草业学报 ›› 2021, Vol. 30 ›› Issue (4): 46-57.DOI: 10.11686/cyxb2020195
顾继雄1(), 郭天斗2, 王红梅1,2(), 李雪颖2, 梁丹妮2, 杨青莲2, 高锦月2
收稿日期:
2020-04-28
修回日期:
2020-08-04
出版日期:
2021-04-20
发布日期:
2021-03-16
通讯作者:
王红梅
作者简介:
Corresponding author. E-mail: whm_826@163.com基金资助:
Ji-xiong GU1(), Tian-dou GUO2, Hong-mei WANG1,2(), Xue-ying LI2, Dan-ni LIANG2, Qing-lian YANG2, Jin-yue GAO2
Received:
2020-04-28
Revised:
2020-08-04
Online:
2021-04-20
Published:
2021-03-16
Contact:
Hong-mei WANG
摘要:
为探究荒漠草原向灌丛地人为转变过程中土壤微生物及其酶活性的响应特征,选取宁夏东部荒漠草原近30年典型草地-灌丛地镶嵌体区域的荒漠草地、草地边缘、灌丛边缘、灌丛地为研究样地,开展各样地不同微生境(植丛和空斑)下的0~20 cm土层土壤理化性质、微生物数量、微生物生物量及其酶活性特征研究。结果显示:随转变过程各样地土壤水分、土壤有机碳、全碳、全氮以及全磷含量分别由6.84%、8.54 g·kg-1、22.67 g·kg-1、0.85 g·kg-1、0.32 g·kg-1显著下降至1.78%、5.85 g·kg-1、6.63 g·kg-1、0.16 g·kg-1、0.23 g·kg-1(P<0.05),pH无明显变化。细菌数量呈先降后升变化,荒漠草地略高于灌丛地,真菌数量呈“下降-上升-再下降”非线性变化,灌丛地略高于荒漠草地,放线菌数量下降趋势明显。微生物生物量碳、氮含量分别由87.66、5.94 mg·kg-1显著下降至9.94、1.85 mg·kg-1(P<0.05)。过氧化氢酶、碱性磷酸酶、蔗糖酶和脲酶活性呈显著波动或线性下降趋势,荒漠草地均显著大于灌丛地(P<0.05)。土壤微生物特性和酶活性在各样地不同微生境均表现为植丛显著大于空斑(P<0.05)。随着植被转变过程土壤水分、全碳、全氮与土壤微生物(放线菌、土壤微生物量碳氮、过氧化氢酶、脲酶、碱性磷酸酶)呈极显著正相关(P<0.01),土壤有机碳、全磷与土壤微生物量碳、脲酶呈显著正相关(P<0.05),pH与土壤微生物无显著关系(P>0.05);放线菌数量、过氧化氢酶、碱性磷酸酶和脲酶活性与微生物量碳、氮呈极显著正相关(P<0.01),细菌、真菌数量和蔗糖酶活性与微生物量碳、氮呈正相关(P>0.05)。荒漠草原向灌丛地过渡转变过程,虽各指标存在升高、降低或过渡边界效应,但当过渡到灌丛地均显著低于荒漠草地,表明该年限灌丛地土壤微生物活性显著降低。
顾继雄, 郭天斗, 王红梅, 李雪颖, 梁丹妮, 杨青莲, 高锦月. 宁夏东部荒漠草原向灌丛地转变过程土壤微生物响应[J]. 草业学报, 2021, 30(4): 46-57.
Ji-xiong GU, Tian-dou GUO, Hong-mei WANG, Xue-ying LI, Dan-ni LIANG, Qing-lian YANG, Jin-yue GAO. Responses of soil microbes across an anthropogenic transition from desert steppe grassland to shrubland in eastern Ningxia[J]. Acta Prataculturae Sinica, 2021, 30(4): 46-57.
