草业学报 ›› 2021, Vol. 30 ›› Issue (7): 101-110.DOI: 10.11686/cyxb2020482
张涛(), 牟英玉, 亓王盼, 郭长征, 张继友, 毛胜勇()
收稿日期:
2020-10-27
修回日期:
2020-11-30
出版日期:
2021-07-20
发布日期:
2021-06-03
通讯作者:
毛胜勇
作者简介:
Corresponding author. E-mail: maoshengyong@njau.edu.cn基金资助:
Tao ZHANG(), Ying-yu MU, Wang-pan QI, Chang-zheng GUO, Ji-you ZHANG, Sheng-yong MAO()
Received:
2020-10-27
Revised:
2020-11-30
Online:
2021-07-20
Published:
2021-06-03
Contact:
Sheng-yong MAO
摘要:
为比较研究对亚急性瘤胃酸中毒(SARA)耐受性不同的奶牛血浆和乳中代谢组的差异,试验选用12头装有永久性瘤胃瘘管的泌乳中期荷斯坦奶牛[泌乳天数=(114±22) d],饲喂精粗比为4∶6的全混合日粮。在试验期第20和21天晨饲后0、2、4、6、8和12 h监测瘤胃pH值,在早晚饲喂前收集奶样,晨饲6 h后采集颈静脉血,用于测定脂肪酸及代谢物组成。基于奶牛瘤胃平均pH值高低,将奶牛分为SARA易感组(SUS,瘤胃pH=5.76,n=4)和SARA耐受组(TOL,瘤胃pH=6.10,n=4)。脂肪酸测定结果分析显示,与TOL组相比,SUS组奶牛血液及乳中的碳链长度≤C16的脂肪酸含量显著增高(P<0.05),而>C16的脂肪酸的含量显著降低(P<0.05),乳中饱和脂肪酸及单不饱和脂肪酸含量均显著降低(P<0.05)。血浆代谢组结果显示, SUS组奶牛血浆中L-苯丙酮酸水平显著降低(P<0.05),而MG(18:0/0:0/0:0)、9-HODE、12(13) Ep-9-KODE、烟酰胺、异戊基肉碱、磷酸肌酸和L-谷氨酸水平显著升高(P<0.05)。乳代谢组分析结果显示,与TOL组比较,SUS组奶牛乳中的1-硬脂酰磷酸甘油丝氨酸和鞘氨醇水平显著升高(P<0.05),而甘油磷酰基乙醇胺、3-磷酸甘油和乳清酸等其他14个差异代谢物水平显著降低(P<0.05),这些差异代谢物主要涉及甘油磷脂代谢、甘油脂代谢及泛酸与辅酶A代谢等代谢途径。综上所述,SARA耐受性不同的奶牛的血浆和乳中脂肪酸及代谢物组成存在较大差异,SUS组奶牛血浆中氨基酸代谢活动增加,乳腺的乳脂从头合成能力较强,而从血液中摄取长链脂肪酸能力减弱,与此同时,易感奶牛乳中磷脂、乳清酸等营养物质水平下降,乳品质下降。
张涛, 牟英玉, 亓王盼, 郭长征, 张继友, 毛胜勇. 亚急性瘤胃酸中毒耐受性不同的奶牛血浆和乳中脂肪酸及代谢物组成分析[J]. 草业学报, 2021, 30(7): 101-110.
Tao ZHANG, Ying-yu MU, Wang-pan QI, Chang-zheng GUO, Ji-you ZHANG, Sheng-yong MAO. Analysis of plasma and milk fatty acid and metabolite composition in lactating dairy cows with differing tolerance to subacute ruminal acidosis[J]. Acta Prataculturae Sinica, 2021, 30(7): 101-110.
