[1] Kimpe C R D, Morel J L. Urban soil management: A growing concern. Soil Science, 2000, 165(1): 31-40. [2] Akker J J H V D, Brus D J. How serious a problem is soil compaction in the Netherlands? A survey based on probability sampling. Soil Discuss, 2018, 4(1): 37-45. [3] Sivarajan S, Maharlooei M, Bajwa S G, et al. Impact of soil compaction due to wheel traffic on corn and soybean growth, development and yield. Soil & Tillage Research, 2018, 175: 234-243. [4] Guo Z, Wang D Z.Long-term effects of returning wheat straw to croplands on soil compaction and nutrient availability under conventional tillage. Plant Soil & Environment, 2013, 59(6): 280-286. [5] We?owicz K, Turnau T, Anielska, et al. Metal toxicity differently affects the Iris pseudacorus-arbuscular mycorrhiza fungi symbiosis in terrestrial and semi-aquatic habitats. Environmental Science & Pollution Research, 2015, 22(24): 1-8. [6] Veresoglou S D, Chen B, Rillig M C.Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biology & Biochemistry, 2012, 46(1): 53-62. [7] Shi Z Y, Mickan B, Feng G, et al. Arbuscular mycorrhizal fungi improved plant growth and nutrient acquisition of desert ephemeral Plantago minuta under variable soil water conditions. Journal of Arid Land, 2015, 7(3): 414-420. [8] Peng S L, Shen H, Guo T.Influence of mycorrhizal inoculation on water stable aggregates traits. Plant Nutrition & Fertilizer Science, 2010, 16(3): 695-700. [9] Rillig M C, Wright S F, Eviner V T.The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: Comparing effects of five plant species. Plant & Soil, 2002, 238(2): 325-333. [10] He X L, Guo H J, Wang Y Y.Effects of soil moisture and AM fungi on the soil physicochemical property in the rhizosphere of Astragalus adsurgens. Journal of Hebei University (Natural Science Edition), 2013, 33(5): 508-513. 贺学礼, 郭辉娟, 王银银. 土壤水分和AM真菌对沙打旺根际土壤理化性质的影响. 河北大学学报(自然科学版), 2013, 33(5): 508-513. [11] Cao L X, Hou W F, Qian J X, et al. Effects of mycorrhizal inoculation on the content of main nutrients and glomalin in the rhizosphere of Leymus Chinensis (Trin.) Tzvel. Acta Agrestia Sinica, 2016, 24(3): 537-543. 曹丽霞, 侯伟峰, 钱洁鑫, 等. 菌根接种对羊草根围土壤主要养分与球囊霉素含量的影响. 草地学报, 2016, 24(3): 537-543. [12] Yuan F Y, Huang Y M, Li L, et al. Effects of mycorrhizal fungi on root morphology of white clover and related mechanisms. Journal of Yangtze University (Natural Science Edition), 2014, 11(11): 39-42. 袁芳英, 黄咏明, 李莉, 等. 菌根真菌对白三叶根系形态的影响及相关机理研究. 长江大学学报(自然科学版), 2014, 11(11): 39-42. [13] Fun X F, Zhang G P, Zhang X W, et al. Effects of PSB and AMF on growth, microorganisms and soil enzyme activities in the rhizosphere of Taxus chinensis var. mairei seedlings. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(2): 353-360. 付晓峰, 张桂萍, 张小伟, 等. 溶磷细菌和丛枝菌根真菌接种对南方红豆杉生长及根际微生物和土壤酶活性的影响. 西北植物学报, 2016, 36(2): 353-360. [14] Yu J J, Fan N L, Li R, et al. Effects of elevated carbon dioxide concentration on the growth and antioxidant system in tall fescue under heat stress. Acta Prataculturae Sinica, 2017, 26(8): 113-122. 于景金, 范宁丽, 李冉, 等. 高浓度CO2对热胁迫条件下高羊茅生长和抗氧化系统的影响. 草业学报, 2017, 26(8): 113-122. [15] Li J, Lei X, Zhong L, et al. Physiological response of new strains of Festuca arundinacea mutated in space under high temperature stress and comprehensively evaluated. Acta Prataculturae Sinica, 2017, 26(3): 121-131. 李娟, 雷霞, 钟理, 等. 高温胁迫对高羊茅航天诱变新品系生理特性研究及综合评价. 草业学报, 2017, 26(3): 121-131. [16] Li J, Lei X, Wang X L, et al. Effects of drought stress on the physiological characteristics of new lines of Festuca arundinacea induced by spaceflight and their comprehensive evaluation. Acta Prataculturae Sinica, 2017, 26(10): 87-98. 李娟, 雷霞, 王小利, 等. 干旱胁迫对高羊茅航天诱变新品系生理特性的影响及综合评价. 草业学报, 2017, 26(10): 87-98. [17] Liu R J, Chen Y L.Mycorrhizology. Beijing: Science Press, 2007. 刘润进, 陈应龙. 菌根学. 北京: 科学出版社, 2007. [18] Abbott L K, Robson A D, Boer G D.The effect of phosphorus on the formation of hyphae in soil by the vesicular-arbuscular mycorrhizal fungus, Glomus fasciculatum. New Phytologist, 2010, 97(3): 437-446. [19] Liu G H, Ye Z F, Wu W Z.Culture-dependent and culture-independent approaches to studying soil microbial diversity. Acta Ecologica Sinica, 2012, 32(14): 4421-4433. 