样地 Sample site | 经纬度 Latitude and longitude | pH | 容重 Soil bulk (g·cm-3) | 灌木盖度 Shrub coverage (%) | 草本盖度 Herbage coverage (%) | 物种数 Species number | 优势植物 Dominant plant species |
---|---|---|---|---|---|---|---|
荒漠草地 Desert grassland | 107°16′24″ E 37°46′31″ N | 8.35 | 1.39 | 0 | 70 | 25 | 蒙古冰草,短花针茅,猪毛蒿,牛枝子A. mongolicum, S. breviflora, A. scoparia, L. potaninii |
草地边缘 Grassland edge | 107°16′08″ E 37°46′32″ N | 8.19 | 1.32 | 6 | 67 | 19 | 牛枝子,远志,乳浆大戟,草木樨状黄芪L. potaninii, Polygala tenuifolia, Euphorbia esula, Astragalus melilotoides |
灌丛边缘 Shrubland edge | 107°17′43″ E 37°43′59″ N | 8.34 | 1.43 | 23 | 48 | 16 | 柠条,短花针茅,远志,叉枝鸭葱C. korshinskii, S. breviflora, P. tenuifolia, Scorzoneradivaricata |
灌丛地 Shrubland | 107°17′52″ E 37°44′55″ N | 8.39 | 1.57 | 50 | 13 | 16 | 柠条,猪毛蒿,狗尾草,地锦C. korshinskii, A. scoparia, Setaria viridis, Euphorbia humifusa |
表1 样地概况
Table 1 Descriptions of study sites
样地 Sample site | 经纬度 Latitude and longitude | pH | 容重 Soil bulk (g·cm-3) | 灌木盖度 Shrub coverage (%) | 草本盖度 Herbage coverage (%) | 物种数 Species number | 优势植物 Dominant plant species |
---|---|---|---|---|---|---|---|
荒漠草地 Desert grassland | 107°16′24″ E 37°46′31″ N | 8.35 | 1.39 | 0 | 70 | 25 | 蒙古冰草,短花针茅,猪毛蒿,牛枝子A. mongolicum, S. breviflora, A. scoparia, L. potaninii |
草地边缘 Grassland edge | 107°16′08″ E 37°46′32″ N | 8.19 | 1.32 | 6 | 67 | 19 | 牛枝子,远志,乳浆大戟,草木樨状黄芪L. potaninii, Polygala tenuifolia, Euphorbia esula, Astragalus melilotoides |
灌丛边缘 Shrubland edge | 107°17′43″ E 37°43′59″ N | 8.34 | 1.43 | 23 | 48 | 16 | 柠条,短花针茅,远志,叉枝鸭葱C. korshinskii, S. breviflora, P. tenuifolia, Scorzoneradivaricata |
灌丛地 Shrubland | 107°17′52″ E 37°44′55″ N | 8.39 | 1.57 | 50 | 13 | 16 | 柠条,猪毛蒿,狗尾草,地锦C. korshinskii, A. scoparia, Setaria viridis, Euphorbia humifusa |
图1 转变各样地植被下和空斑处土壤理化性质不同小写字母表示不同灌丛转变阶段间差异显著,不同大写字母表示植丛与空斑处差异显著(P<0.05)。Different lowercase letters indicated significant difference among different transition sites, and different capital letters indicated significant difference between the vegetation patch and bare interspace (P<0.05). DG: 荒漠草原Desert grassland; GE: 草地边缘Grassland edge; SE: 灌丛边缘Shrubland edge; SL: 灌丛地Shrubland; VP: 植丛Vegetation patch; BI: 空斑Bare interspace; SM: 土壤水分Soil moisture; SOC: 土壤有机碳Soil organic carbon; TC: 全碳Total carbon; TN: 全氮Total nitrogen; TP: 全磷Total phosphorus。下同The same below.
Fig.1 Soil properties under vegetation patch and bare interspace in different transition sites
图3 转变各样地植被下和空斑处土壤微生物量SMBC: 土壤微生物量碳Soil microbial biomass carbon; SMBN: 土壤微生物量氮Soil microbial biomass nitrogen; 下同The same below.
