草业学报 ›› 2022, Vol. 31 ›› Issue (5): 1-12.DOI: 10.11686/cyxb2021137
• 研究论文 •
郭文章(), 井长青(), 邓小进, 陈宸, 赵苇康, 侯志雄, 王公鑫
收稿日期:
2021-04-13
修回日期:
2021-05-26
出版日期:
2022-05-20
发布日期:
2022-03-30
通讯作者:
井长青
作者简介:
Corresponding author. E-mail: jingchangqing@126.com基金资助:
Wen-zhang GUO(), Chang-qing JING(), Xiao-jin DENG, Chen CHEN, Wei-kang ZHAO, Zhi-xiong HOU, Gong-xin WANG
Received:
2021-04-13
Revised:
2021-05-26
Online:
2022-05-20
Published:
2022-03-30
Contact:
Chang-qing JING
摘要:
荒漠草原是天山北坡广泛分布的草地类型,对天山北坡草地生态系统碳收支具有重要的调节作用。为阐明天山北坡荒漠草原生态系统碳通量变化特征及环境因子对碳通量的影响,以新疆天山北坡荒漠草原为研究对象,利用微气象观测系统和LI-840 CO2/H2O红外分析仪获得连续观测数据,定量分析了荒漠草原碳通量的变化特征及其影响因子。结果表明:天山北坡荒漠草原植被净生态系统碳交换速率在日尺度上呈倒“U”型曲线;在季节尺度上,6、7、8月表现为碳汇,9、10月表现为碳源;6-10月荒漠草原总固碳量为15.50 g C·m-2,8月固碳量最高为23.03 g C·m-2;生态系统呼吸速率日变化呈“单峰”曲线;在季节尺度上,碳排放呈现先增加后降低趋势,7月碳排放量最高128.42 g C·m-2,10月荒漠草原生态系统碳通量日变化不明显。光合有效辐射是影响日间净生态系统碳交换速率的主导因子,二者符合直角双曲线模型,日间净生态系统碳交换速率随光合有效辐射增大而减小;生态系统呼吸速率与5 cm土壤温度关系符合Van,t Hoff模型,温度敏感性系数Q10为1.69;最适土壤含水量是0.16 m3·m-3,土壤含水量过高或过低均会对荒漠草原生态系统呼吸速率产生抑制作用。
郭文章, 井长青, 邓小进, 陈宸, 赵苇康, 侯志雄, 王公鑫. 新疆天山北坡荒漠草原碳通量特征及其对环境因子的响应[J]. 草业学报, 2022, 31(5): 1-12.
Wen-zhang GUO, Chang-qing JING, Xiao-jin DENG, Chen CHEN, Wei-kang ZHAO, Zhi-xiong HOU, Gong-xin WANG. Variations in carbon flux and factors influencing it on the northern slopes of the Tianshan Mountains[J]. Acta Prataculturae Sinica, 2022, 31(5): 1-12.
仪器名称 Name of instrument | 观测参数 Observation parameter | 安装高(深)度 Height (depth) of installation (m) |
---|---|---|
风速风向计Anemometer | 风速、风向Wind speed and direction | 3.0 |
光合有效辐射仪Photosynthetic active radiometer | 光合有效辐射Photosynthetic active radiation | 2.8 |
气压计Barometer | 空气压力Air pressure | 1.8 |
雨量筒Rain gauge | 降水量Precipitation | 2.5 |
土壤温度传感器Soil temperature sensor | 土壤温度Soil temperature | 土层Soil 0.05,0.2,0.4,0.7,1.0 |
土壤水分传感器Soil water sensor | 土壤含水量Soil water content | 土层Soil 0.05,0.2,0.4,0.7,1.0 |
温湿度传感器Temperature and humidity sensor | 气温、空气湿度Air temperature and air humidity | 0.2,2.0 |
表 1 观测站点仪器装置信息(微气象观测系统)
Table 1 Instrument and device information of observation station (Micro meteorological observation system)
仪器名称 Name of instrument | 观测参数 Observation parameter | 安装高(深)度 Height (depth) of installation (m) |
---|---|---|
风速风向计Anemometer | 风速、风向Wind speed and direction | 3.0 |
光合有效辐射仪Photosynthetic active radiometer | 光合有效辐射Photosynthetic active radiation | 2.8 |
气压计Barometer | 空气压力Air pressure | 1.8 |
雨量筒Rain gauge | 降水量Precipitation | 2.5 |
土壤温度传感器Soil temperature sensor | 土壤温度Soil temperature | 土层Soil 0.05,0.2,0.4,0.7,1.0 |
土壤水分传感器Soil water sensor | 土壤含水量Soil water content | 土层Soil 0.05,0.2,0.4,0.7,1.0 |
温湿度传感器Temperature and humidity sensor | 气温、空气湿度Air temperature and air humidity | 0.2,2.0 |
图1 荒漠草原环境因子季节变化PAR:光合有效辐射;VPD:饱和水汽压差;SWC:土壤含水量;P:降水量;Ts:土壤温度;Ta:空气温度。下同。PAR: Photosynthetic active radiation; VPD: Vapor pressure deficit; SWC: Soil water content; P: Precipitation; Ts: Soil temperature; Ta: Air temperature. The same below.
