草业学报 ›› 2021, Vol. 30 ›› Issue (2): 69-81.DOI: 10.11686/cyxb2020108
张静静1(), 刘尊驰1, 鄢创2, 王云霞1, 刘凯1, 时新荣1,2, 袁志友1,2()
收稿日期:
2020-03-12
修回日期:
2020-04-13
出版日期:
2021-02-20
发布日期:
2021-01-19
通讯作者:
袁志友
作者简介:
E-mail: zyyuan@ms.iswc.ac.cn基金资助:
Jing-jing ZHANG1(), Zun-chi LIU1, Chuang YAN2, Yun-xia WANG1, Kai LIU1, Xin-rong SHI1,2, Zhi-you YUAN1,2()
Received:
2020-03-12
Revised:
2020-04-13
Online:
2021-02-20
Published:
2021-01-19
Contact:
Zhi-you YUAN
摘要:
酸碱性是土壤的重要化学性质,土壤pH值的升高和降低会影响土壤养分的分布及转化情况,进而影响群落组成及生态系统的功能。全球变化和人类活动降低了草原生态系统的土壤pH值,而不同草原类型的土壤碳氮磷生态化学计量特征对土壤pH值变化的响应尚不清楚。本研究以内蒙古自治区土壤酸碱性不同的荒漠草原、典型草原和草甸草原3种草原类型作为研究对象,通过酸碱添加试验改变土壤pH值,研究土壤碳氮磷生态化学计量特征的相应变化。结果表明:1)荒漠草原和典型草原0~10 cm土层的土壤pH值显著高于草甸草原,3种草原类型10~30 cm土层的土壤pH值无显著差异;荒漠草原土壤有机碳、全氮和全磷以及土壤碳氮比、氮磷比和碳磷比均低于典型草原和草甸草原,除土壤全磷外均存在显著差异;典型草原的土壤全氮在10~30 cm土层显著高于草甸草原;草甸草原0~10 cm土层的碳氮比显著高于典型草原。2)对于0~10 cm土层而言,酸添加显著增加了荒漠草原的土壤有机碳、碳氮比和碳磷比;碱添加显著降低了荒漠草原的土壤有机碳和氮磷比以及典型草原的土壤全氮和全磷,升高了荒漠草原的土壤碳磷比。对于10~30 cm而言,碱添加升高了荒漠草原的土壤碳氮比,降低了典型草原的全氮和氮磷比以及草甸草原的碳磷比。3)荒漠草原0~10 cm土层的土壤有机碳、全氮、碳磷比和氮磷比均与土壤pH值具有显著负相关关系;典型草原和草甸草原的土壤碳氮磷生态化学计量特征与土壤pH值不存在显著相关关系。以上结果说明,不同草原受土壤pH值改变的影响表现为荒漠草原>典型草原>草甸草原,且表层土壤相比下层土壤受到的影响更为明显。酸碱添加对不同草原类型土壤碳氮磷化学计量特征的影响揭示了生态系统对土壤pH值改变的短期响应。因此,在全球气候变化和人为活动引起的土壤pH值发生变化的背景下,草原生态系统在土壤退化后的恢复重建中应合理调节土壤pH值,以保证土壤养分元素的平衡及循环过程。
张静静, 刘尊驰, 鄢创, 王云霞, 刘凯, 时新荣, 袁志友. 土壤pH值变化对3种草原类型土壤碳氮磷生态化学计量特征的影响[J]. 草业学报, 2021, 30(2): 69-81.
Jing-jing ZHANG, Zun-chi LIU, Chuang YAN, Yun-xia WANG, Kai LIU, Xin-rong SHI, Zhi-you YUAN. Effects of soil pH on soil carbon, nitrogen, and phosphorus ecological stoichiometry in three types of steppe[J]. Acta Prataculturae Sinica, 2021, 30(2): 69-81.
因素Factors | 土壤pH值Soil pH | 有机碳Organic C | 全氮Total N | 全磷Total P | 碳氮比C/N | 碳磷比C/P | 氮磷比N/P |
---|---|---|---|---|---|---|---|
草原类型Grassland types (T) | 9.22** | 51.60*** | 57.30*** | 1.03 | 42.30*** | 77.40*** | 98.20*** |
土层Soil layer (L) | 1.75 | 4.15 | 5.47* | 1.90 | 0.10 | 2.72 | 4.28 |
草原类型×土层T×L | 1.35 | 2.03 | 2.59 | 0.07 | 0.07 | 2.21 | 4.08 |
表1 不同草原类型和土层及其交互作用对土壤碳氮磷生态化学计量的双因素方差分析
Table 1 Results of two-way ANOVA for the effects of grassland types and soil layers on ecological stoichiometry of soil C, N, and P
因素Factors | 土壤pH值Soil pH | 有机碳Organic C | 全氮Total N | 全磷Total P | 碳氮比C/N | 碳磷比C/P | 氮磷比N/P |
---|---|---|---|---|---|---|---|
草原类型Grassland types (T) | 9.22** | 51.60*** | 57.30*** | 1.03 | 42.30*** | 77.40*** | 98.20*** |
土层Soil layer (L) | 1.75 | 4.15 | 5.47* | 1.90 | 0.10 | 2.72 | 4.28 |
草原类型×土层T×L | 1.35 | 2.03 | 2.59 | 0.07 | 0.07 | 2.21 | 4.08 |
项目 Items | 土层Soil layer | |||||
---|---|---|---|---|---|---|
0~10 cm | 10~30 cm | |||||
荒漠草原 Desert steppe | 典型草原 Typical steppe | 草甸草原 Meadow steppe | 荒漠草原 Desert steppe | 典型草原 Typical steppe | 草甸草原 Meadow steppe | |
土壤pH Soil pH | 8.59±0.165Aa | 8.51±0.214Aa | 6.84±0.314Ab | 8.64±0.065Aa | 8.55±0.164Aa | 7.83±1.340Aa |
有机碳Organic C (g·kg-1) | 5.40±0.466Ab | 22.30±6.000Aa | 26.39±1.230Aa | 5.83±0.460Ab | 19.65±4.310Aa | 19.35±2.430Ba |
全氮Total N (g·kg-1) | 0.69±0.004Ab | 2.42±0.448Aa | 2.26±0.162Aa | 0.74±0.109Ac | 2.14±0.378Aa | 1.61±0.205Bb |
全磷Total P (g·kg-1) | 0.39±0.011Aa | 0.41±0.079Aa | 0.38±0.045Aa | 0.35±0.012Aa | 0.39±0.046Aa | 0.35±0.044Aa |
碳氮比C/N | 7.83±0.695Ab | 9.18±1.560Ab | 11.71±0.397Aa | 7.89±0.558Ac | 9.16±0.366Ab | 12.00±0.144Aa |
