L. Effect of intake and forage level on ruminal turnover rates, bacterial protein synthesis and duodenal amino acid flow s in sheep. Journal of Animal Science, 1986, 62(1): 216-225. [16] Giger-Reverdin S, Rigalma K, Desnoyers M, et al. Effect of concentrate level on feeding behavior and rumen and blood parameters in dairy goats: Relationships between behavioral and physiological parameters and effect of between-animal variability. Journal of Dairy Science, 2014, 97(7): 4367-4378. [17] Yang J, Cui Q R, Zhang L L, et al. Effects of dietary concentrate to forage ratio on rumen volatile acid pattern and serum indices related with glucose and lipid metabolism in dairy cows. China Feed, 2019, 5: 33-35. 杨靖, 崔巧荣, 张力莉, 等. 日粮精粗比对奶牛瘤胃挥发酸模式及血液糖脂代谢相关指标的影响. 中国饲料, 2019, 5: 33-35. [18] Chen X X, Lu G L, Yang L Y. Effects of diet with different concentrate to forage ratio on rumen fermentation of sheep in vitro. Heilongjiang Animal Science and Veterinary Medicine, 2015, 10: 119-121. 陈晓霞, 卢广林, 杨连玉. 不同精粗比日粮对绵羊体外瘤胃发酵参数的影响. 黑龙江畜牧兽医, 2015, 10: 119-121. [19] Zhan J S, Wu C X, Liu M M, et al. Effects of alfalfa flavonoids as dietary additives on bacterial flora in the rumen of dairy cows. Acta Prataculturae Sinica, 2017, 26(7): 82-89. 占今舜, 邬彩霞, 刘明美, 等. 饲粮添加苜蓿黄酮对奶牛瘤胃菌群的影响. 草业学报, 2017, 26(7): 82-89. [20] Kim M, Morrison M, Yu Z. Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiology Ecology, 2011, 76(1): 49-63. [21] Kong Y H, Teather R, Forster R. Composition, spatial distribution, and diversity of the bacterial communities in the rumen of cows fed different forages. FEMS Microbiology Ecology, 2010, 74(3): 612-622. [22] Singh K M, Ahir V B, Tripatili A K, et al. Metagenomic analysis of Surti buffalo (Bubalus bubalis) rumen: A preliminary study. Molecular Biology Reports, 2012, 39(4): 4841-4848. [23] Spence C, Wells W G, Smith C J. Characterization of the primary starch utilization operon in the obligate anaerobe Bacteroides fragilis: Regulation by carbon source and oxygen. Journal of Bacteriology, 2006, 188(13): 4663-4672. [24] Servin J A, Herbold C W, Skophammer R G, et al. Evidence excluding the root of the tree of life from the Actinobacteria. Molecular Biology and Evolution, 2008, 25(1): 1-4. [25] Xu X F, Hu D D, Guo T T, et al. Structure changes of rumen bacterial flora of dairy cows under different concentrate to roughage ratio diets. Journal of Animal Nutrition, 2019, 31(12): 5541-5550. 徐晓锋, 胡丹丹, 郭婷婷, 等. 不同精粗比饲粮条件下奶牛瘤胃细菌菌群结构变化的研究. 动物营养学报, 2019, 31(12): 5541-5550. [26] Jami E, Mizrahi I. Composition and similarity of bovine rumen microbiota across individual animals. PLoS One, 2012, 7(3): e33306. [27] Grilli D J, Cerón M E, Paez S, et al. Isolation of Pseudobutyrivibrio ruminis and Pseudobutyrivibrio xylanivorans from rumen of Creole goats fed native forage diet. Folia Microbiologica, 2012, 58(5): 367-373. [28] O'Herrin S M, Kenealy W R. Glucose and carbon dioxide metabolism by Succinivibrio dextrinosolvens. Applied and Environmental Microbiology, 1993, 59(3): 748-755. [29] Duncan S H, Hold G L, Barcenilla A, et al. Roseburia intestinalis sp. nov. a novel saccharolytic, butyrate-producing bacterium from human faeces. International Journal of Systematic and Evolutionary Microbiology, 2002, 52(5): 1615-1620. [30] Choi H J, Cheigh C I, Kim S B, et al. Weissella kimchii sp. nov. a novel lactic acid bacterium from kimchi. International Journal of Systematic and Evolutionary Microbiology, 2002, 52: 507-511. [31] Petzel J P, Hartman P A. Aromatic amino acid biosynthesis and carbohydrate catabolism in strictly anaerobic mollicutes anaeroplasma spp. Systematic & Applied Microbiology, 1990, 13(3): 240-247. |