Fig.1 Season variations of environmental factors in desert steppe
项目Item | 月份Month | 拟合模型Fit model | R2 | P | Q10 |
---|---|---|---|---|---|
土壤温度 Soil temperature | 6月June | 0.552 | P<0.05 | 2.71 | |
7月July | 0.707 | P<0.01 | 2.09 | ||
8月August | 0.863 | P<0.01 | 1.85 | ||
9月September | 0.833 | P<0.01 | 1.94 | ||
10月October | 0.067 | P>0.05 | 2.11 | ||
空气温度 Air temperature | 6月June | 0.701 | P<0.05 | 2.53 | |
7月July | 0.971 | P<0.01 | 2.80 | ||
8月August | 0.881 | P<0.01 | 2.31 | ||
9月September | 0.914 | P<0.01 | 2.33 | ||
10月October | 0.067 | P>0.05 | 2.82 |
表 2 生态系统呼吸速率与温度指数回归关系
Table 2 Exponential regression between ecosystem respiration and temperature
项目Item | 月份Month | 拟合模型Fit model | R2 | P | Q10 |
---|---|---|---|---|---|
土壤温度 Soil temperature | 6月June | 0.552 | P<0.05 | 2.71 | |
7月July | 0.707 | P<0.01 | 2.09 | ||
8月August | 0.863 | P<0.01 | 1.85 | ||
9月September | 0.833 | P<0.01 | 1.94 | ||
10月October | 0.067 | P>0.05 | 2.11 | ||
空气温度 Air temperature | 6月June | 0.701 | P<0.05 | 2.53 | |
7月July | 0.971 | P<0.01 | 2.80 | ||
8月August | 0.881 | P<0.01 | 2.31 | ||
9月September | 0.914 | P<0.01 | 2.33 | ||
10月October | 0.067 | P>0.05 | 2.82 |
项目Item | 月份 Month | PAR | VPD | Ta | RH | Ts | SWC |
---|---|---|---|---|---|---|---|
NEE | 6月June | -0.85** | -0.74** | -0.71* | 0.67* | -0.60* | -0.54 |
7月July | -0.72* | -0.77* | -0.64* | 0.67* | -0.71* | -0.75** | |
8月August | -0.82** | -0.64* | -0.71* | 0.71* | -0.76** | -0.71* | |
9月September | -0.74** | -0.35 | -0.41 | 0.09 | -0.74* | -0.80** | |
10月October | 0.26 | 0.17 | -0.18 | -0.15 | 0.05 | -0.03 | |
ER | 6月June | 0.61* | 0.72* | 0.64* | -0.60* | 0.67* | 0.68* |
7月July | 0.39 | 0.96** | 0.94** | -0.86** | 0.83** | 0.75** | |
8月August | 0.97** | 0.93** | 0.89** | -0.83** | 0.88** | 0.91** | |
9月September | 0.86** | 0.96** | 0.94** | -0.80** | 0.92** | 0.87** | |
10月October | 0.01 | 0.30 | 0.30 | -0.39 | 0.30 | 0.26 |
表 3 不同月份NEE、ER与环境因子的相关系数
Table 3 Correlation coefficients between NEE, ER and environmental factors
项目Item | 月份 Month | PAR | VPD | Ta | RH | Ts | SWC |
---|---|---|---|---|---|---|---|
NEE | 6月June | -0.85** | -0.74** | -0.71* | 0.67* | -0.60* | -0.54 |
7月July | -0.72* | -0.77* | -0.64* | 0.67* | -0.71* | -0.75** | |
8月August | -0.82** | -0.64* | -0.71* | 0.71* | -0.76** | -0.71* | |
9月September | -0.74** | -0.35 | -0.41 | 0.09 | -0.74* | -0.80** | |
10月October | 0.26 | 0.17 | -0.18 | -0.15 | 0.05 | -0.03 | |
ER | 6月June | 0.61* | 0.72* | 0.64* | -0.60* | 0.67* | 0.68* |
7月July | 0.39 | 0.96** | 0.94** | -0.86** | 0.83** | 0.75** | |
8月August | 0.97** | 0.93** | 0.89** | -0.83** | 0.88** | 0.91** | |