碳磷比C/P | 13.70±0.922Ab | 54.30±11.600Aa | 69.50±9.210Aa | 16.40±0.759Ab | 49.57±4.880Aa | 55.40±6.650Aa |
氮磷比N/P | 1.76±0.048Ab | 5.89±0.281Aa | 5.96±0.970Aa | 2.09±0.238Ab | 5.41±0.310Aa | 4.62±0.610Aa |
表2 不同草原类型的土壤碳氮磷生态化学计量特征
Table 2 Soil ecological stoichiometry of C, N and P in three types of steppes
项目 Items | 土层Soil layer | |||||
---|---|---|---|---|---|---|
0~10 cm | 10~30 cm | |||||
荒漠草原 Desert steppe | 典型草原 Typical steppe | 草甸草原 Meadow steppe | 荒漠草原 Desert steppe | 典型草原 Typical steppe | 草甸草原 Meadow steppe | |
土壤pH Soil pH | 8.59±0.165Aa | 8.51±0.214Aa | 6.84±0.314Ab | 8.64±0.065Aa | 8.55±0.164Aa | 7.83±1.340Aa |
有机碳Organic C (g·kg-1) | 5.40±0.466Ab | 22.30±6.000Aa | 26.39±1.230Aa | 5.83±0.460Ab | 19.65±4.310Aa | 19.35±2.430Ba |
全氮Total N (g·kg-1) | 0.69±0.004Ab | 2.42±0.448Aa | 2.26±0.162Aa | 0.74±0.109Ac | 2.14±0.378Aa | 1.61±0.205Bb |
全磷Total P (g·kg-1) | 0.39±0.011Aa | 0.41±0.079Aa | 0.38±0.045Aa | 0.35±0.012Aa | 0.39±0.046Aa | 0.35±0.044Aa |
碳氮比C/N | 7.83±0.695Ab | 9.18±1.560Ab | 11.71±0.397Aa | 7.89±0.558Ac | 9.16±0.366Ab | 12.00±0.144Aa |
碳磷比C/P | 13.70±0.922Ab | 54.30±11.600Aa | 69.50±9.210Aa | 16.40±0.759Ab | 49.57±4.880Aa | 55.40±6.650Aa |
氮磷比N/P | 1.76±0.048Ab | 5.89±0.281Aa | 5.96±0.970Aa | 2.09±0.238Ab | 5.41±0.310Aa | 4.62±0.610Aa |
草原类型Types of grassland | 处理 Treatments | 土壤pH值 Soil pH | 有机碳 Organic C (g·kg-1) | 全氮 Total N (g·kg-1) | 全磷 Total P (g·kg-1) | 碳氮比 C/N | 碳磷比 C/P | 氮磷比 N/P |
---|---|---|---|---|---|---|---|---|
荒漠草原 Desert steppe | 对照C | 8.59±0.165Ab | 5.40±0.47Bb | 0.69±0.004Aa | 0.393±0.011Aa | 7.83±0.70Bb | 13.7±0.92Bbc | 1.76±0.048Aa |
低酸LA | 8.53±0.121A | 6.43±0.33A | 0.64±0.042A | 0.380±0.021A | 10.00±0.50A | 16.9±1.11A | 1.69±0.057A | |
中酸MA | 8.23±0.195B | 6.58±0.53A | 0.69±0.036A | 0.370±0.006A | 9.56±1.20AB | 17.8±1.33A | 1.87±0.123A | |
高酸HA | 8.24±0.186B | 5.66±0.79B | 0.65±0.026A | 0.374±0.020A | 8.74±1.57AB | 15.1±1.53AB | 1.75±0.154A | |
低碱LAL | 8.70±0.057b | 6.90±0.87a | 0.69±0.049a | 0.405±0.014a | 10.00±0.59a | 17.0±1.75ab | 1.69±0.077a | |
中碱MAL | 8.76±0.242b | 7.23±0.37a | 0.74±0.108a | 0.376±0.039a | 9.93±1.09a | 19.4±2.86a | 1.97±0.312a | |
高碱HAL | 9.69±0.120a | 3.88±0.38c | 0.46±0.105a | 0.363±0.010a | 8.55±1.27ab | 10.7±0.76c | 1.27±0.250b | |
典型草原 Typical steppe | 对照C | 8.51±0.214Ab | 22.30±6.00Aa | 2.42±0.448Aa | 0.412±0.079Aa | 9.18±1.56Aa | 54.3±11.61Aab | 5.89±0.281Aab |
低酸LA | 7.46±0.133B | 17.41±1.02A | 1.89±0.151A | 0.320±0.007A | 9.19±0.44A | 54.3±2.25A | 5.91±0.342A | |
中酸MA | 6.66±0.201C | 17.12±0.78A | 1.88±0.173A | 0.319±0.016A | 9.19±1.23A | 53.8±4.94A | 5.88±0.258A | |
高酸HA | 6.63±0.128C | 20.51±3.30A | 2.22±0.302A | 0.375±0.049A | 9.18±0.32A | 54.4±2.40A | 5.93±0.053A | |
低碱LAL | 8.62±0.186b | 16.90±2.64a | 1.86±0.093a | 0.353±0.027a | 9.04±1.00a | 47.8±4.23b | 5.29±0.144b | |
中碱MAL | 8.82±0.032b | 17.79±1.37a | 1.88±0.169a | 0.287±0.054b | 9.49±0.44a | 63.0±7.50a | 6.65±0.886a | |
高碱HAL | 9.48±0.131a | 15.82±1.34a | 1.80±0.146b | 0.323±0.024b | 8.76±0.22a | 49.0±3.22b | 5.59±0.233b | |
草甸草原 Meadow steppe | 对照C | 6.84±0.314Ac | 26.38±1.23Aa | 2.26±0.162Aa | 0.383±0.045Aa | 11.71±0.40Aa | 69.5±9.21Aa | 5.96±0.970Aa |