Fig.3 Soil microbial biomass under vegetation patch and bare interspace in different transition sites
项目 Item | 土壤有机碳 SOC | 全碳 TC | 全氮 TN | 全磷 TP | 酸碱度 pH | 细菌 Bacteria | 真菌 Fungus |
---|---|---|---|---|---|---|---|
土壤水分SM | 0.651** | 0.911** | 0.845** | 0.595** | -0.225 | 0.014 | -0.276 |
土壤有机碳SOC | 0.607** | 0.538** | 0.542** | 0.107 | -0.156 | -0.145 | |
全碳TC | 0.794** | 0.656** | -0.228 | -0.043 | -0.272 | ||
全氮TN | 0.505* | 0.022 | 0.252 | -0.008 | |||
全磷TP | 0.008 | -0.018 | -0.098 | ||||
酸碱度pH | 0.308 | 0.338 | |||||
细菌Bacteria | 0.278 | ||||||
项目 Item | 放线菌 Actinomycetes | SMBC | SMBN | 过氧化氢酶 Catalase | 脲酶 Urease | 蔗糖酶 Sucrase | 碱性磷酸酶 Alkaline phosphatase |
土壤水分SM | 0.511* | 0.810** | 0.725** | 0.581** | 0.565** | -0.022 | 0.686** |
土壤有机碳SOC | 0.183 | 0.514* | 0.336 | 0.304 | 0.453* | -0.028 | 0.325 |
全碳TC | 0.551** | 0.773** | 0.722** | 0.549** | 0.630** | -0.015 | 0.610** |
全氮TN | 0.702** | 0.956** | 0.835** | 0.723** | 0.795** | 0.274 | 0.842** |
全磷TP | 0.399 | 0.483* | 0.363 | 0.375 | 0.572** | 0.006 | 0.317 |
酸碱度pH | 0.267 | 0.113 | -0.112 | 0.070 | 0.073 | 0.158 | -0.062 |
细菌Bacteria | 0.469* | 0.330 | 0.155 | -0.007 | 0.153 | 0.098 | 0.247 |
真菌Fungus | 0.172 | 0.081 | 0.120 | 0.348 | 0.159 | 0.765** | 0.306 |
放线菌Actinomycetes | 0.878** | 0.653** | 0.765** | 0.671** | 0.323 | 0.684** | |
SMBC | 0.814** | 0.846** | 0.799** | 0.284 | 0.892** | ||
SMBN | 0.754** | 0.666** | 0.431* | 0.733** | |||
过氧化氢酶Catalase | 0.719** | 0.439* | 0.800** | ||||
脲酶Urease | 0.275 | 0.696** |
表2 各类指标之间的相关性分析
Table 2 Correlation analysis among the various indicators
项目 Item | 土壤有机碳 SOC | 全碳 TC | 全氮 TN | 全磷 TP | 酸碱度 pH | 细菌 Bacteria | 真菌 Fungus |
---|---|---|---|---|---|---|---|
土壤水分SM | 0.651** | 0.911** | 0.845** | 0.595** | -0.225 | 0.014 | -0.276 |
土壤有机碳SOC | 0.607** | 0.538** | 0.542** | 0.107 | -0.156 | -0.145 | |
全碳TC | 0.794** | 0.656** | -0.228 | -0.043 | -0.272 | ||
全氮TN | 0.505* | 0.022 | 0.252 | -0.008 | |||
全磷TP | 0.008 | -0.018 | -0.098 | ||||
酸碱度pH | 0.308 | 0.338 | |||||
细菌Bacteria | 0.278 | ||||||
项目 Item | 放线菌 Actinomycetes | SMBC | SMBN | 过氧化氢酶 Catalase | 脲酶 Urease | 蔗糖酶 Sucrase | 碱性磷酸酶 Alkaline phosphatase |
土壤水分SM | 0.511* | 0.810** | 0.725** | 0.581** | 0.565** | -0.022 | 0.686** |
土壤有机碳SOC | 0.183 | 0.514* | 0.336 | 0.304 | 0.453* | -0.028 | 0.325 |
全碳TC | 0.551** | 0.773** | 0.722** | 0.549** | 0.630** | -0.015 | 0.610** |
全氮TN | 0.702** | 0.956** | 0.835** | 0.723** | 0.795** | 0.274 | 0.842** |
全磷TP | 0.399 | 0.483* | 0.363 | 0.375 | 0.572** | 0.006 | 0.317 |
酸碱度pH | 0.267 | 0.113 | -0.112 | 0.070 | 0.073 | 0.158 | -0.062 |
细菌Bacteria | 0.469* | 0.330 | 0.155 | -0.007 | 0.153 | 0.098 | 0.247 |
真菌Fungus | 0.172 | 0.081 | 0.120 | 0.348 | 0.159 | 0.765** | 0.306 |