营养成分Nutrient compsition | 含量Content (%) | 营养水平Nutrient levels | 含量Content |
---|---|---|---|
苜蓿草Alfalfa | 24.00 | 粗蛋白质Crude protein (CP, %) | 16.16 |
燕麦Oat | 24.00 | 中性洗涤纤维Neutral detergent fiber (NDF, %) | 36.14 |
玉米青贮Corn silage | 12.00 | 非纤维性碳水化合物Non-fibrous carbohydrate2) (NFC, %) | 38.68 |
玉米Corn | 19.40 | 粗灰分Ash (%) | 5.97 |
豆粕Soybean meal | 13.50 | 钙Ca (%) | 1.14 |
玉米酒精糟DDGS | 3.80 | 磷P (%) | 0.52 |
石粉Limestone | 0.80 | 粗脂肪Ether extract (EE, %) | 3.05 |
磷酸氢钙CaHPO4 | 1.10 | 淀粉Starch (%) | 17.96 |
食盐NaCl | 0.40 | 泌乳净能Net energy3) (MJ·kg-1) | 1.57 |
预混料Premix1) | 1.00 | NFC/NDF | 1.07 |
总量Total | 100.00 |
表 1 饲粮组成及其营养水平
Table 1 Composition and nutrient levels of basal diets (air-dry basis)
营养成分Nutrient compsition | 含量Content (%) | 营养水平Nutrient levels | 含量Content |
---|---|---|---|
苜蓿草Alfalfa | 24.00 | 粗蛋白质Crude protein (CP, %) | 16.16 |
燕麦Oat | 24.00 | 中性洗涤纤维Neutral detergent fiber (NDF, %) | 36.14 |
玉米青贮Corn silage | 12.00 | 非纤维性碳水化合物Non-fibrous carbohydrate2) (NFC, %) | 38.68 |
玉米Corn | 19.40 | 粗灰分Ash (%) | 5.97 |
豆粕Soybean meal | 13.50 | 钙Ca (%) | 1.14 |
玉米酒精糟DDGS | 3.80 | 磷P (%) | 0.52 |
石粉Limestone | 0.80 | 粗脂肪Ether extract (EE, %) | 3.05 |
磷酸氢钙CaHPO4 | 1.10 | 淀粉Starch (%) | 17.96 |
食盐NaCl | 0.40 | 泌乳净能Net energy3) (MJ·kg-1) | 1.57 |
预混料Premix1) | 1.00 | NFC/NDF | 1.07 |
总量Total | 100.00 |
时间 Time (min) | 流速 Flow rate (mL·min-1) | A (%) | B (%) |
---|---|---|---|
0.0 | 0.3 | 95 | 5 |
1.0 | 0.3 | 95 | 5 |
2.0 | 0.3 | 60 | 40 |
7.0 | 0.3 | 20 | 80 |
11.0 | 0.3 | 5 | 95 |
15.5 | 0.3 | 95 | 5 |
19.5 | 0.3 | 95 | 5 |
表2 流动相洗脱程序
Table 2 The mobile phase elution procedure
时间 Time (min) | 流速 Flow rate (mL·min-1) | A (%) | B (%) |
---|---|---|---|
0.0 | 0.3 | 95 | 5 |
1.0 | 0.3 | 95 | 5 |
2.0 | 0.3 | 60 | 40 |
7.0 | 0.3 | 20 | 80 |
11.0 | 0.3 | 5 | 95 |
15.5 | 0.3 | 95 | 5 |
19.5 | 0.3 | 95 | 5 |
图1 奶牛晨饲后12 h内瘤胃pH变化SUS:易感组Susceptible;TOL:耐受组Tolerant.下同The same below.
Fig.1 The change in rumen pH within 12 h after morning feeding of dairy cows (mean±SEM, n=4)
脂肪酸 Fatty acid (FA) | 组别 Groups | 标准误差 SEM | P值 P-value | 脂肪酸 Fatty acid (FA) | 组别 Groups | 标准误差 SEM | P值 P-value | ||
---|---|---|---|---|---|---|---|---|---|
SUS | TOL | SUS | TOL | ||||||
C4:0 | 3.67 | 3.62 | 0.32 | 0.891 | C20:0 | 20.84 | 24.96 | 0.90 | 0.008 |
C6:0 | 3.19 | 4.23 | 0.47 | 0.032 | C18:3n6 | 0.29 | 0.38 | 0.09 | 0.252 |
C8:0 | 1.17 | 1.43 | 0.13 | 0.149 | C20:1 | 0.33 | 1.13 | 0.06 | <0.001 |
C10:0 | 0.39 | 0.29 | 0.09 | 0.241 | C18:3n3 | 0.35 | 0.09 | 0.02 | <0.001 |
C11:0 | 0.43 | 0.31 | 0.13 | 0.299 | C21:0 | 0.99 | 1.56 | 0.06 | <0.001 |
C13:0 | 0.70 | 0.97 | 0.12 | 0.112 | C20:2 | 0.14 | 0.18 | 0.05 | 0.282 |
C14:0 | 2.57 | 1.94 | 0.36 | 0.718 | C22:0 | 0.24 | 0.21 | 0.08 | 0.522 |
C15:0 | 0.22 | 0.36 | 0.06 | 0.220 | C22:1n9 | 0.40 | 0.28 | 0.05 | 0.114 |
C15:1 | 0.52 | 0.60 | 0.11 | 0.104 | C20:3n3 | 0.33 | 0.22 | 0.04 | 0.138 |
C16:0 | 32.04 | 29.27 | 0.65 | 0.002 | C20:4n6 | 0.60 | 0.74 | 0.06 | 0.015 |
C16:1 | 0.35 | 0.41 | 0.10 | 0.646 | C24:1 | 2.53 | 1.45 | 0.26 | 0.004 |
C17:0 | 0.31 | 0.31 | 0.08 | 0.498 | C22:6n | 0.03 | 1.10 | 0.31 | 0.057 |