低酸LA | 6.62±0.265AB | 25.91±1.27A | 2.13±0.126A | 0.418±0.030A | 12.13±0.27A | 62.1±5.74A | 5.12±0.406A | |
中酸MA | 6.17±0.380BC | 26.70±0.68A | 2.20±0.107A | 0.450±0.010A | 12.24±0.90A | 59.5±2.79A | 4.90±0.132A | |
高酸HA | 5.61±0.207C | 26.41±3.77A | 2.24±0.313A | 0.392±0.067A | 11.83±0.12A | 67.5±2.28A | 5.74±0.248A | |
低碱LAL | 7.21±0.182c | 26.77±2.20a | 2.17±0.252a | 0.416±0.010a | 12.40±0.68a | 64.4±6.78a | 5.21±0.728a | |
中碱MAL | 7.38±0.186b | 25.02±4.01a | 2.13±0.414a | 0.428±0.035a | 11.82±0.47a | 58.2±6.78a | 4.96±0.680a | |
高碱HAL | 8.17±0.179a | 24.04±3.48a | 2.24±0.135a | 0.397±0.043a | 10.71±0.99a | 60.6±7.38a | 5.67±0.564a |
表3 酸碱处理对各草原类型0~10 cm土层土壤碳氮磷化学计量的影响
Table 3 Effects of acid and alkali treatments on ecological stoichiometry of C, N, and P in 0-10 cm soil layer of three types of steppe
草原类型Types of grassland | 处理 Treatments | 土壤pH值 Soil pH | 有机碳 Organic C (g·kg-1) | 全氮 Total N (g·kg-1) | 全磷 Total P (g·kg-1) | 碳氮比 C/N | 碳磷比 C/P | 氮磷比 N/P |
---|---|---|---|---|---|---|---|---|
荒漠草原 Desert steppe | 对照C | 8.59±0.165Ab | 5.40±0.47Bb | 0.69±0.004Aa | 0.393±0.011Aa | 7.83±0.70Bb | 13.7±0.92Bbc | 1.76±0.048Aa |
低酸LA | 8.53±0.121A | 6.43±0.33A | 0.64±0.042A | 0.380±0.021A | 10.00±0.50A | 16.9±1.11A | 1.69±0.057A | |
中酸MA | 8.23±0.195B | 6.58±0.53A | 0.69±0.036A | 0.370±0.006A | 9.56±1.20AB | 17.8±1.33A | 1.87±0.123A | |
高酸HA | 8.24±0.186B | 5.66±0.79B | 0.65±0.026A | 0.374±0.020A | 8.74±1.57AB | 15.1±1.53AB | 1.75±0.154A | |
低碱LAL | 8.70±0.057b | 6.90±0.87a | 0.69±0.049a | 0.405±0.014a | 10.00±0.59a | 17.0±1.75ab | 1.69±0.077a | |
中碱MAL | 8.76±0.242b | 7.23±0.37a | 0.74±0.108a | 0.376±0.039a | 9.93±1.09a | 19.4±2.86a | 1.97±0.312a | |
高碱HAL | 9.69±0.120a | 3.88±0.38c | 0.46±0.105a | 0.363±0.010a | 8.55±1.27ab | 10.7±0.76c | 1.27±0.250b | |
典型草原 Typical steppe | 对照C | 8.51±0.214Ab | 22.30±6.00Aa | 2.42±0.448Aa | 0.412±0.079Aa | 9.18±1.56Aa | 54.3±11.61Aab | 5.89±0.281Aab |
低酸LA | 7.46±0.133B | 17.41±1.02A | 1.89±0.151A | 0.320±0.007A | 9.19±0.44A | 54.3±2.25A | 5.91±0.342A | |
中酸MA | 6.66±0.201C | 17.12±0.78A | 1.88±0.173A | 0.319±0.016A | 9.19±1.23A | 53.8±4.94A | 5.88±0.258A | |
高酸HA | 6.63±0.128C | 20.51±3.30A | 2.22±0.302A | 0.375±0.049A | 9.18±0.32A | 54.4±2.40A | 5.93±0.053A | |
低碱LAL | 8.62±0.186b | 16.90±2.64a | 1.86±0.093a | 0.353±0.027a | 9.04±1.00a | 47.8±4.23b | 5.29±0.144b | |
中碱MAL | 8.82±0.032b | 17.79±1.37a | 1.88±0.169a | 0.287±0.054b | 9.49±0.44a | 63.0±7.50a | 6.65±0.886a | |
高碱HAL | 9.48±0.131a | 15.82±1.34a | 1.80±0.146b | 0.323±0.024b | 8.76±0.22a | 49.0±3.22b | 5.59±0.233b | |
草甸草原 Meadow steppe | 对照C | 6.84±0.314Ac | 26.38±1.23Aa | 2.26±0.162Aa | 0.383±0.045Aa | 11.71±0.40Aa | 69.5±9.21Aa | 5.96±0.970Aa |
低酸LA | 6.62±0.265AB | 25.91±1.27A | 2.13±0.126A | 0.418±0.030A | 12.13±0.27A | 62.1±5.74A | 5.12±0.406A | |
中酸MA | 6.17±0.380BC | 26.70±0.68A | 2.20±0.107A | 0.450±0.010A | 12.24±0.90A | 59.5±2.79A | 4.90±0.132A | |
高酸HA | 5.61±0.207C | 26.41±3.77A | 2.24±0.313A | 0.392±0.067A | 11.83±0.12A | 67.5±2.28A | 5.74±0.248A | |
低碱LAL | 7.21±0.182c | 26.77±2.20a | 2.17±0.252a | 0.416±0.010a | 12.40±0.68a | 64.4±6.78a | 5.21±0.728a | |
中碱MAL | 7.38±0.186b | 25.02±4.01a | 2.13±0.414a | 0.428±0.035a | 11.82±0.47a | 58.2±6.78a | 4.96±0.680a | |