放线菌Actinomycetes | 0.878** | 0.653** | 0.765** | 0.671** | 0.323 | 0.684** | |
SMBC | 0.814** | 0.846** | 0.799** | 0.284 | 0.892** | ||
SMBN | 0.754** | 0.666** | 0.431* | 0.733** | |||
过氧化氢酶Catalase | 0.719** | 0.439* | 0.800** | ||||
脲酶Urease | 0.275 | 0.696** |
1 | D"Odorico P, Okin G S, Bestelmeyer B T. A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology, 2012, 5(5): 520-530. |
2 | Sala O E, Maestre F T, Gibson D. Grass-woodland transitions: Determinants and consequences for ecosystem functioning and provisioning of services. Journal of Ecology, 2014, 102(6): 1357-1362. |
3 | Naito A T, Cairns D M. Patterns and processes of global shrub expansion. Progress in Physical Geography, 2011, 35(4): 423-442. |
4 | Knapp A K, Briggs J M, Collins S L, et al. Shrub encroachment in North American grasslands: Shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. Global Change Biology, 2008, 14(3): 615-623. |
5 | Robinson T P, Klinken R D V, Metternicht G. Spatial and temporal rates and patterns of mesquite (Prosopis species) invasion in Western Australia. Journal of Arid Environments, 2008, 72(3): 175-188. |
6 | Eldridge D J, Bowker M A, Maestre F T, et al. Impacts of shrub encroachment on ecosystem structure and functioning: Towards a global synthesis. Ecology Letters, 2011, 14(7): 709-722. |
7 | Zhou L H, Shen H H, Chen L Y, et al. Species richness and composition of shrub-encroached grasslands in relation to environmental factors in Northern China. Journal of Plant Ecology, 2017, 12(1): 56-66. |
8 | Xie G X, Luo W C, Zhao W Z. The influence of sand source and shrub on the form of shrub sand in desert steppe. Chinese Journal of Deserts, 2015, 35(3): 573-581. |
谢国勋, 罗维成, 赵文智. 荒漠草原带沙源及灌丛对灌丛沙堆形态的影响. 中国沙漠, 2015, 35(3): 573-581. | |
9 | Zhao Y N, Du Y Y, Ma Y P, et al. Soil organic carbon dynamics and prediction of their spatial changes in response to anthropogenically introduced shrub encroachment in desert steppe of Eastern Ningxia, China. Chinese Journal of Applied Ecology, 2019, 30(6): 1927-1935. |
赵亚楠, 杜艳艳, 马彦平,等. 宁夏东部荒漠草原灌丛引入过程中土壤有机碳变化及其空间格局预测. 应用生态学报, 2019, 30(6): 1927-1935. | |
10 | Wei N, Zhao L P, Tan S T, et al. Research progress of grassland shrub. Ecological Science, 2019, 38(6): 208-216. |
魏楠, 赵凌平, 谭世图, 等. 草地灌丛化研究进展. 生态科学, 2019, 38(6): 208-216. | |
11 | Gherardi L A, Sala O E. Enhanced precipitation variability decreases grass- and increases shrub-productivity. Proceedings of the National Academy of Sciences, 2015, 112(41): 201506433. |
12 | Fuhrman J A. Microbial community structure and its functional implications. Nature, 2009, 459(7244): 193-199. |
13 | Chen X, Li W M, Liu Q. Research and analysis of soil microorganism at home and abroad in the past 30 years based on bibliometrics. Acta Pedologica Sinica, 2020, 839(6): 1-14. |