C17:1 | 0.88 | 0.04 | 0.05 | <0.001 | SFA | 88.00 | 88.77 | 0.75 | 0.371 |
C18:0 | 21.31 | 19.32 | 0.58 | 0.046 | MUFA | 7.84 | 6.52 | 0.78 | 0.188 |
C18:1n9t | 0.45 | 0.35 | 0.10 | 0.915 | PUFA | 3.67 | 3.94 | 0.26 | 0.330 |
C18:1n9c | 2.79 | 2.67 | 0.72 | 0.820 | ≤C16:0 | 45.04 | 43.42 | 0.55 | 0.025 |
C18:2n6t | 1.79 | 1.06 | 0.16 | 0.008 | >C16:0 | 54.83 | 56.22 | 0.49 | 0.048 |
C18:2n6c | 0.12 | 0.16 | 0.04 | 0.458 |
表3 血浆中脂肪酸的组成
Table 3 The fatty acid composition in the plasma of the dairy cows (%, n=4)
脂肪酸 Fatty acid (FA) | 组别 Groups | 标准误差 SEM | P值 P-value | 脂肪酸 Fatty acid (FA) | 组别 Groups | 标准误差 SEM | P值 P-value | ||
---|---|---|---|---|---|---|---|---|---|
SUS | TOL | SUS | TOL | ||||||
C4:0 | 3.67 | 3.62 | 0.32 | 0.891 | C20:0 | 20.84 | 24.96 | 0.90 | 0.008 |
C6:0 | 3.19 | 4.23 | 0.47 | 0.032 | C18:3n6 | 0.29 | 0.38 | 0.09 | 0.252 |
C8:0 | 1.17 | 1.43 | 0.13 | 0.149 | C20:1 | 0.33 | 1.13 | 0.06 | <0.001 |
C10:0 | 0.39 | 0.29 | 0.09 | 0.241 | C18:3n3 | 0.35 | 0.09 | 0.02 | <0.001 |
C11:0 | 0.43 | 0.31 | 0.13 | 0.299 | C21:0 | 0.99 | 1.56 | 0.06 | <0.001 |
C13:0 | 0.70 | 0.97 | 0.12 | 0.112 | C20:2 | 0.14 | 0.18 | 0.05 | 0.282 |
C14:0 | 2.57 | 1.94 | 0.36 | 0.718 | C22:0 | 0.24 | 0.21 | 0.08 | 0.522 |
C15:0 | 0.22 | 0.36 | 0.06 | 0.220 | C22:1n9 | 0.40 | 0.28 | 0.05 | 0.114 |
C15:1 | 0.52 | 0.60 | 0.11 | 0.104 | C20:3n3 | 0.33 | 0.22 | 0.04 | 0.138 |
C16:0 | 32.04 | 29.27 | 0.65 | 0.002 | C20:4n6 | 0.60 | 0.74 | 0.06 | 0.015 |
C16:1 | 0.35 | 0.41 | 0.10 | 0.646 | C24:1 | 2.53 | 1.45 | 0.26 | 0.004 |
C17:0 | 0.31 | 0.31 | 0.08 | 0.498 | C22:6n | 0.03 | 1.10 | 0.31 | 0.057 |
C17:1 | 0.88 | 0.04 | 0.05 | <0.001 | SFA | 88.00 | 88.77 | 0.75 | 0.371 |
C18:0 | 21.31 | 19.32 | 0.58 | 0.046 | MUFA | 7.84 | 6.52 | 0.78 | 0.188 |
C18:1n9t | 0.45 | 0.35 | 0.10 | 0.915 | PUFA | 3.67 | 3.94 | 0.26 | 0.330 |
C18:1n9c | 2.79 | 2.67 | 0.72 | 0.820 | ≤C16:0 | 45.04 | 43.42 | 0.55 | 0.025 |
C18:2n6t | 1.79 | 1.06 | 0.16 | 0.008 | >C16:0 | 54.83 | 56.22 | 0.49 | 0.048 |
C18:2n6c | 0.12 | 0.16 | 0.04 | 0.458 |
脂肪酸 Fatty acid (FA) | 组别 Groups | 标准误差 SEM | P值 P-value | 脂肪酸 Fatty acid (FA) | 组别 Groups | 标准误差 SEM | P值 P-value | ||
---|---|---|---|---|---|---|---|---|---|
SUS | TOL | SUS | TOL | ||||||
C10:0 | 0.87 | 0.33 | 0.05 | <0.001 | C18:1n9c | 25.33 | 26.51 | 0.11 | <0.001 |
C11:0 | 0.14 | 0.04 | 0.02 | 0.005 | C18:2n6t | 0.79 | 0.75 | 0.10 | 0.825 |
C12:0 | 4.30 | 1.64 | 0.22 | 0.003 | C18:2n6c | 0.24 | 0.26 | 0.05 | 0.763 |
C13:0 | 0.35 | 0.37 | 0.02 | 0.399 | C20:0 | 1.45 | 1.43 | 0.39 | 0.229 |
C14:0 | 9.84 | 9.85 | 1.29 | 0.480 | C18:3n3 | 0.97 | 0.80 | 0.19 | 0.517 |
C14:1 | 2.09 | 2.06 | 0.18 | 0.787 | C21:0 | 0.43 | 0.40 | 0.10 | 0.234 |
C15:0 | 2.55 | 2.49 | 0.26 | 0.223 | C22:1n9 | 0.23 | 0.23 | 0.02 | 0.356 |
C16:0 | 25.45 | 27.18 | 0.25 | 0.004 | C20:4n6 | 0.30 | 0.34 | 0.01 | 0.002 |
C16:1 | 2.18 | 2.45 | 0.16 | 0.050 | SFA | 57.09 | 58.66 | 0.40 | 0.008 |
C17:0 | 1.34 | 1.20 | 0.11 | 0.105 | MUFA | 30.29 | 33.88 | 0.11 | <0.001 |
C17:1 | 0.40 | 0.38 | 0.05 | 0.841 | PUFA | 2.30 | 2.14 | 0.18 | 0.414 |