高碱HAL | 8.17±0.179a | 24.04±3.48a | 2.24±0.135a | 0.397±0.043a | 10.71±0.99a | 60.6±7.38a | 5.67±0.564a |
草原类型 Types of grassland | 处理 Treatments | 土壤pH值 Soil pH | 有机碳 Organic C (g·kg-1) | 全氮 Total N (g·kg-1) | 全磷 Total P (g·kg-1) | 碳氮比 C/N | 碳磷比 C/P | 氮磷比 N/P |
---|---|---|---|---|---|---|---|---|
荒漠草原Desert steppe | 对照C | 8.64±0.065Ac | 5.83±0.46Aa | 0.74±0.109ABa | 0.355±0.012Aa | 7.89±0.56Ab | 16.4±0.76Aa | 2.09±0.238ABa |
低酸LA | 8.55±0.025AB | 5.82±0.52A | 0.63±0.042B | 0.354±0.023A | 9.24±0.22A | 16.5±1.99A | 1.78±0.178B | |
中酸MA | 8.54±0.035AB | 6.32±0.48A | 0.81±0.007A | 0.368±0.012A | 7.79±0.64A | 17.2±1.77A | 2.21±0.052A | |
高酸HA | 8.42±0.136B | 6.35±0.56A | 0.82±0.072A | 0.381±0.020A | 7.83±1.31A | 16.7±1.96A | 2.15±0.238AB | |
低碱LAL | 8.66±0.040c | 6.64±0.46a | 0.69±0.078a | 0.375±0.045a | 9.71±0.49a | 17.8±1.47a | 1.83±0.081a | |
中碱MAL | 8.87±0.136b | 6.63±1.20a | 0.81±0.105a | 0.367±0.011a | 8.22±1.02ab | 18.0±2.99a | 2.19±0.227a | |
高碱HAL | 9.24±0.061a | 6.78±0.53a | 0.81±0.058a | 0.376±0.033a | 8.48±1.30ab | 18.1±2.46a | 2.15±0.244a | |
典型草原Typical steppe | 对照C | 8.55±0.164Aa | 19.7±4.31Aa | 2.14±0.378Aa | 0.393±0.046Aa | 9.16±0.37Aa | 49.6±4.88Aa | 5.41±0.310Aa |
低酸LA | 8.16±0.244AB | 16.2±1.89A | 1.87±0.139A | 0.342±0.040A | 8.65±0.73A | 47.4±0.16A | 5.50±0.468A | |
中酸MA | 7.85±0.501BC | 17.5±2.51A | 1.99±0.131A | 0.329±0.067A | 8.74±0.75A | 53.8±5.94A | 6.22±1.170A | |
高酸HA | 7.35±0.182C | 19.0±1.98A | 1.95±0.121A | 0.373±0.013A | 9.74±0.45A | 50.9±3.61A | 5.22±0.143A | |
低碱LAL | 8.39±0.192a | 15.5±1.43a | 1.74±0.057ab | 0.303±0.016a | 8.90±0.60a | 51.0±2.89a | 5.74±0.126a | |
中碱MAL | 8.48±0.341a | 16.7±1.14a | 1.83±0.131ab | 0.322±0.002a | 9.14±0.30a | 51.9±3.22a | 5.69±0.363a | |
高碱HAL | 8.76±0.125a | 16.3±0.73a | 1.69±0.122b | 0.344±0.022a | 9.66±0.36a | 47.3±0.94a | 4.90±0.112b | |
草甸草原Meadow steppe | 对照C | 7.83±1.336Aa | 19.4±2.43Aa | 1.61±0.205Aab | 0.351±0.044Aa | 12.01±0.14Aa | 55.4±6.65Aa | 4.62±0.610Aab |
低酸LA | 7.71±1.093A | 17.0±0.83A | 1.42±0.062A | 0.350±0.026A | 12.02±0.84A | 48.6±4.42A | 4.06±0.137A | |
中酸MA | 7.40±0.315A | 17.4±2.71A | 1.49±0.096A | 0.340±0.016A | 11.60±1.15A | 51.1±7.20A | 4.39±0.182A | |
高酸HA | 6.95±0.451A | 17.8±2.31A | 1.61±0.339A | 0.347±0.071A | 11.19±1.34A | 52.0±7.11A | 4.64±0.147A | |
低碱LAL | 8.37±1.033a | 15.9±0.97a | 1.42±0.118b | 0.363±0.013a | 11.24±1.35a | 43.8±3.91b | 3.92±0.416b | |
中碱MAL | 8.39±0.392a | 17.7±1.78a | 1.40±0.168b | 0.343±0.047a | 12.71±0.53a | 51.8±2.30ab | 4.09±0.132b | |
高碱HAL | 8.74±0.796a | 19.0±1.82a | 1.73±0.038a | 0.353±0.016a | 11.02±1.02a | 54.0±7.44ab | 4.90±0.248a |
表4 酸碱处理对草原10~30 cm土层土壤碳氮磷化学计量的影响
Table 4 Effects of acid and alkali treatments on ecological stoichiometry of C, N, and P in 10-30 cm soil layer of three types of steppe
草原类型 Types of grassland | 处理 Treatments | 土壤pH值 Soil pH | 有机碳 Organic C (g·kg-1) | 全氮 Total N (g·kg-1) | 全磷 Total P (g·kg-1) | 碳氮比 C/N | 碳磷比 C/P | 氮磷比 N/P |
---|---|---|---|---|---|---|---|---|
荒漠草原Desert steppe | 对照C | 8.64±0.065Ac | 5.83±0.46Aa | 0.74±0.109ABa | 0.355±0.012Aa | 7.89±0.56Ab | 16.4±0.76Aa | 2.09±0.238ABa |
低酸LA | 8.55±0.025AB | 5.82±0.52A | 0.63±0.042B | 0.354±0.023A | 9.24±0.22A | 16.5±1.99A | 1.78±0.178B | |