陈香, 李卫民, 刘勤. 基于文献计量的近30年国内外土壤微生物研究分析. 土壤学报, 2020, 839(6): 1-14. | |
14 | Fan Z Z, Wang X, Wang C, et al. Effect of nitrogen and phosphorus addition on soil enzyme activities: A meta-analysis. Journal of Applied Ecology, 2018, 29(4): 1266-1272. |
15 | Nicolitch O, Colin Y, Turpault M P, et al. Soil type determines the distribution of nutrient mobilizing bacterial communities in the rhizosphere of beech trees. Soil Biology and Biochemistry, 2016, 103: 429-445. |
16 | Zheng T T, Chao L, Xie H T, et al. Rhizosphere effects on soil microbial community structure and enzyme activity in a successional subtropical forest. FEMS Microbiology Ecology, 2019, 95(5): 1-9. |
17 | Li H, Zhang J, Hu H, et al. Shift in soil microbial communities with shrub encroachment in Inner Mongolia grasslands, China. European Journal of Soil Biology, 2017, 79: 40-47. |
18 | Wei Y L, Cao W X, Li J H, et al. PLFA analysis of soil microbial community structure in different grazing and enclosed alpine shrub grassland. Journal of Ecology, 2018, 38(13): 4897-4908. |
韦应莉, 曹文侠, 李建宏, 等. 不同放牧与围封高寒灌丛草地土壤微生物群落结构PLFA分析. 生态学报, 2018, 38(13): 4897-4908. | |
19 | Bao S D. Analysis of chemical soil (the third edtion). Beijing: China Agricultural Publishing Press, 2000. |
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. | |
20 | Xu G H. Handbook of soil microbial analysis methods. Beijing: Agricultural Publishing Press, 1986. |
许光辉. 土壤微生物分析方法手册. 北京: 农业出版社, 1986. | |
21 | Guan S Y. Soil enzyme and its research method. Beijing: Agricultural Publishing Press, 1986. |
关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986. | |
22 | Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 1987, 19(6): 703-707. |
23 | Gonzalez-Polo M, Austin A T. Spatial heterogeneity provides organic matter refuges for soil microbial activity in the Patagonian steppe, Argentina. Soil Biology and Biochemistry, 2009, 41(6): 1348-1351. |
24 | Marusenko Y, Huber D P, Hall S J. Fungi mediate nitrous oxide production but not ammonia oxidation in aridland soils of the southwestern US. Soil Biology and Biochemistry, 2013, 63: 24-36. |
25 | Ladwig L M, Sinsabaugh R L, Collins S L, et al. Soil enzyme responses to varying rainfall regimes in Chihuahuan Desert soils. Ecosphere, 2015, 6(3): 1-10. |
26 | Wainwright J, Parsons A J, Abrahams A D. Plot-scale studies of vegetation, overland flow and erosion interactions: Case studies from Arizona and New Mexico. Hydrological Processes, 2000, 14(16/17): 2921-2943. |
27 | Xu Z J, Luo M, Wang W X, et al. Diversity analysis of nitrogen fixing bacteria and nitrogenase gene nifH in 3 typical desert shrubs. Chinese Journal of Deserts, 2014, 34(2): 472-480. |