刘国华, 叶正芳, 吴为中. 土壤微生物群落多样性解析法:从培养到非培养. 生态学报, 2012, 32(14): 4421-4433. [20] Bao S D.Soil agricultural chemistry analysis. Beijing: China Agriculture Press, 1998: 56-83. 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 1998: 56-83. [21] Guan Y S.The study method of soil enzyme. Beijing: Agriculture Press, 1986: 60-360. 关荫松. 土壤酶及其研究法. 北京: 农业出版社, 1986: 60-360. [22] Wu Z, Mcgrouther K, Huang J, et al. Decomposition and the contribution of glomalin-related soil protein (GRSP) in heavy metal sequestration: Field experiment. Soil Biology & Biochemistry, 2014, 68(1): 283-290. [23] Schilling G, Gransee A, Deuhel A, et al. Phosphorus availability, root exudates, and microbial activity in the rhizosphere. Journal of Plant Nutrition and Soil Science, 2015, 161(4): 465-478. [24] Xie X M, Liao M, Yang J, et al. Influence of root-exudates concentration on pyrene degradation and soil microbial characteristics in pyrene contaminated soil. Chemosphere, 2012, 88(10): 1190-1195. [25] Oliveria R S, Castro P M L, Dodd J C, et al.Synergistic effect of Glomus intraradices and Frankia spp. On the growth and stress recovery of Alnus glutinasa in an alkaline anthropogenic sediment. Chemosphere, 2005, 60(10): 1462-1470. [26] Gamalero E, Lingua G, Berta G, et al. Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Canadian Journal of Microbiology, 2009, 55(5): 501-514. [27] Peng S, Guo T, Liu G.The effects of arbuscular mycorrhizal hyphal networks on soil aggregations of purple soil in southwest China. Soil Biology & Biochemistry, 2013, 57(1): 411-417. [28] Elfstrand S, Hedlund K, Martensson A.Soil enzyme activities, microbial community composition and function after 47 years of continuous green manuring. Applied Soil Ecology, 2007, 35(3): 610-621. [29] Rillig M C.Arbuscular mycorrhizae, glomalin, and soil aggregation. Canadian Journal of Soil Science, 2004, 84: 355-363. [30] Wu Q S, Li Y, Zou Y N, et al. Arbuscular mycorrhiza mediates glomalin-related soil protein production and soil enzyme activities in the rhizosphere of trifoliate orange grown under different P levels. Mycorrhiza, 2015, 25(2): 121-130. [31] Srivastava A K, Shyam S, Marathe R A.Organic citrus: Soil fertility and plant nutrition. Journal of Sustainable Agriculture, 2002, 19(3): 5-29. [32] Wang Z G, Bi Y L, He R M, et al. Effects of alfalfa covering on plant growth and soil chemical and biological properties amelioration in coal mining-induced subsidence area. Northern Horticulture, 2017, (7): 174-178. 王志刚, 毕银丽, 何瑞敏, 等. 覆盖紫花苜蓿对采煤沉陷区植物生长和土壤化学生物性状的影响. 北方园艺, 2017, (7): 174-178. [33] Xu X H, Zhao C W, Zhang S.Distribution and residual of soil total N and nitrate-N under different land-use types in northwest Guizhou. Acta Agrestia Sinica, 2016, 24(4): 819-824. 薛晓辉, 赵常万, 张嵩. 黔西北不同土地利用类型下土壤全氮及硝态氮的分布与残留. 草地学报, 2016, 24(4): 819-824. [34] Zheng S Y, Guo S R, Zhang Y, et al. Effects of arbuscular mycorrhizal fungi on characteristics of photosynthesis, microbial diversity and enzymes activity in rhizosphere of pepper plants cultivated in organic substrate. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(4): 800-809. 郑舜怡, 郭世荣, 张钰, 等. 丛枝菌根真菌对辣椒光合特性及根际微生物多样性和酶活性的影响. 西北植物学报, 2014, 34(4): 800-809. [35] Cotuna O, Sǎrǎteanu V, Durǎu C C.Influence of arbuscular mycorrhizae (AM) colonization on plant growth: Plantago lanceolata case study. Journal of Food Agriculture & Environment, 2013, 11(3): 2005-2008. [36] Wang Y T, Xin G R, Li S S.An overview of the updated classification system and species diversity of arbuscular mycorrhizal fungi. Acta Ecologica Sinica, 2013, 33(3): 834-843. 王宇涛, 辛国荣, 李韶山. 丛枝菌根真菌最新分类系统与物种多样性研究概况. 生态学报, 2013, 33(3): 834-843. [37] Yang H X, Li S M, Guo S X.Effects of arbuscular mycorrhizal fungi on salinity tolerance of Lagerstroemia indica. Plant Physiology Journal, 2014, 50(9): 1379-1386. 杨海霞, 李士美, 郭绍霞. 丛枝菌根真菌对紫薇耐盐性的影响. 植物生理学报, 2014, 50(9): 1379-1386. [38] Bi Y L, Sun J H, Zhang J, et al. Remediation effects of plant root growth inoculated with AM fungi on simulation subsidence injured. Journal of China Coal Society, 2017, 42(4): 1013-1020. 毕银丽, 孙金华, 张健, 等. 接种菌根真菌对模拟开采伤根植物的修复效应. 煤炭学报, 2017, 42(4): 1013-1020. |