中酸MA | 8.54±0.035AB | 6.32±0.48A | 0.81±0.007A | 0.368±0.012A | 7.79±0.64A | 17.2±1.77A | 2.21±0.052A | |
高酸HA | 8.42±0.136B | 6.35±0.56A | 0.82±0.072A | 0.381±0.020A | 7.83±1.31A | 16.7±1.96A | 2.15±0.238AB | |
低碱LAL | 8.66±0.040c | 6.64±0.46a | 0.69±0.078a | 0.375±0.045a | 9.71±0.49a | 17.8±1.47a | 1.83±0.081a | |
中碱MAL | 8.87±0.136b | 6.63±1.20a | 0.81±0.105a | 0.367±0.011a | 8.22±1.02ab | 18.0±2.99a | 2.19±0.227a | |
高碱HAL | 9.24±0.061a | 6.78±0.53a | 0.81±0.058a | 0.376±0.033a | 8.48±1.30ab | 18.1±2.46a | 2.15±0.244a | |
典型草原Typical steppe | 对照C | 8.55±0.164Aa | 19.7±4.31Aa | 2.14±0.378Aa | 0.393±0.046Aa | 9.16±0.37Aa | 49.6±4.88Aa | 5.41±0.310Aa |
低酸LA | 8.16±0.244AB | 16.2±1.89A | 1.87±0.139A | 0.342±0.040A | 8.65±0.73A | 47.4±0.16A | 5.50±0.468A | |
中酸MA | 7.85±0.501BC | 17.5±2.51A | 1.99±0.131A | 0.329±0.067A | 8.74±0.75A | 53.8±5.94A | 6.22±1.170A | |
高酸HA | 7.35±0.182C | 19.0±1.98A | 1.95±0.121A | 0.373±0.013A | 9.74±0.45A | 50.9±3.61A | 5.22±0.143A | |
低碱LAL | 8.39±0.192a | 15.5±1.43a | 1.74±0.057ab | 0.303±0.016a | 8.90±0.60a | 51.0±2.89a | 5.74±0.126a | |
中碱MAL | 8.48±0.341a | 16.7±1.14a | 1.83±0.131ab | 0.322±0.002a | 9.14±0.30a | 51.9±3.22a | 5.69±0.363a | |
高碱HAL | 8.76±0.125a | 16.3±0.73a | 1.69±0.122b | 0.344±0.022a | 9.66±0.36a | 47.3±0.94a | 4.90±0.112b | |
草甸草原Meadow steppe | 对照C | 7.83±1.336Aa | 19.4±2.43Aa | 1.61±0.205Aab | 0.351±0.044Aa | 12.01±0.14Aa | 55.4±6.65Aa | 4.62±0.610Aab |
低酸LA | 7.71±1.093A | 17.0±0.83A | 1.42±0.062A | 0.350±0.026A | 12.02±0.84A | 48.6±4.42A | 4.06±0.137A | |
中酸MA | 7.40±0.315A | 17.4±2.71A | 1.49±0.096A | 0.340±0.016A | 11.60±1.15A | 51.1±7.20A | 4.39±0.182A | |
高酸HA | 6.95±0.451A | 17.8±2.31A | 1.61±0.339A | 0.347±0.071A | 11.19±1.34A | 52.0±7.11A | 4.64±0.147A | |
低碱LAL | 8.37±1.033a | 15.9±0.97a | 1.42±0.118b | 0.363±0.013a | 11.24±1.35a | 43.8±3.91b | 3.92±0.416b | |
中碱MAL | 8.39±0.392a | 17.7±1.78a | 1.40±0.168b | 0.343±0.047a | 12.71±0.53a | 51.8±2.30ab | 4.09±0.132b | |
高碱HAL | 8.74±0.796a | 19.0±1.82a | 1.73±0.038a | 0.353±0.016a | 11.02±1.02a | 54.0±7.44ab | 4.90±0.248a |
草原类型 Grassland types | 土层 Soil layer (cm) | 碳氮比 C/N | 碳磷比 C/P | 氮磷比 N/P |
---|---|---|---|---|
荒漠草原 Desert steppe | 0~10 | -0.265 | -0.469* | -0.450* |
10~30 | 0.322 | 0.113 | 0.293 | |
典型草原 Typical steppe | 0~10 | -0.062 | -0.022 | -0.002 |
10~30 | 0.295 | 0.269 | -0.124 | |
草甸草原 Meadow steppe | 0~10 | -0.400 | -0.243 | 0.008 |
10~30 | 0.182 | -0.045 | -0.191 |
表5 不同草原类型土壤pH值与土壤碳氮磷化学计量比之间的相关性分析
Table 5 Pearson correlation analysis of soil pH and stoichiometric characteristics of soil C, N, and P in different grassland types
草原类型 Grassland types | 土层 Soil layer (cm) | 碳氮比 C/N | 碳磷比 C/P | 氮磷比 N/P |
---|---|---|---|---|
荒漠草原 Desert steppe | 0~10 | -0.265 | -0.469* | -0.450* |
10~30 | 0.322 | 0.113 | 0.293 | |
典型草原 Typical steppe | 0~10 | -0.062 | -0.022 | -0.002 |
10~30 | 0.295 | 0.269 | -0.124 | |
草甸草原 Meadow steppe | 0~10 | -0.400 | -0.243 | 0.008 |
10~30 | 0.182 | -0.045 | -0.191 |
图3 土壤碳氮磷化学计量特征与环境因子的RDA排序TN:全氮Total nitrogen;TP:全磷Total phosphorus;SOC:有机碳Soil organic carbon;MAT:年均温Mean average temperature;MAP:年降水量Mean average precipitation;Ar:干旱指数Aridity index;N/P:氮磷比Nitrogen phosphorus ratio;C/P:碳磷比Carbon phosphorus ratio;C/N:碳氮比Carbon nitrogen ratio.