9月September | 0.86** | 0.96** | 0.94** | -0.80** | 0.92** | 0.87** | |
10月October | 0.01 | 0.30 | 0.30 | -0.39 | 0.30 | 0.26 |
环境因子 Environmental factor | 重要性排序 Order of importance | 贡献率 Contribution rate (%) | F值 F value | P值 P value |
---|---|---|---|---|
SWC (5 cm) | 1 | 41.7 | 37.8 | 0.002 |
Ta | 2 | 34.0 | 27.3 | 0.002 |
PAR | 3 | 32.1 | 27.3 | 0.002 |
VPD | 4 | 27.8 | 20.4 | 0.002 |
Ts (5 cm) | 5 | 24.0 | 16.7 | 0.002 |
RH | 6 | 13.4 | 8.2 | 0.002 |
Ts (20 cm) | 7 | 5.0 | 2.8 | 0.056 |
Ts (40 cm) | 8 | 4.4 | 2.4 | 0.090 |
SWC (40 cm) | 9 | 3.3 | 1.8 | 0.158 |
SWC (20 cm) | 10 | 0.2 | <0.1 | 0.954 |
表 4 环境因子解释量及显著性检验
Table 4 Explanation rate and significance test of environment factors
环境因子 Environmental factor | 重要性排序 Order of importance | 贡献率 Contribution rate (%) | F值 F value | P值 P value |
---|---|---|---|---|
SWC (5 cm) | 1 | 41.7 | 37.8 | 0.002 |
Ta | 2 | 34.0 | 27.3 | 0.002 |
PAR | 3 | 32.1 | 27.3 | 0.002 |
VPD | 4 | 27.8 | 20.4 | 0.002 |
Ts (5 cm) | 5 | 24.0 | 16.7 | 0.002 |
RH | 6 | 13.4 | 8.2 | 0.002 |
Ts (20 cm) | 7 | 5.0 | 2.8 | 0.056 |
Ts (40 cm) | 8 | 4.4 | 2.4 | 0.090 |
SWC (40 cm) | 9 | 3.3 | 1.8 | 0.158 |
SWC (20 cm) | 10 | 0.2 | <0.1 | 0.954 |
1 | Risch A C, Frank D A. Carbon dioxide fluxes in a spatially and temporally heterogeneous temperate grassland. Oecologia, 2006, 147(2): 291-302. |
2 | Scurlock J M O, Hall D O. The global carbon sink: A grassland perspective. Global Change Biology, 1998, 4(2): 229-233. |
3 | Tans P P, Fung I Y, Takahashi T. Observational constrains on the global atmospheric carbon dioxide budget. Science, 1990, 247: 1431-1438. |
4 | Bai Y F, Chen S P. Carbon sequestration of Chinese grassland ecosystems: Stock, rate and potential. Chinese Journal of Plant Ecology, 2018, 42(3): 261-264. |
白永飞, 陈世苹. 中国草地生态系统固碳现状、速率和潜力研究. 植物生态学报, 2018, 42(3): 261-264. | |
5 | Yan J H, Zhang Y P, Yu G R, et al. Seasonal and inter-annual variations in net ecosystem exchange of two old-growth forests in southern China. Agricultural and Forest Meteorology, 2013, 182-183: 257-265. |
6 | Baldocchi D, Chu H S, Reichstein M. Inter-annual variability of net and gross ecosystem carbon fluxes: A review. Agricultural and Forest Meteorology, 2018, 249: 520-533. |
7 | Zhu Z L, Sun X M, Wen X F, et al. Study on the processing method of nighttime CO2 eddy covariance flux data in China FLUX. Science in China (Series D): Earth Sciences, 2006, 36(Supplement 1): 34-44. |
朱治林, 孙晓敏, 温学发, 等. 中国通量网(China FLUX)夜间CO2涡度相关通量数据处理方法研究. 中国科学D辑:地球科学, 2006, 36(增刊1): 34-44. | |
8 | Wang C L, Yu G R, Zhou G Y, et al. CO2 flux evaluation over the evergreen coniferous and broad-leaved mixed forest in Dinghushan. Science in China (Series D): Earth Sciences, 2006, 36(Supplement 1): 119-129. |
