草业学报 ›› 2020, Vol. 29 ›› Issue (7): 174-183.DOI: 10.11686/cyxb2019445
宗文贞1, 郭家昊1, 贾云龙1, 郑永兴1, 杨旭1, 胡芳弟2, 王静1,*
收稿日期:
2019-10-14
修回日期:
2020-01-06
出版日期:
2020-07-20
发布日期:
2020-07-20
通讯作者:
*E-mail: jw@lzu.edu.cn
作者简介:
宗文贞(1992-),女,甘肃榆中人,在读博士。E-mail: zongwzh17@lzu.edu.cn
基金资助:
ZONG Wen-zhen1, GUO Jia-hao1, JIA Yun-long1, ZHENG Yong-xing1, YANG Xu1, HU Fang-di2, WANG Jing1,*
Received:
2019-10-14
Revised:
2020-01-06
Online:
2020-07-20
Published:
2020-07-20
摘要: 单宁是高等植物产生的次级代谢产物。单宁和单宁-有机氮络合物在植物与土壤间的氮循环过程中扮演着重要的角色。单宁参与氮素循环的机制主要包括络合有机氮、影响土壤微生物活性以及影响土壤酶活性。以往的研究并未深入探讨单宁对各种有机氮的络合能力,以及菌根真菌和腐生真菌对单宁-有机氮络合物的降解机制。因此,本研究着重讨论了单宁对各种有机氮的络合能力、络合物的降解机制、单宁对土壤酶活性的抑制作用以及单宁对土壤微生物的影响,并综述了单宁在氮循环过程中的作用,如减缓凋落物分解,抑制净氮矿化,影响净硝化和氮固持等。结果表明:单宁能够络合大部分有机氮;单宁的结构和浓度可显著影响其对土壤酶活性和净氮矿化的抑制效果以及对土壤微生物活性和多样性的作用,该结论可为进一步理解单宁在植物与土壤间氮循环过程中的角色奠定基础。
宗文贞, 郭家昊, 贾云龙, 郑永兴, 杨旭, 胡芳弟, 王静. 单宁在植物-土壤氮循环中作用的研究进展[J]. 草业学报, 2020, 29(7): 174-183.
ZONG Wen-zhen, GUO Jia-hao, JIA Yun-long, ZHENG Yong-xing, YANG Xu, HU Fang-di, WANG Jing. Advances in research on the roles of tannins in plant-soil nitrogen cycling[J]. Acta Prataculturae Sinica, 2020, 29(7): 174-183.
[1] Kraus T E C, Dahlgren R A, Zasoski R J. Tannins in nutrient dynamics of forest ecosystems-A review. Plant and Soil, 2003, 256(1): 41-66. [2] Barbehenn R V, Constabel C P. Tannins in plant-herbivore interactions. Phytochemistry, 2011, 72(13): 1551-1565. [3] Hernes P J, Hedges J I. Determination of condensed tannin monomers in environmental samples by capillary gas chromatography of acid depolymerization extracts. Analytical Chemistry, 2000, 72(20): 5115-5124. [4] Olivoto T, Nardino M, Carvalho I R, et al. Plant secondary metabolites and its dynamical systems of induction in response to environmental factors: A review. African Journal of Agricultural Research, 2017, 12(2): 71-84. [5] Herms D A, Mattson W J. The dilemma of plants: To grow or defend. Quarterly Review of Biology, 1992, 67(3): 283-335. [6] Close D C, McArthur C. Rethinking the role of many plant phenolics-protection from photodamage not herbivores? Oikos, 2002, 99(1): 166-172. [7] Schofield P, Mbugua D M, Pell A N. Analysis of condensed tannins: A review. Animal Feed Science and Technology, 2001, 91(1/2): 21-40. [8] Kanerva S, Kitunen V, Kiikkila O, et al. Response of soil C and N transformations to tannin fractions originating from Scots pine and Norway spruce needles. Soil Biology and Biochemistry, 2006, 38(6): 1364-1374. [9] Hättenschwiler S, Vitousek P M. The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends in Ecology and Evolution, 2000, 15(6): 238-243. [10] Mohamed A S A, Mori T, Islam S Q, et al. Lethal activity of gallo- and condensed tannins against the free-living soil-inhabiting nematode, [11] Talbot J M, Allison S D, Treseder K K. Decomposers in disguise: Mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Functional Ecology, 2008, 22(6): 955-963. [12] Ushio M, Balser T C, Kitayama K. Effects of condensed tannins in conifer leaves on the composition and activity of the soil microbial community in a tropical montane forest. Plant and Soil, 2013, 365(1/2): 157-170. [13] Scalbert A. Antimicrobial properties of tannins. Phytochemistry, 1991, 30(12): 