Fig.3 Redundancy analysis of soil C, N, and P stoichiometry and environmental factors
1 | Xu K J, Shi L L, Wang Y F, et al. Effect of the pH value on switchgrass seedling growth and development in hydroponics. Acta Ecologica Sinica, 2015, 35(23): 107-115. |
徐开杰, 史丽丽, 王勇锋, 等. 水培条件下pH值对柳枝稷幼苗生长发育的影响. 生态学报, 2015, 35(23): 107-115. | |
2 | Mueller K E, Eissenstat D M, Hobbie S E, et al. Tree species effects on coupled cycles of carbon, nitrogen, and acidity in mineral soils at a common garden experiment. Biogeochemistry, 2012, 111(1/2/3): 601-614. |
3 | Breemen N V, Driscoll C T, Mulder J. Acidic deposition and internal proton sources in acidification of soils and waters. Nature, 1984, 307(5952): 599-604. |
4 | Reuss J O, Cosby B J, Wright R F. Chemical processes governing soil and water acidification. Nature, 1987, 329(6134): 27-32. |
5 | Kou X R. Research progresses in soil acidification and its control. Soils, 2015, 47(2): 238-244. |
6 | Likens G E, Driscoll C T, Buso D C. Long-term effects of acid rain: Response and recovery of a forest ecosystem. Science, 1996, 272(5259): 244-246. |
7 | Cheng B, Zhao Y J, Zhang W G, et al. The research advances and prospect of ecological stoichiometry. Acta Ecologica Sinica, 2010, 30(6): 1628-1637. |
程滨, 赵永军, 张文广, 等. 生态化学计量学研究进展. 生态学报, 2010, 30(6): 1628-1637. | |
8 | Wang M, Moore T R. Carbon, nitrogen, phosphorus, and potassium stoichiometry in an ombrotrophic peatland reflects plant functional type. Ecosystems, 2014, 17(4): 673-684. |
9 | Yang H M, Wang D M. Advances in the study on ecological stoichiometry in grass-environment system and its response to environmental factors. Acta Prataculturae Sinica, 2011, 20(2): 244-252. |
杨惠敏, 王冬梅. 草-环境系统植物碳氮磷生态化学计量学及其对环境因子的响应研究进展. 草业学报, 2011, 20(2): 244-252. | |
10 | Heuck C, Weig A, Spohn M. Soil microbial biomass C:N:P stoichiometry and microbial use of organic phosphorus. Soil Biology & Biochemistry, 2015, 85: 119-129. |
11 | Bui E N, Henderson B L. C:N:P stoichiometry in Australian soils with respect to vegetation and environmental factors. Plant and Soil, 2013, 373(1/2): 553-568. |
12 | Ren Z, Niu D C, Ma P P, et al. Cascading influences of grassland degradation on nutrient limitation in a high mountain lake and its inflow streams. Ecology, 2019, 100(8): e02755. |
13 | Batjes N H. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 2014, 65(1): 10-21. |
14 | Jia B R, Zhou G S, Wang F Y, et al. A comparative study on soil respiration between grazing and fenced typical Leymus chinensis steppe, Inner Mongolia. Chinese Journal of Applied Ecology, 2004, 15(9): 1611-1615. |
贾丙瑞, 周广胜, 王风玉, 等. 放牧与围栏羊草草原生态系统土壤呼吸作用比较. 应用生态学报, 2004, 15(9): 1611-1615. | |
15 | Yan Z Q, Qi Y C, Dong Y S, et al. Nitrogen cycling in grassland ecosystems in response to climate change and human activities. Acta Prataculturae Sinica, 2014, 23(6): 279-292. |
闫钟清, 齐玉春, 董云社, 等. 草地生态系统氮循环关键过程对全球变化及人类活动的响应与机制. 草业学报, 2014, 23(6): 279-292. | |
16 | Zeng Z X, Wang K L, Liu X L, et al. Stoichiometric characteristics of plants, litter and soils in karst plant communities of North-west Guangxi. Chinese Journal of Plant Ecology, 2015, 39(7): 682-693. |
曾昭霞, 王克林, 刘孝利, 等. 桂西北喀斯特森林植物-凋落物-土壤生态化学计量特征. 植物生态学报, 2015, 39(7): 682-693. | |