徐正金, 罗明, 王卫霞,等. 3种典型荒漠灌木内生固氮菌及固氮酶基因nifH多样性分析. 中国沙漠, 2014, 34(2): 472-480. | |
28 | Li M, Yao Q Z, Wei J, et al. Progress in the study of hyphomycetes. Journal of Edible Fungi, 2018, 25(3): 86-95. |
李敏, 姚庆智, 魏杰, 等. 丝膜菌属真菌研究进展. 食用菌学报, 2018, 25(3): 86-95. | |
29 | Wang F, Tolgor B A U. Progress in the study of soil fungal diversity. Bacteriological Study, 2014, 12(3): 178-186. |
王芳, 图力古尔. 土壤真菌多样性研究进展. 菌物研究, 2014, 12(3): 178-186. | |
30 | Bates S T, Garcia-Pichel F. A culture-independent study of free-living fungi in biological soil crusts of the Colorado Plateau: Their diversity and relative contribution to microbial biomass. Environmental Microbiology, 2009, 11(1): 56-67. |
31 | Heijden M G A V D, Bardgett R D, Straalen N M V. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 2008, 11(3): 296-310. |
32 | Mueller R C, JayneBelnap, Kuske Cheryl R. Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland. Frontiers in Microbiology, 2015, 6: 891. |
33 | Yan N, Marschner P, Cao W, et al. Influence of salinity and water content on soil microorganisms. International Soil & Water Conservation Research, 2015, 3(4): 316-323. |
34 | Wang J S. Effect of litter on microbial community of Songnen grassland under the background of nitrogen deposition. Changchun: Northeast Normal University, 2018. |
王金双. 氮沉降背景下枯落物对松嫩草地微生物群落的作用. 长春: 东北师范大学, 2018. | |
35 | Xiang X, Gibbons S M, Li H, et al. Shrub encroachment is associated with changes in soil bacterial community composition in a temperate grassland ecosystem. Plant & Soil, 2018, 425(1): 1-13. |
36 | Smith S D, Huxman T E, Zitzer S F. Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature, 2000, 408: 79-82. |
37 | Turpin-Jelfs T, Michaelides K, Biederman J A, et al. Soil nitrogen response to shrub encroachment in a degrading semi-arid grassland. Biogeosciences, 2019, 16(2): 369-381. |
38 | Collins C G, Carey C J, Aronson E L, et al. Direct and indirect effects of native range expansion on soil microbial community structure and function. Journal of Ecology, 2016, 104(5): 1271-1283. |
39 | Liao J D, Boutton T W. Soil microbial biomass response to woody plant invasion of grassland. Soil Biology & Biochemistry, 2008, 40(5): 1207-1216. |
40 | Pointing S B, Belnap J. Microbial colonization and controls in dryland systems. Nature Reviews Microbiology, 2012, 10(8): 551-562. |
41 | Collins S L, Belnap J, Grimm N B, et al. A multiscale, hierachical model of pulse dynamics in arid land ecosystems. Annual Review of Ecology Evolution & Systematics, 2013, 45(1): 397-419. |
42 | Li Y L, Chen J, Cui J Y, et al. Nutrient resorption in Caragana microphylla along a chronosequence of plantations: Implications for desertified land restoration in North China. Ecological Engineering, 2013, 53: 299-305. |