3875-3883. [14] Joanisse G D, Bradley R L, Preston C M, et al. Soil enzyme inhibition by condensed litter tannins may drive ecosystem structure and processes: The case of [15] Adamczyk B, Simon J, Kitunen V, et al. Tannins and their complex interaction with different organic nitrogen compounds and enzymes: Old paradigms versus recent advances. Chemistryopen, 2017, 6(5): 610-614. [16] Serrano J, Puupponen-Pimia R, Dauer A, et al. Tannins: Current knowledge of food sources, intake, bioavailability and biological effects. Molecular Nutrition and Food Research, 2009, 53: 310-329. [17] Bate-Smith E C, Swain T. Flavonoid compounds. New York: Academic Press, 1962: 755-809. [18] Hernes P J, Benner R, Cowie G L, et al. Tannin diagenesis in mangrove leaves from a tropical estuary: A novel molecular approach. Geochimica Et Cosmochimica Acta, 2001, 65(18): 3109-3122. [19] Galvez J M G, Riedl B, Conner A H. Analytical studies on tara tannins. Holzforschung, 1997, 51(3): 235-243. [20] Ren F P, Gong Y Z, Wang Q J. The extraction method of vegetable tannin. West Leather, 2011, 33(20): 21-24. 任方萍, 宫云芝, 王全杰. 植物单宁的提取方法. 西部皮革, 2011, 33(20): 21-24. [21] Smolander A, Kanerva S, Adamczyk B, et al. Nitrogen transformations in boreal forest soils-does composition of plant secondary compounds give any explanations? Plant and Soil, 2012, 350(1/2): 1-26. [22] Cui G, Wei X, Degen A A, et al. Trolox-equivalent antioxidant capacity and composition of five alpine plant species growing at different elevations on the Qinghai-Tibetan Plateau. Plant Ecology and Diversity, 2016, 9(4): 387-396. [23] Gonzalez-Hernandez M P, Karchesy J, Starkey E E. Research observation: Hydrolyzable and condensed tannins in plants of northwest Spain forests. Journal of Range Management, 2003, 56(5): 461-465. [24] Keinanen M, Julkunen-Tiitto R, Mutikainen P, et al. Trade-offs in phenolic metabolism of silver birch: Effects of fertilization, defoliation, and genotype. Ecology, 1999, 80(6): 1970-1986. [25] Kraus T E C, Zasoski R J, Dahlgren R A. Fertility and pH effects on polyphenol and condensed tannin concentrations in foliage and roots. Plant and Soil, 2004, 262(1/2): 95-109. [26] Northup R R, Dahlgren R A, Yu Z S. Intraspecific variation of conifer phenolic concentration on a marine terrace soil acidity gradient-a new interpretation. Plant and Soil, 1995, 171(2): 255-262. [27] Johnson J D, Tognetti R, Michelozzi M, et al. Ecophysiological responses of [28] Hagerman A E. The tannin handbook. (2011)[2019.10.11]. http://www.users.miamioh.edu/hagermae/. [29] Chomel M, Guittonny-Larcheveque M, Fernandez C, et al. Plant secondary metabolites: A key driver of litter decomposition and soil nutrient cycling. Journal of Ecology, 2016, 104(6): 1527-1541. [30] Maie N, Pisani O, Jaffe R. Mangrove tannins in aquatic ecosystems: Their fate and possible influence on dissolved organic carbon and nitrogen cycling. Limnology and Oceanography, 2008, 53(1): 160-171. [31] Kandil F E, Grace M H, Seigler D S, et al. Polyphenolics in [32] Zhou H C, Tam N F, Lin Y M, et al. Changes of condensed tannins during decomposition of leaves of [33] Carballo S M, Haas L, Krueger C G, et al. Cranberry