草业学报 ›› 2022, Vol. 31 ›› Issue (5): 51-60.DOI: 10.11686/cyxb2021121
陈文瑞(), 蒋朝, 周齐新, 王云琴, 李春鸣, 郭鹏辉, 刘慧霞()
收稿日期:
2021-03-29
修回日期:
2021-05-08
出版日期:
2022-05-20
发布日期:
2022-03-30
通讯作者:
刘慧霞
作者简介:
Corresponding author. E-mail: liuhuixia2@aliyun.com基金资助:
Wen-rui CHEN(), Zhao JIANG, Qi-xin ZHOU, Yun-qin WANG, column:LI Chun-ming, Peng-hui GUO, Hui-xia LIU()
Received:
2021-03-29
Revised:
2021-05-08
Online:
2022-05-20
Published:
2022-03-30
Contact:
Hui-xia LIU
摘要:
频繁的灌溉,使人工草地的高羊茅生长在盐渍化或潜在盐渍化环境中。硅可以抑制植物对Na+的吸收,增加对N、P和K+的吸收,从而提高植物的耐盐性,且这种影响因植物种类和品种的不同而不同。本研究采用盆栽试验,研究了不同程度盐生境下施硅对两个高羊茅品种(抗性弱的K31和抗性强的XD)生物量和植株N、P、K+、Na+含量的影响。结果表明,随着盐浓度的增加,两个高羊茅品种地上和地下生物量、N、P、K+含量降低,Na+含量增加。施硅对地上和地下生物量、N、P、K+、Na+含量的影响与盐浓度有关,在中低盐浓度下,施硅增加了高羊茅的地上、地下生物量、根冠比、N、P、K+ 含量、K+/ Na+ 值,降低了Na+含量。高盐浓度时,施硅对高羊茅的生物量和N、P、K+、Na+含量没有影响。施硅对两个高羊茅品种地上和地下生物量、Na+、P含量的影响相似,对K+、N含量的影响不同,硅对耐盐性较强的XD地上部K+及N含量的有利影响优于耐盐性较弱的K31。结果表明,在低中盐浓度条件下,施硅可以促进高羊茅的生长,并且对耐盐性较强的高羊茅品种XD更为有利。
陈文瑞, 蒋朝, 周齐新, 王云琴, 李春鸣, 郭鹏辉, 刘慧霞. 不同盐分条件下硅对两个高羊茅品种生物量分配和营养元素氮、磷、钾吸收利用的影响[J]. 草业学报, 2022, 31(5): 51-60.
Wen-rui CHEN, Zhao JIANG, Qi-xin ZHOU, Yun-qin WANG, column:LI Chun-ming, Peng-hui GUO, Hui-xia LIU. Effects of silicon on biomass allocation and uptake and utilization of nitrogen, phosphorus, and potassium in two tall fescue (Festuca arundinacea) cultivars under different salinity conditions[J]. Acta Prataculturae Sinica, 2022, 31(5): 51-60.