C18:0 | 11.34 | 13.15 | 0.86 | 0.001 | ≤C16:0 | 47.76 | 46.39 | 0.27 | 0.003 |
C18:1n9t | 1.02 | 1.28 | 0.02 | <0.001 | >C16:0 | 43.84 | 46.70 | 0.35 | <0.001 |
表4 牛奶中脂肪酸的组成
Table 4 The fatty acid composition in the milk of the dairy cows (g·100 g-1, n=4)
脂肪酸 Fatty acid (FA) | 组别 Groups | 标准误差 SEM | P值 P-value | 脂肪酸 Fatty acid (FA) | 组别 Groups | 标准误差 SEM | P值 P-value | ||
---|---|---|---|---|---|---|---|---|---|
SUS | TOL | SUS | TOL | ||||||
C10:0 | 0.87 | 0.33 | 0.05 | <0.001 | C18:1n9c | 25.33 | 26.51 | 0.11 | <0.001 |
C11:0 | 0.14 | 0.04 | 0.02 | 0.005 | C18:2n6t | 0.79 | 0.75 | 0.10 | 0.825 |
C12:0 | 4.30 | 1.64 | 0.22 | 0.003 | C18:2n6c | 0.24 | 0.26 | 0.05 | 0.763 |
C13:0 | 0.35 | 0.37 | 0.02 | 0.399 | C20:0 | 1.45 | 1.43 | 0.39 | 0.229 |
C14:0 | 9.84 | 9.85 | 1.29 | 0.480 | C18:3n3 | 0.97 | 0.80 | 0.19 | 0.517 |
C14:1 | 2.09 | 2.06 | 0.18 | 0.787 | C21:0 | 0.43 | 0.40 | 0.10 | 0.234 |
C15:0 | 2.55 | 2.49 | 0.26 | 0.223 | C22:1n9 | 0.23 | 0.23 | 0.02 | 0.356 |
C16:0 | 25.45 | 27.18 | 0.25 | 0.004 | C20:4n6 | 0.30 | 0.34 | 0.01 | 0.002 |
C16:1 | 2.18 | 2.45 | 0.16 | 0.050 | SFA | 57.09 | 58.66 | 0.40 | 0.008 |
C17:0 | 1.34 | 1.20 | 0.11 | 0.105 | MUFA | 30.29 | 33.88 | 0.11 | <0.001 |
C17:1 | 0.40 | 0.38 | 0.05 | 0.841 | PUFA | 2.30 | 2.14 | 0.18 | 0.414 |
C18:0 | 11.34 | 13.15 | 0.86 | 0.001 | ≤C16:0 | 47.76 | 46.39 | 0.27 | 0.003 |
C18:1n9t | 1.02 | 1.28 | 0.02 | <0.001 | >C16:0 | 43.84 | 46.70 | 0.35 | <0.001 |
差异代谢物 Different metabolites | 物质分类 Class | VIP | 倍数 Fold change (SUS/TOL) | P值 P-value |
---|---|---|---|---|
1-单硬脂酰基甘油酯MG (18:0/0:0/0:0) | 脂质Lipids | 1.02 | 18.70 | 0.043 |
9-羟基-10E,12Z-十八碳二烯酸9-HODE | 有机酸Organic acids | 1.48 | 277.58 | 0.043 |
反式-12,13-环氧-11-氧-反式-9-十八烯酸酯 12(13)Ep-9-KODE | 有机酸Organic acids | 1.04 | 31.23 | 0.043 |
烟酰胺Niacinamide | 维生素类Vitamins | 1.32 | 1.73 | 0.043 |
异戊基肉碱Isovalerylcarnitine | 肉碱Carnitine | 1.68 | 1.86 | 0.043 |
磷酸肌酸Phosphocreatine | 肌酸Creatine | 1.12 | 75.60 | 0.043 |
L-谷氨酸L-Glutamic acid | 氨基酸类及其衍生物Amino acids and derivatives | 1.12 | 6.79 | 0.043 |
L-苯丙氨酸L-Phenylalanine | 氨基酸类及其衍生物Amino acids and derivatives | 1.99 | 0.53 | 0.043 |
表5 SUS和TOL组奶牛血浆中差异代谢物变化
Table 5 The changes of plasma different metabolites between susceptible and tolerant cows (n=4)
差异代谢物 Different metabolites | 物质分类 Class | VIP | 倍数 Fold change (SUS/TOL) | P值 P-value |
---|---|---|---|---|
1-单硬脂酰基甘油酯MG (18:0/0:0/0:0) | 脂质Lipids | 1.02 | 18.70 | 0.043 |
9-羟基-10E,12Z-十八碳二烯酸9-HODE | 有机酸Organic acids | 1.48 | 277.58 | 0.043 |
反式-12,13-环氧-11-氧-反式-9-十八烯酸酯 12(13)Ep-9-KODE | 有机酸Organic acids | 1.04 | 31.23 | 0.043 |
烟酰胺Niacinamide | 维生素类Vitamins | 1.32 | 1.73 | 0.043 |
异戊基肉碱Isovalerylcarnitine | 肉碱Carnitine | 1.68 | 1.86 | 0.043 |
磷酸肌酸Phosphocreatine | 肌酸Creatine | 1.12 | 75.60 | 0.043 |
L-谷氨酸L-Glutamic acid | 氨基酸类及其衍生物Amino acids and derivatives | 1.12 | 6.79 | 0.043 |
L-苯丙氨酸L-Phenylalanine | 氨基酸类及其衍生物Amino acids and derivatives | 1.99 | 0.53 | 0.043 |
差异代谢物 Different metabolites | 物质分类 Class | VIP | 倍数 Fold change (SUS/TOL) | P值 P-value |
---|---|---|---|---|
甘油磷酰基乙醇胺Glycerylphosphorylethanolamine | 脂质Lipids | 1.95 | 0.42 | 0.043 |