17 | Zhu L B, Zheng Y, Zeng Z H, et al. Study on the vegetation and soil characteristics of different vegetation types in Hulunbeier typical steppe. Chinese Journal of Grassland, 2008, 30(3): 32-36. |
朱立博, 郑勇, 曾昭海, 等. 呼伦贝尔典型草原不同植被类型植被与土壤特征研究. 中国草地学报, 2008, 30(3): 32-36. | |
18 | Zhou J D, Shi R J, Zhao F, et al. Effects of the frequency and intensity of nitrogen addition on soil pH, the contents of carbon, nitrogen and phosphorus in temperate steppe in Inner Mongolia, China. Chinese Journal of Applied Ecology, 2016, 27(8): 2467-2476. |
周纪东, 史荣久, 赵峰, 等. 施氮频率和强度对内蒙古温带草原土壤pH及碳、氮、磷含量的影响. 应用生态学报, 2016, 27(8): 2467-2476. | |
19 | Bai Y F, Wu J G, Clark C M, et al. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia Grasslands. Global Change Biology, 2010, 16(1): 358-372. |
20 | Chen D M, Lan Z C, Bai X, et al. Evidence that acidification-induced declines in plant diversity and productivity are mediated by changes in below-ground communities and soil properties in a semi-arid steppe. Journal of Ecology, 2013, 101(5): 1322-1334. |
21 | Bao S D. Soil agrochemical analysis (The third edition). Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. | |
22 | An H, Tang Z S, Keesstra S, et al. Impact of desertification on soil and plant nutrient stoichiometry in a desert grassland. Scientific Reports, 2019, 9: 9422. |
23 | Liu W, Cheng J M, Gao Y, et al. Distribution of soil organic carbon in grassland on Loess Plateau and its influencing factors. Acta Pedologica Sinica, 2012, 49(1): 68-76. |
刘伟, 程积民, 高阳, 等. 黄土高原草地土壤有机碳分布及其影响因素. 土壤学报, 2012, 49(1): 68-76. | |
24 | Gao A S, Zheng S H, Zhao M L, et al. Soil organic carbon and total nitrogen content in different steppes. Chinese Journal of Grassland, 2005, 27(6): 44-48. |
高安社, 郑淑华, 赵萌莉, 等. 不同草原类型土壤有机碳和全氮的差异. 中国草地学报, 2005, 27(6): 44-48. | |
25 | Xiao H L. Climate change in relation to soil organic matter. Soil and Environmental Sciences, 1999, 8(4): 304. |
肖辉林. 气候变化与土壤有机质的关系. 土壤与环境, 1999, 8(4): 304. | |
26 | Tian L M, Zhao L, Wu X D, et al. Vertical patterns and controls of soil nutrients in alpine grassland: Implications for nutrient uptake. Science of the Total Environment, 2017, 607: 855-864. |
27 | Yang Z P, Baoyin T, Minggagud H, et al. Recovery succession drives the convergence, and grazing versus fencing drives the divergence of plant and soil N/P stoichiometry in a semiarid steppe of Inner Mongolia. Plant and Soil, 2017, 420(1/2): 303-314. |
28 | Tian H, Chen G, Zhang C, et al. Pattern and variation of C∶N∶P ratios in China’s soils: A synthesis of observational data. Biogeochemistry, 2010, 98(1/2/3): 139-151. |
29 | Xue D, Yao H Y, Huang C Y. Study on soil microbial properties and enzyme activities in tea gardens. Journal of Soil and Water Conservation, 2005, 19(2): 84-87. |
薛冬, 姚槐应, 黄昌勇. 植茶年龄对茶园土壤微生物特性及酶活性的影响. 水土保持学报, 2005, 19(2): 84-87 | |
30 | Shi M, Wang R, Sun Q, et al. Vegetation restoration and soil nutrient changes in edge of tengger desert. Bulletin of Soil and Water Conservation, 2013, 33(6): 107-111. |
施明, 王锐, 孙权, 等. 腾格里沙漠边缘区植被恢复与土壤养分变化研究. 水土保持通报, 2013, 33(6): 107-111. | |
31 | Wang Q J, Wang W Y, Wang F G, et al. Forming factors and saline-geochemical features of deserted farmland in Qaidam Basin. Acta Pedologica Sinica, 2004, 41(1): 44-49. |