变异来源 Source of variation | SDW | RDW | R/S | 地上部Shoots | 地下部Roots | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
磷P | 钾K+ | 氮N | 钠Na+ | K+/Na+ | 磷P | 钾K+ | 氮N | 钠Na+ | K+/Na+ | ||||
品种Cultivar | 0.014 | 0.000 | 0.000 | 0.144 | 0.000 | 0.000 | 0.034 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
盐浓度Salinity | 0.000 | 0.000 | 0.005 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
硅处理Si | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
品种×盐浓度Cultivar×salinity | 0.015 | 0.000 | 0.003 | 0.000 | 0.002 | 0.367 | 0.012 | 0.000 | 0.584 | 0.000 | 0.000 | 0.000 | 0.000 |
品种×硅Cultivar×Si | 0.320 | 0.074 | 0.163 | 0.310 | 0.598 | 0.960 | 0.485 | 0.015 | 0.759 | 0.000 | 0.703 | 0.014 | 0.663 |
盐浓度×硅Salinity×Si | 0.000 | 0.000 | 0.207 | 0.000 | 0.201 | 0.032 | 0.000 | 0.000 | 0.047 | 0.002 | 0.000 | 0.000 | 0.006 |
品种×盐浓度×硅Cultivar×salinity×Si | 0.034 | 0.003 | 0.146 | 0.049 | 0.472 | 0.260 | 0.807 | 0.090 | 0.559 | 0.002 | 0.129 | 0.316 | 0.544 |
表1 品种、盐浓度和硅对高羊茅生物量和元素含量影响的三因素方差分析
Table 1 Three-way ANOVA of effect of cultivar, salinity and Si on biomass and element content of tall fescues (P-value)
变异来源 Source of variation | SDW | RDW | R/S | 地上部Shoots | 地下部Roots | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
磷P | 钾K+ | 氮N | 钠Na+ | K+/Na+ | 磷P | 钾K+ | 氮N | 钠Na+ | K+/Na+ | ||||
品种Cultivar | 0.014 | 0.000 | 0.000 | 0.144 | 0.000 | 0.000 | 0.034 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
盐浓度Salinity | 0.000 | 0.000 | 0.005 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
硅处理Si | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
品种×盐浓度Cultivar×salinity | 0.015 | 0.000 | 0.003 | 0.000 | 0.002 | 0.367 | 0.012 | 0.000 | 0.584 | 0.000 | 0.000 | 0.000 | 0.000 |
品种×硅Cultivar×Si | 0.320 | 0.074 | 0.163 | 0.310 | 0.598 | 0.960 | 0.485 | 0.015 | 0.759 | 0.000 | 0.703 | 0.014 | 0.663 |
盐浓度×硅Salinity×Si | 0.000 | 0.000 | 0.207 | 0.000 | 0.201 | 0.032 | 0.000 | 0.000 | 0.047 | 0.002 | 0.000 | 0.000 | 0.006 |
品种×盐浓度×硅Cultivar×salinity×Si | 0.034 | 0.003 | 0.146 | 0.049 | 0.472 | 0.260 | 0.807 | 0.090 | 0.559 | 0.002 | 0.129 | 0.316 | 0.544 |
品种Cultivars | 盐浓度Salinity (mmol·L | 硅处理Si | SDW (g·20 plant | RDW (g·20 plant |
---|---|---|---|---|
XD | 0 | +Si | 0.73±0.12b | 0.31±0.04a |
-Si | 0.77±0.12b | 0.27±0.02b | ||
50 | +Si | 0.48±0.03c | 0.14±0.01c | |
-Si | 0.38±0.09d | 0.09±0.05def | ||
100 | +Si | 0.28±0.01ef | 0.09±0.01de | |
-Si | 0.25±0.02fg | 0.05±0.03fg | ||
150 | +Si | 0.23±0.01fgh | 0.06±0.01defg | |