43 | Li X Y, Zhang S Y, Peng H Y, et al. Soil water and temperature dynamics in shrub-encroached grasslands and climatic implications: Results from Inner Mongolia steppe ecosystem of North China. Agricultural & Forest Meteorology, 2013(171/172): 20-30. |
44 | Parizek B, Rostagno C M, Sottini R. Soil erosion as affected by shrub encroachment in Northeastern Patagonia. Journal of Range Management, 2002, 55(1): 43-48. |
45 | Moorhead D L, Sinsabaugh R L. Simulated patterns of litter decay predict patterns of extracellular enzyme activities. Applied Soil Ecology, 2000, 14(1): 71-79. |
46 | Mikutta R, Kleber M, Torn M S, et al. Stabilization of soil organic matter: Association with minerals or chemical recalcitrance. Biogeochemistry, 2006, 77(1): 25-56. |
47 | Moorhead D L, Lashermes G, Sinsabaugh R L. A theoretical model of C- and N-acquiring exoenzyme activities, which balances microbial demands during decomposition. Soil Biology and Biochemistry, 2012, 53: 133-141. |
48 | Vargas R, Collins S L, Thomey M L, et al. Precipitation variability and fire influence the temporal dynamics of soil CO2 efflux in an arid grassland. Global Change Biology, 2012, 18(4): 1401-1411. |
[1] | 孙忠超, 郭天斗, 于露, 马彦平, 赵亚楠, 李雪颖, 王红梅. 宁夏东部荒漠草原向灌丛地人为转变过程土壤粒径分形特征[J]. 草业学报, 2021, 30(4): 34-45. |
[2] | 蒙仲举, 陈颜洁, 包斯琴. 苏尼特右旗荒漠草原三种放牧方式下群落斑块特征[J]. 草业学报, 2021, 30(4): 13-23. |
[3] | 熊梅, 乔荠瑢, 杨阳, 张峰, 郑佳华, 吴建新, 赵萌莉. 不同载畜率下短花针茅和土壤生态化学计量特征研究[J]. 草业学报, 2021, 30(2): 212-219. |
[4] | 张静静, 刘尊驰, 鄢创, 王云霞, 刘凯, 时新荣, 袁志友. 土壤pH值变化对3种草原类型土壤碳氮磷生态化学计量特征的影响[J]. 草业学报, 2021, 30(2): 69-81. |
[5] | 李静, 红梅, 闫瑾, 张宇晨, 梁志伟, 叶贺, 高海燕, 赵巴音那木拉. 短花针茅荒漠草原植被群落结构及生物量对水氮变化的响应[J]. 草业学报, 2020, 29(9): 38-48. |
[6] | 万芳, 蒙仲举, 党晓宏, 王瑞东, 张慧敏. 封育措施下荒漠草原针茅植物-土壤C、N、P化学计量特征[J]. 草业学报, 2020, 29(9): 49-55. |
[7] | 孙世贤, 丁勇, 李夏子, 吴新宏, 闫志坚, 尹强, 李金卓. 放牧强度季节调控对荒漠草原土壤风蚀的影响[J]. 草业学报, 2020, 29(7): 23-29. |
[8] | 于露, 周玉蓉, 赵亚楠, 郭天斗, 孙忠超, 王红梅. 荒漠草原土壤种子库对灌丛引入和降水梯度的响应特征[J]. 草业学报, 2020, 29(4): 41-50. |
[9] | 许爱云, 许冬梅, 曹兵, 刘金龙, 于双, 郭艳菊, 马晓静. 宁夏荒漠草原不同群落蒙古冰草种群空间格局及种间关联性[J]. 草业学报, 2020, 29(3): 171-178. |
[10] | 谢莉, 宋乃平, 孟晨, 吴婷, 陈晓莹, 李敏岚, 岳健敏. 不同封育年限对宁夏荒漠草原土壤粒径及碳氮储量的影响[J]. 草业学报, 2020, 29(2): 1-10. |
[11] | 张建军, 党翼, 赵刚, 王磊, 樊廷录, 李尚中, 雷康宁. 留膜留茬免耕栽培对旱作玉米田土壤养分、微生物数量及酶活性的影响[J]. 草业学报, 2020, 29(2): 123-133. |
[12] | 王占军, 马琨, 崔慧珍, 李光文, 俞鸿千, 蒋齐. 土壤丛枝菌根真菌与宁夏主要草原类型植被群落分布间的相互关系研究[J]. 草业学报, 2020, 29(12): 150-160. |
[13] | 常海涛, 刘任涛, 陈蔚, 张安宁, 左小安. 内蒙古乌拉特荒漠草原红砂灌丛林引入柠条后地面节肢动物群落结构分布特征[J]. 草业学报, 2020, 29(12): 188-197. |
[14] | 王磊, 宋乃平, 陈林, 杨新国, 王兴. 荒漠草原土壤粗质化和养分减少伴随多年生群落转变为一年生群落[J]. 草业学报, 2020, 29(11): 183-189. |
[15] | 常海涛, 赵娟, 刘佳楠, 刘任涛, 罗雅曦, 张静. 退耕还林与还草对土壤理化性质及分形特征的影响——以宁夏荒漠草原为例[J]. 草业学报, 2019, 28(7): 14-25. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||