王春林, 于贵瑞, 周国逸, 等. 鼎湖山常绿针阔叶混交林CO2通量估算. 中国科学D辑: 地球科学, 2006, 36(增刊1): 119-129. | |
9 | Zhang Y Q, Liu C M, Yu Q, et al. Measurement and analysis of water, heat and CO2 flux from a farmland in the North China Plain. Acta Geographica Sinica, 2002, 57(3): 333-342. |
张永强, 刘昌明, 于强, 等. 华北平原典型农田水、热与CO2通量的测定. 地理学报, 2002, 57(3): 333-342. | |
10 | Sharkhuu A, Plante A F, Enkhmandal O, et al. Soil and ecosystem respiration responses to grazing, watering and experimental warming chamber treatments across topographical gradients in northern Mongolia. Geoderma, 2016, 269: 91-98. |
11 | Chen Z Z, Wang S P. China typical grassland ecosystem. Beijing: Science Press, 2000. |
陈佐忠, 汪诗平. 中国典型草原生态系统. 北京: 科学出版社, 2000. | |
12 | Feng Z M, Zhao L, An S Z, et al. Change characteristics of MODIS NDVI and its relations to climate factors in the Tianshan Mountains. Desert and Oasis Meteorology, 2015, 9(2): 57-62. |
冯志敏, 赵玲, 安沙舟, 等. 基于MODIS的天山山区草地类型植被指数变化特征及其与气候因子的关系. 沙漠与绿洲气象, 2015, 9(2): 57-62. | |
13 | Zhang L, Zhang X H. Dynamic analysis of community characteristics and diversity of grassland in the northern slope of Tianshan Mountain. Xinjiang Agricultural Sciences, 2017, 54(1): 148-155. |
张丽, 张鲜花. 天山北坡山地草原类组草地植物群落特征及多样性动态分析. 新疆农业科学, 2017, 54(1): 148-155. | |
14 | Xu P. Grassland resources and their utilization in Xinjiang. Urumqi: Xinjiang Science and Technology Health Press, 1993: 105-172. |
许鹏.新疆草地资源及其利用. 乌鲁木齐: 新疆科技卫生出版社, 1993: 105-172. | |
15 | Zheng W, Zhu J Z. Analysis of desertification process and driving force factors in grassland ecosystem of Xinjiang. Pratacultural Science, 2012, 29(9): 1340-1351. |
郑伟, 朱进忠. 新疆草地荒漠化过程及驱动因素分析. 草业科学, 2012, 29(9): 1340-1351. | |
16 | Liu H X, Sun Z J, Cui Y X, et al. Spatial distribution pattern and impact factors of soil bulk density in desert grassland of Northern Xinjiang. Chinese Journal of Grassland, 2021, 43(2): 82-91. |
刘慧霞, 孙宗玖, 崔雨萱, 等. 新疆北疆荒漠草地土壤容重空间分布格局及其影响因素. 中国草地学报, 2021, 43(2): 82-91. | |
17 | Chen C, Jing C Q, Xing W Y, et al. Desert grassland dynamics in the last 20 years and its response to climate change in Xinjiang. Acta Prataculturae Sinica, 2021, 30(3): 1-14. |
陈宸, 井长青, 邢文渊, 等. 近20年新疆荒漠草地动态变化及其对气候变化的响应. 草业学报, 2021, 30(3): 1-14. | |
18 | Han W J. Soil inorganic carbon distribution characteristics in typical grassland in north slope of Tianshan Mountains of Xinjiang. Urumqi: Xinjiang Agricultural University, 2015. |
韩文娟. 新疆天山北坡典型草地土壤无机碳特征. 乌鲁木齐: 新疆农业大学, 2015. | |