1-硬脂酰甘油磷酸丝氨酸1-Stearoylglycerophosphoserine | 脂质Lipids | 1.64 | 1.27 | 0.043 |
3-磷酸甘油Glycerol-3-phosphate | 脂质Lipids | 2.05 | 0.52 | 0.021 |
壬二酸Azelaic acid | 有机酸Organic acids | 1.91 | 0.64 | 0.021 |
辛二酸Suberic acid | 有机酸Organic acids | 1.85 | 0.59 | 0.021 |
十一烷酸Undecanedioic acid | 有机酸Organic acids | 1.51 | 0.72 | 0.043 |
乳清酸Orotic acid | 有机酸Organic acids | 1.50 | 0.23 | 0.043 |
尿酸Uric acid | 有机酸Organic acids | 1.90 | 0.68 | 0.043 |
N-乙酰基-D-葡萄糖胺N-Acetyl-D-glucosamine | 氨基酸Amino acid | 2.04 | 0.23 | 0.043 |
胞苷Cytidine | 核苷Nucleosides | 2.34 | 0.45 | 0.021 |
肌苷2',3'-环磷酸酯Inosine 2',3'-cyclic phosphate | 磷脂Phospholipids | 1.45 | 0.61 | 0.043 |
鞘氨醇Sphinganine | 鞘磷脂Sphingomyelin | 2.54 | 1.99 | 0.043 |
2-己酰基肉碱2-Hexenoylcarnitine | 肉碱Carnitine | 1.28 | 0.65 | 0.021 |
葡萄糖酸Gluconic acid | 糖Sugars | 1.33 | 0.53 | 0.043 |
泛酸Pantothenic acid | 维生素Vitamins | 1.66 | 0.51 | 0.021 |
4-羟基苯甲醛4-Hydroxybenzaldehyde | 未分类Unclassified | 1.46 | 0.56 | 0.021 |
表6 SUS和TOL组奶牛乳中差异代谢物变化
Table 6 The change of milk different metabolites between susceptible and tolerant cows (n=4)
差异代谢物 Different metabolites | 物质分类 Class | VIP | 倍数 Fold change (SUS/TOL) | P值 P-value |
---|---|---|---|---|
甘油磷酰基乙醇胺Glycerylphosphorylethanolamine | 脂质Lipids | 1.95 | 0.42 | 0.043 |
1-硬脂酰甘油磷酸丝氨酸1-Stearoylglycerophosphoserine | 脂质Lipids | 1.64 | 1.27 | 0.043 |
3-磷酸甘油Glycerol-3-phosphate | 脂质Lipids | 2.05 | 0.52 | 0.021 |
壬二酸Azelaic acid | 有机酸Organic acids | 1.91 | 0.64 | 0.021 |
辛二酸Suberic acid | 有机酸Organic acids | 1.85 | 0.59 | 0.021 |
十一烷酸Undecanedioic acid | 有机酸Organic acids | 1.51 | 0.72 | 0.043 |
乳清酸Orotic acid | 有机酸Organic acids | 1.50 | 0.23 | 0.043 |
尿酸Uric acid | 有机酸Organic acids | 1.90 | 0.68 | 0.043 |
N-乙酰基-D-葡萄糖胺N-Acetyl-D-glucosamine | 氨基酸Amino acid | 2.04 | 0.23 | 0.043 |
胞苷Cytidine | 核苷Nucleosides | 2.34 | 0.45 | 0.021 |
肌苷2',3'-环磷酸酯Inosine 2',3'-cyclic phosphate | 磷脂Phospholipids | 1.45 | 0.61 | 0.043 |
鞘氨醇Sphinganine | 鞘磷脂Sphingomyelin | 2.54 | 1.99 | 0.043 |
2-己酰基肉碱2-Hexenoylcarnitine | 肉碱Carnitine | 1.28 | 0.65 | 0.021 |
葡萄糖酸Gluconic acid | 糖Sugars | 1.33 | 0.53 | 0.043 |
泛酸Pantothenic acid | 维生素Vitamins | 1.66 | 0.51 | 0.021 |
4-羟基苯甲醛4-Hydroxybenzaldehyde | 未分类Unclassified | 1.46 | 0.56 | 0.021 |
1 | Morgante M, Stelletta C, Berzaghi P, et al. Subacute rumen acidosis in lactating cows: An investigation in intensive Italian dairy herds. Journal of Animal Physiology and Animal Nutrition, 2007, 91(5/6): 226-234. |
2 | Zebeli Q, Dijkstra J, Tafaj M, et al. Modeling the adequacy of dietary fiber in dairy cows based on the responses of ruminal pH and milk fat production to composition of the diet. Journal of Dairy Science, 2008, 91(5): 2046-2066. |
3 | Plaizier J C, Krause D O, Gozho G N, et al. Subacute ruminal acidosis in dairy cows: The physiological causes, incidence and consequences. Veterinary Journal, 2008, 176(1): 21-31. |
4 | Penner G B, Beauchemin K A, Mutsvangwa T. Severity of ruminal acidosis in primiparous holstein cows during the periparturient period. Journal of Dairy Science, 2007, 90(1): 365-375. |