王启基, 王文颖, 王发刚, 等. 柴达木盆地弃耕地成因及其土壤盐渍地球化学特征. 土壤学报, 2004, 41(1): 44-49. | |
32 | Zhang C, Jamieson R C, Meng F R, et al. Projecting in-stream dissolved organic carbon and total mercury concentrations in small watersheds following forest growth and clearcutting. Water Air & Soil Pollution, 2016, 227(9): 323.1-323.13. |
33 | Nambu K, Yonebayashi K. Role of dissolved organic matter in translocation of nutrient cations from organic layer materials in coniferous and broad leaf forests. Soil Science and Plant nutrition, 1999, 45(2): 307-319. |
34 | Mcgrady-Steed J P, Harris P M, Morin P J. Biodiversity regulates ecosystem predictability. Nature, 1997, 390(6656): 162-165. |
35 | Wang Y, Zhao H L, Dong Z B, et al. The change characteristics of soil organic carbon and soil total nitrogen in farmland salinization in Arid Oasis. Journal of Soil and Water Conservation, 2014, 28(6): 200-205. |
王燕, 赵哈林, 董治宝, 等. 荒漠绿洲农田盐渍化过程中土壤有机碳和全氮变化特征. 水土保持学报, 2014, 28(6): 200-205. | |
36 | Wang S Q, Yu G R. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements. Acta Ecologica Sinica, 2008, 28(8): 3937-3947. |
王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 2008, 28(8): 3937-3947. | |
37 | Yuan Z Y, Jiao F, Shi X R, et al. Experimental and observational studies find contrasting responses of soil nutrients to climate change. Elife, 2017, 6: e23255. |
38 | Li Z Y, Liu Z C, Yan C, et al. The biomass-diversity relationship depends upon soil pH variations in Inner Mongolian grasslands: Insight from comparison between gradient observations and manipulative experiments. Acta Prataculturae Sinica, 2020, 29(1): 38-49. |
李子雁, 刘尊驰, 鄢创, 等. 内蒙古草原不同土壤pH条件下植物生物量和多样性的关系: 样带调查和控制实验的比较研究. 草业学报, 2020, 29(1): 38-49. |
[1] | 孙忠超, 郭天斗, 于露, 马彦平, 赵亚楠, 李雪颖, 王红梅. 宁夏东部荒漠草原向灌丛地人为转变过程土壤粒径分形特征[J]. 草业学报, 2021, 30(4): 34-45. |
[2] | 蒙仲举, 陈颜洁, 包斯琴. 苏尼特右旗荒漠草原三种放牧方式下群落斑块特征[J]. 草业学报, 2021, 30(4): 13-23. |
[3] | 顾继雄, 郭天斗, 王红梅, 李雪颖, 梁丹妮, 杨青莲, 高锦月. 宁夏东部荒漠草原向灌丛地转变过程土壤微生物响应[J]. 草业学报, 2021, 30(4): 46-57. |
[4] | 熊梅, 乔荠瑢, 杨阳, 张峰, 郑佳华, 吴建新, 赵萌莉. 不同载畜率下短花针茅和土壤生态化学计量特征研究[J]. 草业学报, 2021, 30(2): 212-219. |
[5] | 李静, 红梅, 闫瑾, 张宇晨, 梁志伟, 叶贺, 高海燕, 赵巴音那木拉. 短花针茅荒漠草原植被群落结构及生物量对水氮变化的响应[J]. 草业学报, 2020, 29(9): 38-48. |
[6] | 万芳, 蒙仲举, 党晓宏, 王瑞东, 张慧敏. 封育措施下荒漠草原针茅植物-土壤C、N、P化学计量特征[J]. 草业学报, 2020, 29(9): 49-55. |
[7] | 孙世贤, 丁勇, 李夏子, 吴新宏, 闫志坚, 尹强, 李金卓. 放牧强度季节调控对荒漠草原土壤风蚀的影响[J]. 草业学报, 2020, 29(7): 23-29. |
[8] | 于露, 周玉蓉, 赵亚楠, 郭天斗, 孙忠超, 王红梅. 荒漠草原土壤种子库对灌丛引入和降水梯度的响应特征[J]. 草业学报, 2020, 29(4): 41-50. |
[9] | 许爱云, 许冬梅, 曹兵, 刘金龙, 于双, 郭艳菊, 马晓静. 宁夏荒漠草原不同群落蒙古冰草种群空间格局及种间关联性[J]. 草业学报, 2020, 29(3): 171-178. |
[10] | 谢莉, 宋乃平, 孟晨, 吴婷, 陈晓莹, 李敏岚, 岳健敏. 不同封育年限对宁夏荒漠草原土壤粒径及碳氮储量的影响[J]. 草业学报, 2020, 29(2): 1-10. |
[11] | 王占军, 马琨, 崔慧珍, 李光文, 俞鸿千, 蒋齐. 土壤丛枝菌根真菌与宁夏主要草原类型植被群落分布间的相互关系研究[J]. 草业学报, 2020, 29(12): 150-160. |
[12] | 常海涛, 刘任涛, 陈蔚, 张安宁, 左小安. 内蒙古乌拉特荒漠草原红砂灌丛林引入柠条后地面节肢动物群落结构分布特征[J]. 草业学报, 2020, 29(12): 188-197. |
[13] | 聂莹莹, 徐丽君, 辛晓平, 陈宝瑞, 张保辉. 围栏封育对温性草甸草原植物群落构成及生态位特征的影响[J]. 草业学报, 2020, 29(11): 11-22. |
[14] | 王磊, 宋乃平, 陈林, 杨新国, 王兴. 荒漠草原土壤粗质化和养分减少伴随多年生群落转变为一年生群落[J]. 草业学报, 2020, 29(11): 183-189. |
[15] | 常海涛, 赵娟, 刘佳楠, 刘任涛, 罗雅曦, 张静. 退耕还林与还草对土壤理化性质及分形特征的影响——以宁夏荒漠草原为例[J]. 草业学报, 2019, 28(7): 14-25. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||