19 | Wang D W. Spatial distribution characteristics and influence factor analysis of carbon sequestration actuality on grassland ecosystem in north slope of Tianshan Mountains. Urumqi: Xinjiang Agricultural University, 2013. |
王德旺. 天山北坡草地生态系统固碳现状空间分布特征及其影响因素分析. 乌鲁木齐: 新疆农业大学, 2013. | |
20 | Ruimy A, Jarvis P G, Baldocchi D D, et al. CO2 fluxes over plant canopies and solar radiation: A review. Advances in Ecological Research, 1995, 26: 1-68. |
21 | Luo Y Q, Wan S Q, Hui D F, et al. Acclimatization of soil respiration to warming in a tall grass prairie. Nature, 2001, 413(6856): 622-625. |
22 | Rey A, Pegoraro E, Tedeschi V, et al. Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. Global Change Biology, 2002, 8(9): 851-866. |
23 | Campbell G S, Norman J M. An introduction to environmental biophysics. New York: Springer, 1998. |
24 | Sun S S, Wu Z P, Xiao Q T, et al. Factors influencing CO2 fluxes of a grassland ecosystem on the Yunnan-Guizhou Plateau, China. Acta Prataculturae Sinica, 2020, 29(4): 184-191. |
孙思思, 吴战平, 肖启涛, 等. 云贵高原草地生态系统CO2通量变化特征. 草业学报, 2020, 29(4): 184-191. | |
25 | Wang W Y, Guo J X, Wang Y S, et al. Observing characteristics of CO2 flux and its influencing factors over Xilinhot grassland. Journal of the Meteorological Sciences, 2015, 35(1): 100-107. |
汪文雅, 郭建侠, 王英舜, 等. 锡林浩特草原CO2通量特征及其影响因素分析. 气象科学, 2015, 35(1): 100-107. | |
26 | Chen Y P, Niu Y Y, Li W, et al. Characteristics of carbon flux in sandy grassland ecosystem under natural restoration in Horqin sandy land. Plateau Meteorology, 2019, 38(3): 650-659. |
陈银萍, 牛亚毅, 李伟, 等. 科尔沁沙地自然恢复沙质草地生态系统碳通量特征. 高原气象, 2019, 38(3): 650-659. | |
27 | Hu Y, Zhu X P, Jia H T, et al. Effects of fencing on ecosystem carbon exchange at meadow steppe in the northern slope of the Tianshan Mountains. Chinese Journal of Plant Ecology, 2018, 42(3): 372-381. |
胡毅, 朱新萍, 贾宏涛, 等. 围栏封育对天山北坡草甸草原生态系统碳交换的影响. 植物生态学报, 2018, 42(3): 372-381. | |
28 | Zhang Y J, Qiu L P, Gao H L, et al. Responses of ecosystem CO2 exchange to clipping in a semi-arid typical grassland on the Loess Plateau. Acta Ecologica Sinica, 2020, 40(1): 336-344. |
张燕江, 邱莉萍, 高海龙, 等. 黄土高原半干旱区典型草地生态系统CO2交换对刈割的响应. 生态学报, 2020, 40(1): 336-344. | |
29 | Sun X K, Lin L T, Yu Z Y, et al. Effects of nitrogen addition on ecosystem carbon exchange in a sandy grassland. Chinese Journal of Ecology, 2019, 38(1): 110-118. |
孙学凯, 林力涛, 于占源, 等. 施氮对沙质草地生态系统碳交换特征的影响. 生态学杂志, 2019, 38(1): 110-118. | |
30 | Xing P F, Li G, Chen X P, et al. Effects of grazing on carbon exchange in a Leymus secalinus grassland ecosystem in the agro-pastoral ecotone of Northern Shanxi. Acta Prataculturae Sinica, 2019, 28(10): 1-11. |
邢鹏飞, 李刚, 陈晓鹏, 等. 放牧对晋北农牧交错带赖草草地生态系统碳交换的影响. 草业学报, 2019, 28(10): 1-11. | |