5 | Humer E, Ghareeb K, Harder H, et al. Peripartal changes in reticuloruminal pH and temperature in dairy cows differing in the susceptibility to subacute rumen acidosis. Journal of Dairy Science, 2015, 98(12): 8788-8799. |
6 | Chen Y, Oba M, Guan L L. Variation of bacterial communities and expression of toll-like receptor genes in the rumen of steers differing in susceptibility to subacute ruminal acidosis. Veterinary Microbiology, 2012, 159(3/4): 451-459. |
7 | Penner G B, Aschenbach J R, Gabel G, et al. Epithelial capacity for apical uptake of short chain fatty acids is a key determinant for intraruminal pH and the susceptibility to subacute ruminal acidosis in sheep. The Journal of Nutrition, 2009, 139(9): 1714-1720. |
8 | Peng B, Li H, Peng X X. Functional metabolomics: From biomarker discovery to metabolome reprogramming. Protein Cell, 2015, 6(9): 628-637. |
9 | Saleem F, Ametaj B N, Bouatra S, et al. A metabolomics approach to uncover the effects of grain diets on rumen health in dairy cows. Journal of Dairy Science, 2012, 95(11): 6606-6623. |
10 | Mao S Y, Huo W J, Zhu W Y. Microbiome-metabolome analysis reveals unhealthy alterations in the composition and metabolism of ruminal microbiota with increasing dietary grain in a goat model. Environmental Microbiology, 2016, 18(2): 525-541. |
11 | Humer E, Kroger I, Neubauer V, et al. Supplementing phytogenic compounds or autolyzed yeast modulates ruminal biogenic amines and plasma metabolome in dry cows experiencing subacute ruminal acidosis. Journal of Dairy Science, 2018, 101(10): 9559-9574. |
12 | 中华人民共和国农业部. 奶牛饲养标准, NY/T 34-2004. 北京: 中国农业出版社, 2004. |
Minostry of Agriculture of P. R China. Feeding standard of dairy cattle, NY/T 34-2004. Beijing: China Agriculture Press, 2004. | |
13 | Sun X Q, Wang Y P, Chen B, et al. Partially replacing cornstarch in a high-concentrate diet with sucrose inhibited the ruminal trans-10 biohydrogenation pathway in vitro by changing populations of specific bacteria. Journal of Animal Science and Biotechnology, 2015, 6(1): 57. |
14 | Wang X J, Shen X Z, Han H R, et al. Analysis of cis-9, trans-11-conjugated linoleic acid in milk fat by capillary gas chromatography. Chromatography, 2006, 6: 645-647. |
王小静, 沈向真, 韩航如, 等. 毛细管气相色谱法测定乳脂中的cis-9, trans-11共轭亚油酸. 色谱, 2006, 6: 645-647. | |
15 | Yang B Z, Lu X F, Wei S J, et al. Effect of feeding peanut oil on fatty acid composition of buffalo milk fat. Feed Industry, 2012, 33(9): 40-42. |
杨炳壮, 卢雪芬, 韦升菊, 等. 饲喂花生油对水牛乳脂脂肪酸组成的影响. 饲料工业, 2012, 33(9): 40-42. | |
16 | Bickerstaffe R, Noakes D E, Annison E F. Quantitative aspects of fatty acid biohydrogenation, absorption and transfer into milk fat in the lactating goat, with special reference to the cis- and trans-isomers of octadecenoate and linoleate. Biochemical Journal, 1972, 130(2): 607-617. |
17 | Dryden F D, Marchello J A, Adams G H, et al. Bovine serum lipids. II. Lipoprotein quantitative and qualitative composition as influenced by added animal fat diets. Journal of Animal Science, 1971, 32(5): 1016-1029. |
18 | Vargas-Bello-Perez E, Iniguez-Gonzalez G, Cancino-Padilla N, et al. Effect of dietary vegetable oils on the fatty acid profile of plasma lipoproteins in dairy cows. Archives of Animal Nutrition, 2016, 70(4): 322-332. |