proanthocyanidins-protein complexes for macrophage activation. Food and Function, 2017, 8(9): 3374-3382. [34] Stevenson F J. Humus chemistry. New York: John Wiley and Sons, 1994: 496. [35] Hagerman A E. Tannin-protein interactions. Acs Symposium Series, 1992, 506: 236-247. [36] Ozdal T, Capanoglu E, Altay F. A review on protein-phenolic interactions and associated changes. Food Research International, 2013, 51(2): 954-970. [37] Horvarth P J. The nutritional and ecological significance of Acer-tannins and related polyphenols. New York: Cornell University, 1981. [38] Hagerman A E. Fifty years of polyphenol-protein complexes. Recent Advances in Polyphenol Research, 2012, 3: 71-97. [39] Kraus T E C, Yu Z, Preston C M, et al. Linking chemical reactivity and protein precipitation to structural characteristics of foliar tannins. Journal of Chemical Ecology, 2003, 29(3): 703-730. [40] Adamczyk B, Kitunen V, Smolander A. Protein precipitation by tannins in soil organic horizon and vegetation in relation to tree species. Biology and Fertility of Soils, 2008, 45(1): 55-64. [41] Hagerman A E, Butler L G. The specificity of proanthocyanidin-protein interactions. Journal of Biological Chemistry, 1981, 256(9): 4494-4497. [42] Ulrih N P. Analytical techniques for the study of polyphenol-protein interactions. Critical Reviews in Food Science and Nutrition, 2017, 57(10): 2144-2161. [43] Adamczyk B, Kitunen V, Smolander A. Polyphenol oxidase, tannase and proteolytic activity in relation to tannin concentration in the soil organic horizon under silver birch and Norway spruce. Soil Biology and Biochemistry, 2009, 41(10): 2085-2093. [44] Bending G D, Read D J. Effects of the soluble polyphenol tannic acid on the activities of ericoid and ectomycorrhizal fungi. Soil Biology and Biochemistry, 1996, 28(12): 1595-1602. [45] Bennett J N, Prescott C F. Organic and inorganic nitrogen nutrition of western red cedar, western hemlock and salal in mineral N-limited cedar-hemlock forests. Oecologia, 2004, 141(3): 468-476. [46] Wurzburger N, Hendrick R L. Plant litter chemistry and mycorrhizal roots promote a nitrogen feedback in a temperate forest. Journal of Ecology, 2009, 97(3): 528-536. [47] Pellitier P T, Zak D R. Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: Why evolutionary history matters. New Phytologist, 2018, 217(1): 68-73. [48] Joanisse G D, Bradley R L, Preston C M, et al. Sequestration of soil nitrogen as tannin-protein complexes may improve the competitive ability of sheep laurel ( [49] Wu T H, Sharda J N, Koide R T. Exploring interactions between saprotrophic microbes and ectomycorrhizal fungi using a protein-tannin complex as an N source by red pine ( [50] Wu T, Kabir Z, Koide R T. A possible role for saprotrophic microfungi in the N nutrition of ectomycorrhizal [51] Kohler A, Kuo A, Nagy L G, et al. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nature Genetics, 2015, 47(4): 410-416. [52] Adamczyk B, Adamczyk S, Smolander A, et al. Tannic acid and Norway spruce condensed tannins can precipitate various organic nitrogen compounds. Soil Biology and Biochemistry, 2011, 43(3): 628-637. [53] Wu T. Can ectomycorrhizal fungi circumvent the nitrogen mineralization for plant nutrition in temperate forest ecosystems? Soil Biology and Biochemistry, 2011, 43(6): 1109-1117. [54] Northup R R, Yu Z S, Dahlgren R A, et al. Polyphenol control of nitrogen release from pine litter. Nature, 1995, 377: 227-229. [55] Schimel J P, Bennett J. Nitrogen mineralization: Challenges of a changing paradigm. Ecology, 2004, 85(3): 591-602. [56] Fierer N, Schimel J P, Cates R G, et al. Influence of balsam poplar tannin fractions on carbon and nitrogen dynamics in [57] Schimel J P, Van Cleve K, Cates R G, et al. Effects of balsam poplar ( [58] Kraus T E C, Zasoski R J, Dahlgren R A, et al. Carbon and nitrogen dynamics in a forest soil amended with purified tannins from different plant species. Soil Biology and Biochemistry, 2004, 36(2): 309-321. [59] Hossain M Z, Okubo A, Sugiyama S. Effects of grassland species on decomposition of litter and soil microbial communities. Ecological Research, 2010, 25(2): 255-261. [60] Bending G D, Read D J. Lignin and soluble phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungi. Mycological Research, 1997, 101: 1348-1354. [61] Bhat T K, Singh B, Sharma O P. Microbial degradation of tannins-A current perspective. Biodegradation, 1998, 9(5): 343-357. [62] Slapokas T, Granhall U. Decomposition of willow-leaf litter in a short-rotation forest in relation to fungal colonization and palatability for earthworms. Biology and Fertility of Soils, 1991, 10(4): 241-248. [63] Tian G, Brussaard L, Kang B T. Breakdown of plant residues with contrasting chemical-compositions under humid tropical conditions-effects of earthworms and millipedes. Soil Biology and Biochemistry, 1995, 27(3): 277-280. [64] Nannipieri P, Giagnoni L, Renella G, et al. Soil enzymology: Classical and molecular approaches. Biology and Fertility of Soils, 2012, 48(7): 743-762. [65] Triebwasser D J, Tharayil N, Preston C M, et al. The susceptibility of soil enzymes to inhibition by leaf litter tannins is dependent on the tannin chemistry, enzyme class and vegetation history. New Phytologist, 2012, 196(4): 1122-1132. [66] Zong W, Wang J, He Y, et al. Net nitrogen mineralization and enzyme activities in an alpine meadow soil amended with litter tannins. Journal of Plant Nutrition and Soil Science, 2018, 181(6): 954-965. [67] Nierop K G J, Preston C M, Verstraten J M. Linking the B ring hydroxylation pattern of condensed tannins to C, N and P mineralization. A case study using four tannins. Soil Biology and Biochemistry, 2006, 38(9): 2794-2802. [68] Adamczyk B, Karonen M, Adamczyk S, et al. Tannins can slow-down but also speed-up soil enzymatic activity in boreal forest. Soil Biology and Biochemistry, 2017, 107: 60-67. [69] Juntheikki M R, Julkunen-Tiito R. Inhibition of β-glucosidase and esterase by tannins from [70] Goldstein J L, Swain T. The inhibition of enzymes by tannins. Phytochemistry, 1965, 4(1): 185-192. [71] Loranger G, Ponge J F, Imbert D, et al. Leaf decomposition in two semi-evergreen tropical forests: Influence of litter quality. Biology and Fertility of Soils, 2002, 35(4): 247-252. [72] Hättenschwiler S, Jorgensen H B. Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. Journal of Ecology, 2010, 98(4): 754-763. [73] Hättenschwiler S, Coq S, Barantal S, et al. Leaf traits and decomposition in tropical rainforests: Revisiting some commonly held views and towards a new hypothesis. New Phytologist, 2011, 189(4): 950-965. [74] Bradley R L, Titus B D, Preston C P. Changes to mineral N cycling and microbial communities in black spruce humus after additions of (NH4)2SO4 and condensed tannins extracted from [75] Baldwin I T, Olson R K, Reiners W A. Protien-binding phenolics and the inhibition of nitrification in subalpine balsam fir soils. Soil Biology and Biochemistry, 1983, 15(4): 419-423. [76] Kraal P, Nierop K G J, Kaal J, et al. Carbon respiration and nitrogen dynamics in [77] Schimel J P, Cates R G, Ruess R. The role of balsam poplar secondary chemicals in controlling soil nutrient dynamics through succession in the Alaskan Taiga. Biogeochemistry, 1998, 42(1/2): 221-234. [78] Siqueira J O, Nair M G, Hammerschmidt R, et al. Significance of phenolic-compounds in plant-soil-microbial systems. Critical Reviews in Plant Sciences, 1991, 10(1): 63-121. [79] Bending G D, Read D J. Nitrogen mobilization from protein-polyphenol complex by ericoid and ectomycorrhizal fungi. Soil Biology and Biochemistry, 1996, 28(12): 1603-1612. [80] Holub S M, Lajtha K. The fate and retention of organic and inorganic 15N-nitrogen in an old-growth forest soil in western Oregon. Ecosystems, 2004, 7(4): 368-380. [81] Mutabaruka R, Hairiah K, Cadisch G. Microbial degradation of hydrolysable and condensed tannin polyphenol-protein complexes in soils from different land-use histories. Soil Biology and Biochemistry, 2007, 39(7): 1479-1492. |
[1] | 吕竑建, 郭香, 陈德奎, 陈晓阳, 张庆. 植物乳酸菌和贮藏温度对辣木叶青贮品质的影响[J]. 草业学报, 2021, 30(3): 121-128. |
[2] | 冯军, 石超, 门胜男, Hafiz Athar Hussain, 柯剑鸿, Linna Cholidah, 陈锦芬, 郭欣, 武海燕, 冉泰霖, 向信华, 王龙昌. 不同降雨下旱地油菜节水节肥技术对土壤养分及酶活性的调控效应[J]. 草业学报, 2020, 29(4): 51-62. |
[3] | 张建军, 党翼, 赵刚, 王磊, 樊廷录, 李尚中, 雷康宁. 留膜留茬免耕栽培对旱作玉米田土壤养分、微生物数量及酶活性的影响[J]. 草业学报, 2020, 29(2): 123-133. |
[4] | 李争艳, 徐智明, 师尚礼, 贺春贵. 江淮地区不同轮茬作物对苜蓿产量及根际土壤质量的影响[J]. 草业学报, 2019, 28(8): 28-39. |
[5] | 李国旗, 赵盼盼, 邵文山, 靳长青. 围封条件下荒漠草原两种植物群落土壤理化性状与酶活性的研究[J]. 草业学报, 2019, 28(7): 49-59. |
[6] | 王成, 王益, 周玮, 骈瑞琪, 张庆, 陈晓阳. 植物乳杆菌和含水量对辣木叶青贮品质和单宁含量的影响[J]. 草业学报, 2019, 28(6): 109-118. |
[7] | 李志威, 赵静雯, 沈思聪, 罗佳璇, 赵国琦, 黄倩倩. 尼龙袋法评价香蕉叶单宁对瘤胃降解特性的影响[J]. 草业学报, 2019, 28(12): 114-123. |
[8] | 秦燕, 刘文辉, 何峰, 仝宗永, 李向林. 施肥与切根对退化羊草草原土壤理化性质和酶活性的影响[J]. 草业学报, 2019, 28(1): 5-14. |
[9] | 刘明, 陈远学, 陈强, 彭丹, 喻晓, 杨军伟, 徐开未. 翻压接种根瘤菌的紫花苕子对植烟土壤肥力的影响[J]. 草业学报, 2019, 28(1): 162-169. |
[10] | 石秀丽, 郭萌萌, 张莹, 秦华, 万琪慧, 谢德体, 蒋先军. 单步硝化作用与全程氨氧化微生物研究进展[J]. 草业学报, 2018, 27(7): 196-203. |
[11] | 赛牙热木·哈力甫, 艾克拜尔·伊拉洪, 宋瑞清, 阿不都赛买提·乃合买提, 米日尼沙·买买提明, 迪里努尔·艾力. 察布查尔草原土壤酶活性垂直分布及土壤理化性质相关性研究[J]. 草业学报, 2018, 27(3): 116-125. |
[12] | 李文彬, 宁楚涵, 徐孟, 刘润进, 郭绍霞. 丛枝菌根真菌和高羊茅对压实土壤的改良效应[J]. 草业学报, 2018, 27(11): 131-141. |
[13] | 张旭辉, 李治玲, 李勇, 王洋清. 施用生物炭对西南地区紫色土和黄壤的作用效果[J]. 草业学报, 2017, 26(4): 63-72. |
[14] | 王鹏飞, 贾璐婷, 杜俊杰, 张建成, 穆霄鹏, 丁伟. 黄土丘陵沟壑区欧李栽植对土壤质量改良作用的评价[J]. 草业学报, 2017, 26(3): 65-74. |
[15] | 潘发明, 王彩莲, 刁其玉, 宋淑珍, 郎侠, 宫旭胤, 张军成. 单宁酸对绵羊日粮养分消化利用及氮代谢的影响[J]. 草业学报, 2017, 26(12): 179-185. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||