31 | Li Y Z, Fan J W, Hu Z M, et al. The impact of different land uses and management strategies on ecosystem carbon exchange and its components in a typical temperate grassland area. Acta Ecologica Sinica, 2018, 38(22): 8194-8204. |
李愈哲, 樊江文, 胡中民, 等. 温性草原利用方式对生态系统碳交换及其组分的影响. 生态学报, 2018, 38(22): 8194-8204. | |
32 | Wang H B, Ma M G, Wang X F, et al. Carbon flux variation characteristics and its influencing factors in an alpine meadow ecosystem on eastern Qinghai-Tibetan plateau. Journal of Arid Land Resources and Environment, 2014, 28(6): 50-56. |
王海波, 马明国, 王旭峰, 等. 青藏高原东缘高寒草甸生态系统碳通量变化特征及其影响因素. 干旱区资源与环境, 2014, 28(6): 50-56. | |
33 | Wu L L, Gao X, Chu J M, et al. Net carbon exchange and its driving factors of Haloxylon ammodendron plantation in the oasis-desert ecotone of Minqin, China. Chinese Journal of Applied Ecology, 2019, 30(10): 3336-3346. |
吴利禄, 高翔, 褚建民, 等. 民勤绿洲-荒漠过渡带梭梭人工林净碳交换及其影响因子. 应用生态学报, 2019, 30(10): 3336-3346. | |
34 | Chu X J, Han G X, Xing Q H, et al. Net ecosystem exchange of CO2 on sunny and cloudy days over a reed wetland in the Yellow River Delta, China. Chinese Journal of Plant Ecology, 2015, 39(7): 661-673. |
初小静, 韩广轩, 邢庆会, 等. 阴天和晴天对黄河三角洲芦苇湿地净生态系统CO2交换的影响. 植物生态学报, 2015, 39(7): 661-673. | |
35 | Zhao L, Gu S, Xu S X, et al. Carbon flux and controlling process of alpine meadow on Qinghai-Tibetan plateau. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(5): 1054-1060. |
赵亮, 古松, 徐世晓, 等. 青藏高原高寒草甸生态系统碳通量特征及其控制因子. 西北植物学报, 2007, 27(5): 1054-1060. | |
36 | Knowles J F, Blanken P D, Williams M W. Soil respiration variability across a soil moisture and vegetation community gradient within a snow-scoured alpine meadow. Biogeochemistry, 2015, 125(2): 185-202. |
37 | Zhang T, Wang G X, Yang Y, et al. The seasonal variation of ecosystem respiration in different vegetation types in the permafrost regions of Qinghai-Tibet Plateau. Journal of Glaciology and Geocryology, 2018, 40(6): 1255-1264. |
张涛, 王根绪, 杨燕, 等. 青藏高原多年冻土区不同草地类型生态系统呼吸季节差异性. 冰川冻土, 2018, 40(6): 1255-1264. | |
38 | Jia C Z. Dynamic and impact factor of ecosystem respiration and photosynthesis of Alashan typical desert ecosystem. Hohhot: Inner Mongolia University, 2013. |
贾成朕. 阿拉善典型荒漠生态系统呼吸与光合动态及其影响因子研究. 呼和浩特: 内蒙古大学, 2013. | |
39 | Li J X, Zeng H, Zhu J T, et al. Responses of different experimental warming on ecosystem respiration in Tibetan alpine meadow. Ecology and Environmental Sciences, 2016, 25(10): 1612-1620. |
李军祥, 曾辉, 朱军涛, 等. 藏北高原高寒草甸生态系统呼吸对增温的响应. 生态环境学报, 2016, 25(10): 1612-1620. | |
40 | Zhang T, Wang G X, Yang Y, et al. Grassland types and season-dependent response of ecosystem respiration to experimental warming in a permafrost region in the Tibetan Plateau. Agricultural and Forest Meteorology, 2017, 247: 271-279. |