19 | Zhao X W, Wang J Q, Sun P, et al. Effect of dietary supplementation with different fatty acid mixture on blood fatty acid composition and antioxidant capacity in dairy cows. Journal of China Agricultural University, 2011, 6: 117-123. |
赵小伟, 王加启, 孙鹏, 等. 日粮添加不同脂肪酸混合物对奶牛血液脂肪酸组成及抗氧化性能的影响. 中国农业大学学报, 2011, 6: 117-123. | |
20 | Latham M J, Storry J E, Sharpe M E. Effect of low-roughage diets on the microflora and lipid metabolism in the rumen. Applied Microbiology, 1972, 24(6): 871-877. |
21 | Li F, Wang Z L, Dong C X, et al. Rumen bacteria communities and performances of fattening lambs with a lower or greater subacute ruminal acidosis risk. Frontiers in Microbiology, 2017, 8: 2506-2516. |
22 | Ma L, Corl B A. Transcriptional regulation of lipid synthesis in bovine mammary epithelial cells by sterol regulatory element binding protein-1. Journal of Dairy Science, 2012, 95(7): 3743-3755. |
23 | Kalac P, Samkova E. The effects of feeding various forages on fatty acid composition of bovine milk fat: A review. Czech Journal of Animal Science, 2010, 55(12): 521-537. |
24 | Zhang R Y, Ye H, Liu J H, et al. High-grain diets altered rumen fermentation and epithelial bacterial community and resulted in rumen epithelial injuries of goats. Applied Microbiology and Biotechnology, 2017, 101(18): 6981-6992. |
25 | Kara K. Milk urea nitrogen and milk fatty acid compositions in dairy cows with subacute ruminal acidosis. Veterinární Medicína, 2020, 65(8): 336-345. |
26 | Xu T L, Tao H, Chang G J, et al. Lipopolysaccharide derived from the rumen down-regulates stearoyl-CoA desaturase 1 expression and alters fatty acid composition in the liver of dairy cows fed a high-concentrate diet. BMC Veterinary Research, 2015, 11: 52. |
27 | Zhang R Y, Zhu W Y, Jiang L S, et al. Comparative metabolome analysis of ruminal changes in Holstein dairy cows fed low- or high-concentrate diets. Metabolomics, 2017, 13(6): 74. |
28 | Bardocz S, Duguid T J, Brown D S, et al. The importance of dietary polyamines in cell regeneration and growth. British Journal of Nutrition, 1995, 73(6): 819-828. |
29 | Wang D S, Zhang R Y, Zhu W Y, et al. Effects of subacute ruminal acidosis challenges on fermentation and biogenic amines in the rumen of dairy cows. Livestock Science, 2013, 155(2/3): 262-272. |
30 | Dunning K R, Russell D L, Robker R L. Lipids and oocyte developmental competence: The role of fatty acids and beta-oxidation. Reproduction, 2014, 148(1): R15-R27. |
31 | Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiological Reviews, 2000, 80(3): 1107-1213. |
32 | Fei A H, Wang F C, Wu Z B, et al. Phosphocreatine attenuates angiotensin II-induced cardiac fibrosis in rat cardiomyocytes through modulation of MAPK and NF-kappaB pathway. European Review for Medical and Pharmacological Sciences, 2016, 20(12): 2726-2733. |
33 | Yang Y, Dong G Z, Wang Z, et al. Rumen and plasma metabolomics profiling by UHPLC-QTOF/MS revealed metabolic alterations associated with a high-corn diet in beef steers. PLoS One, 2018, 13(11): e0208031. |