-Si | 0.20±0.03fghi | 0.05±0.01g | ||
200 | +Si | 0.12±0.07ijk | 0.03±0.00g | |
-Si | 0.18±0.02ghij | 0.06±0.01efg | ||
250 | +Si | 0.09±0.00jk | 0.03±0.00g | |
-Si | 0.17±0.01ghij | 0.05±0.01efg | ||
K31 | 0 | +Si | 0.73±0.05b | 0.29±0.03a |
-Si | 0.89±0.03a | 0.24±0.02b | ||
50 | +Si | 0.48±0.04c | 0.16±0.02c | |
-Si | 0.48±0.10c | 0.10±0.01d | ||
100 | +Si | 0.39±0.01cd | 0.14±0.01c | |
-Si | 0.36±0.05de | 0.09±0.00def | ||
150 | +Si | 0.25±0.05fg | 0.10±0.01d | |
-Si | 0.19±0.03fghij | 0.09±0.01def | ||
200 | +Si | 0.09±0.00jk | 0.04±0.01g | |
-Si | 0.17±0.01hijk | 0.05±0.01efg | ||
250 | +Si | 0.07±0.01k | 0.04±0.01g | |
-Si | 0.14±0.01ijk | 0.06±0.01efg |
表2 不同盐浓度下硅对两个高羊茅品种生物量的影响
Table 2 Effect of Si on biomass of two tall fescue cultivars under different salinities
品种Cultivars | 盐浓度Salinity (mmol·L | 硅处理Si | SDW (g·20 plant | RDW (g·20 plant |
---|---|---|---|---|
XD | 0 | +Si | 0.73±0.12b | 0.31±0.04a |
-Si | 0.77±0.12b | 0.27±0.02b | ||
50 | +Si | 0.48±0.03c | 0.14±0.01c | |
-Si | 0.38±0.09d | 0.09±0.05def | ||
100 | +Si | 0.28±0.01ef | 0.09±0.01de | |
-Si | 0.25±0.02fg | 0.05±0.03fg | ||
150 | +Si | 0.23±0.01fgh | 0.06±0.01defg | |
-Si | 0.20±0.03fghi | 0.05±0.01g | ||
200 | +Si | 0.12±0.07ijk | 0.03±0.00g | |
-Si | 0.18±0.02ghij | 0.06±0.01efg | ||
250 | +Si | 0.09±0.00jk | 0.03±0.00g | |
-Si | 0.17±0.01ghij | 0.05±0.01efg | ||
K31 | 0 | +Si | 0.73±0.05b | 0.29±0.03a |
-Si | 0.89±0.03a | 0.24±0.02b | ||
50 | +Si | 0.48±0.04c | 0.16±0.02c | |
-Si | 0.48±0.10c | 0.10±0.01d | ||
100 | +Si | 0.39±0.01cd | 0.14±0.01c | |
-Si | 0.36±0.05de | 0.09±0.00def | ||
150 | +Si | 0.25±0.05fg | 0.10±0.01d | |
-Si | 0.19±0.03fghij | 0.09±0.01def | ||
200 | +Si | 0.09±0.00jk | 0.04±0.01g | |
-Si | 0.17±0.01hijk | 0.05±0.01efg | ||
250 | +Si | 0.07±0.01k | 0.04±0.01g | |
-Si | 0.14±0.01ijk | 0.06±0.01efg |
图1 不同盐浓度下硅对两个高羊茅品种根冠比的影响不同小写字母表示不同处理间差异显著(P<0.05),下同。Different lowercase letters showed significant differences among different treatments (P<0.05), the same below.
Fig.1 Effect of Si on roots/shoots of two tall fescues cultivars under different salinities
品种Cultivars | 盐浓度Salinity (mmol·L-1) | 硅处理Si | ||||
---|---|---|---|---|---|---|
XD | 0 | +Si | 3.27±0.23a | 0.42±0.01b | 4.70±0.05c | 0.94±0.07j |
-Si | 3.15±0.01ab | 0.42±0.02bc | 4.78±0.10c | 0.82±0.01k | ||
50 | +Si | 3.11±0.09abc | 0.41±0.01bc | 3.92±0.11e | 0.92±0.01j | |
-Si | 2.85±0.03d | 0.39±0.01cd | 3.52±0.06fgh | 1.08±0.01i | ||
100 | +Si | 3.13±0.11abc | 0.37±0.00d | 3.75±0.14ef | 1.11±0.03hi | |