41 | Yang L Q, Han G X, Yu J B, et al. Effects of reclamation on net ecosystem CO2 exchange in wetland in the Yellow River Delta, China. Chinese Journal of Plant Ecology, 2013, 37(6): 503-516. |
杨利琼, 韩广轩, 于君宝, 等. 开垦对黄河三角洲湿地净生态系统CO2交换的影响. 植物生态学报, 2013, 37(6): 503-516. | |
42 | Yang Q P, Xu M, Liu H S, et al. Impact factors and uncertainties of the temperature sensitivity of soil respiration. Acta Ecologica Sinica, 2011, 31(8): 2301-2311. |
杨庆朋, 徐明, 刘洪升, 等. 土壤呼吸温度敏感性的影响因素和不确定性. 生态学报, 2011, 31(8): 2301-2311. | |
43 | Wang X G, Zhu B, Gao M R, et al. Seasonal variations in soil respiration and temperature sensitivity under three land-use types in hilly areas of the Sichuan Basin. Soil Research, 2008, 46(8): 727-734. |
44 | Davidson E A, Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 2006, 440(7081): 165-173. |
45 | Li C Y, Li X L, Sun H F, et al. Drought processes of alpine wetland and their influences on CO2 exchange. Acta Agrestia Sinca, 2020, 28(3): 750-758. |
李成一, 李希来, 孙华方, 等. 高寒湿地旱化过程及其对CO2交换的影响. 草地学报, 2020, 28(3): 750-758. |
[1] | 金玲, 陆颖, 马红彬, 谢应忠, 沈艳. 内蒙古鄂托克前旗荒漠草原植物群落的数量分类与排序[J]. 草业学报, 2022, 31(4): 12-21. |
[2] | 倪芳芳, 吕世杰, 屈志强, 白璐, 孟彪, 张博涵, 李治国. 不同载畜率下荒漠草原非生长季植物群落特征对近地面风沙通量的影响[J]. 草业学报, 2022, 31(3): 26-33. |
[3] | 杨鑫, 曹文侠, 鱼小军, 汪海斌, 郝媛媛. 基于近20年MODIS NDVI日数据的青海省草地资源动态监测及其对环境因子的响应[J]. 草业学报, 2021, 30(9): 1-14. |
[4] | 张峰, 孙嘉伟, 孙宇, 郑佳华, 乔荠瑢, 赵萌莉. 不同载畜率对短花针茅荒漠草原优势物种间关系及其空间分布特征的影响[J]. 草业学报, 2021, 30(8): 1-11. |
[5] | 吴旭东, 蒋齐, 任小玢, 俞鸿千, 王占军, 何建龙, 季波, 杜建民. 降水水平对荒漠草原生物土壤结皮碳、氮和微生物的影响[J]. 草业学报, 2021, 30(7): 34-43. |
[6] | 孙忠超, 郭天斗, 于露, 马彦平, 赵亚楠, 李雪颖, 王红梅. 宁夏东部荒漠草原向灌丛地人为转变过程土壤粒径分形特征[J]. 草业学报, 2021, 30(4): 34-45. |
[7] | 蒙仲举, 陈颜洁, 包斯琴. 苏尼特右旗荒漠草原三种放牧方式下群落斑块特征[J]. 草业学报, 2021, 30(4): 13-23. |
[8] | 顾继雄, 郭天斗, 王红梅, 李雪颖, 梁丹妮, 杨青莲, 高锦月. 宁夏东部荒漠草原向灌丛地转变过程土壤微生物响应[J]. 草业学报, 2021, 30(4): 46-57. |
[9] | 熊梅, 乔荠瑢, 杨阳, 张峰, 郑佳华, 吴建新, 赵萌莉. 不同载畜率下短花针茅和土壤生态化学计量特征研究[J]. 草业学报, 2021, 30(2): 212-219. |
[10] | 张静静, 刘尊驰, 鄢创, 王云霞, 刘凯, 时新荣, 袁志友. 土壤pH值变化对3种草原类型土壤碳氮磷生态化学计量特征的影响[J]. 草业学报, 2021, 30(2): 69-81. |
[11] | 张敏, NIPAPAN Kanjana, 李铷, 傅杨, 汤东生. 环境因子对云南扁穗雀麦种子萌发和出苗的影响[J]. 草业学报, 2021, 30(12): 143-151. |
[12] | 李静, 红梅, 闫瑾, 张宇晨, 梁志伟, 叶贺, 高海燕, 赵巴音那木拉. 短花针茅荒漠草原植被群落结构及生物量对水氮变化的响应[J]. 草业学报, 2020, 29(9): 38-48. |
[13] | 万芳, 蒙仲举, 党晓宏, 王瑞东, 张慧敏. 封育措施下荒漠草原针茅植物-土壤C、N、P化学计量特征[J]. 草业学报, 2020, 29(9): 49-55. |
[14] | 孙世贤, 丁勇, 李夏子, 吴新宏, 闫志坚, 尹强, 李金卓. 放牧强度季节调控对荒漠草原土壤风蚀的影响[J]. 草业学报, 2020, 29(7): 23-29. |
[15] | 于露, 周玉蓉, 赵亚楠, 郭天斗, 孙忠超, 王红梅. 荒漠草原土壤种子库对灌丛引入和降水梯度的响应特征[J]. 草业学报, 2020, 29(4): 41-50. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||