34 | Rocchetti G, Gallo A, Nocetti M, et al. Milk metabolomics based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry to discriminate different cows feeding regimens. Food Research International, 2020, 134: 109279. |
35 | Gallier S, Gragson D, Jimenez-Flores R, et al. Using confocal laser scanning microscopy to probe the milk fat globule membrane and associated proteins. Journal of Agricultural and Food Chemistry, 2010, 58(7): 4250-4257. |
36 | Gao X, Oba M. Relationship of severity of subacute ruminal acidosis to rumen fermentation, chewing activities, sorting behavior, and milk production in lactating dairy cows fed a high-grain diet. Journal of Dairy Science, 2014, 97(5): 3006-3016. |
37 | Kelley W N, Greene M L, Fox I H, et al. Effects of orotic acid on purine and lipoprotein metabolism in man. Metabolism, 1970, 19(12): 1025-1035. |
38 | Fox P F, Kelly A L. Indigenous enzymes in milk: Overview and historical aspects-Part 1. International Dairy Journal, 2006, 16(6): 500-516. |
39 | Guler Z, Keskin M, Dursun A, et al. Effects of waiting period before milking on orotic, uric and hippuric acid contents of milks from shami and kilis goats. Journal of Agricultural Sciences-Tarim Bilimleri Dergisi, 2018, 24(2): 170-178. |
40 | Jing L H, Dewanckele L, Vlaeminck B, et al. Susceptibility of dairy cows to subacute ruminal acidosis is reflected in milk fatty acid proportions, with C18:1 trans-10 as primary and C15:0 and C18:1 trans-11 as secondary indicators. Journal of Dairy Science, 2018, 101(11): 9827-9840. |
[1] | 亓王盼, 牟英玉, 张涛, 张继友, 毛胜勇. 亚急性瘤胃酸中毒对泌乳奶牛血浆生化指标及代谢组的影响研究[J]. 草业学报, 2021, 30(6): 141-150. |
[2] | 潘发明, 常生华, 王国栋, 郝生燕, 刘佳, 张辉元, 徐银萍. 物候期对放牧牦牛瘤胃液、牧草中脂肪酸及乳脂中共轭亚油酸组成的影响及其相关性分析[J]. 草业学报, 2021, 30(3): 110-120. |
[3] | 张迪, 任立飞, 刘广彬, 罗伏青, 张文浩, 王天佐. 不同干燥方式对苜蓿种子代谢物的影响[J]. 草业学报, 2021, 30(3): 158-166. |
[4] | 张生伟, 王小平, 张展海, 马友记, 滚双宝, 杨巧丽, 高小莉, 张保军. 青贮杂交构树对杜湖杂交肉羊生长性能、血清生化指标和肉品质的影响[J]. 草业学报, 2021, 30(3): 89-99. |
[5] | 王继卿, 沈继源, 刘秀, 李少斌, 罗玉柱, 赵孟丽, 郝志云, 柯娜, 宋宜泽, 乔莉蓉. 子午岭黑山羊与辽宁绒山羊产肉性能、肉品质、肌肉营养成分和脂肪酸含量比较[J]. 草业学报, 2021, 30(2): 166-177. |
[6] | 王玉萍, 郜春晓, 王盛祥, 何晓童. 低温弱光胁迫下芸豆叶片光抑制与类囊体膜脂构成变化[J]. 草业学报, 2020, 29(8): 116-125. |
[7] | 宗成, 张健, 邵涛, 董志浩, 李君风, 唐露, 冉启凡, 刘秦华. 添加剂对紫花苜蓿青贮饲料发酵品质的影响[J]. 草业学报, 2020, 29(12): 180-187. |
[8] | 刘祥圣, 邓波波, 王阔鹏, 封丽梅, 赵国琦, 林淼. 常规与非常规粗饲料在奶牛瘤胃中的降解特性研究[J]. 草业学报, 2020, 29(11): 190-197. |
[9] | 徐洪雨, 李向林. 控水处理对紫花苜蓿抗寒性影响的代谢组学分析[J]. 草业学报, 2020, 29(1): 106-116. |
[10] | 张翔, 杨勇, 刘学勇, 向佐湘. 外源水杨酸对低温胁迫下海滨雀稗抗寒生理特征的影响[J]. 草业学报, 2020, 29(1): 117-124. |
[11] | 董文科, 陈春艳, 马晖玲. 转OvBAN/bar双价基因的紫花苜蓿对虫蚀及除草剂的耐受性分析[J]. 草业学报, 2019, 28(7): 159-167. |
[12] | 司华哲, 李志鹏, 南韦肖, 金春爱, 李光玉, 刘晗璐. 添加植物乳杆菌对低水分稻秸青贮微生物组成影响研究[J]. 草业学报, 2019, 28(3): 184-192. |
[13] | 任伟忠, 高艳霞, 李秋凤, 曹玉凤, 李建国. 全株玉米青贮、谷草和羊草组合全混合日粮饲喂干奶前期奶牛对其围产期生产性能和血液生化及免疫指标的影响[J]. 草业学报, 2019, 28(12): 124-136. |
[14] | 林栋, 张德罡, McCulleyRebeccaL.. 蔬菜-牧草轮作5年草地土壤微生物量变化及其群落结构分异[J]. 草业学报, 2019, 28(11): 22-31. |
[15] | 陈雅坤,王建平,卜登攀,刘宁,刘威. 复合酶制剂对瘤胃发酵及泌乳早期奶牛生产性能的影响[J]. 草业学报, 2018, 27(4): 170-177. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||