-Si | 2.80±0.02de | 0.30±0.01f | 3.20±0.18hijk | 1.35±0.01e | ||
150 | +Si | 2.93±0.12bcd | 0.31±0.01f | 3.46±0.04fgh | 1.25±0.02f | |
-Si | 2.54±0.04fgh | 0.24±0.01ghi | 3.02±0.10jk | 1.57±0.01c | ||
200 | +Si | 2.53±0.01fghi | 0.26±0.02gh | 2.98±0.08k | 1.46±0.01d | |
-Si | 2.44±0.07ghij | 0.24±0.01hi | 2.56±0.04l | 1.60±0.01c | ||
250 | +Si | 2.22±0.05jkl | 0.20±0.01jk | 2.06±0.06m | 1.60±0.01c | |
-Si | 2.28±0.03ijkl | 0.20±0.01k | 1.99±0.10m | 1.62±0.03c | ||
K31 | 0 | +Si | 2.76±0.06def | 0.46±0.02a | 5.62±0.31a | 0.84±0.03k |
-Si | 2.85±0.06d | 0.46±0.00a | 5.30±0.06ab | 0.80±0.00k | ||
50 | +Si | 2.89±0.07cd | 0.39±0.01cd | 5.19±0.21b | 0.94±0.00j | |
-Si | 2.67±0.03defg | 0.33±0.04ef | 4.76±0.02c | 1.24±0.03fg | ||
100 | +Si | 2.79±0.04de | 0.34±0.01e | 4.72±0.12c | 1.17±0.02gh | |
-Si | 2.49±0.02ghi | 0.30±0.01f | 4.31±0.03d | 1.44±0.01d | ||
150 | +Si | 2.57±0.03efgh | 0.27±0.01g | 4.28±0.05d | 1.32±0.02e | |
-Si | 2.33±0.04hijkl | 0.23±0.01hi | 3.92±0.06e | 1.64±0.01c | ||
200 | +Si | 2.39±0.05hijk | 0.24±0.01hi | 3.61±0.05efg | 1.58±0.02c | |
-Si | 2.17±0.03kl | 0.22±0.01ijk | 3.34±0.04hijk | 1.78±0.01b | ||
250 | +Si | 2.14±0.10lm | 0.22±0.01ijk | 3.39±0.07ghi | 1.88±0.01a | |
-Si | 1.93±0.03m | 0.23±0.03ij | 3.10±0.14ijk | 1.91±0.01a |
表3 不同盐浓度下硅对两个高羊茅品种地上部N、P、K+、Na+含量的影响
Table 3 Effect of Si on P, K+, Na+, N content in shoots of two tall fescue cultivars under different salinities (%)
品种Cultivars | 盐浓度Salinity (mmol·L-1) | 硅处理Si | ||||
---|---|---|---|---|---|---|
XD | 0 | +Si | 3.27±0.23a | 0.42±0.01b | 4.70±0.05c | 0.94±0.07j |
-Si | 3.15±0.01ab | 0.42±0.02bc | 4.78±0.10c | 0.82±0.01k | ||
50 | +Si | 3.11±0.09abc | 0.41±0.01bc | 3.92±0.11e | 0.92±0.01j | |
-Si | 2.85±0.03d | 0.39±0.01cd | 3.52±0.06fgh | 1.08±0.01i | ||
100 | +Si | 3.13±0.11abc | 0.37±0.00d | 3.75±0.14ef | 1.11±0.03hi | |
-Si | 2.80±0.02de | 0.30±0.01f | 3.20±0.18hijk | 1.35±0.01e | ||
150 | +Si | 2.93±0.12bcd | 0.31±0.01f | 3.46±0.04fgh | 1.25±0.02f | |
-Si | 2.54±0.04fgh | 0.24±0.01ghi | 3.02±0.10jk | 1.57±0.01c | ||
200 | +Si | 2.53±0.01fghi | 0.26±0.02gh | 2.98±0.08k | 1.46±0.01d | |
-Si | 2.44±0.07ghij | 0.24±0.01hi | 2.56±0.04l | 1.60±0.01c | ||
250 | +Si | 2.22±0.05jkl | 0.20±0.01jk | 2.06±0.06m | 1.60±0.01c | |
-Si | 2.28±0.03ijkl | 0.20±0.01k | 1.99±0.10m | 1.62±0.03c | ||
K31 | 0 | +Si | 2.76±0.06def | 0.46±0.02a | 5.62±0.31a | 0.84±0.03k |
-Si | 2.85±0.06d | 0.46±0.00a | 5.30±0.06ab | 0.80±0.00k | ||
50 | +Si | 2.89±0.07cd | 0.39±0.01cd | 5.19±0.21b | 0.94±0.00j | |
-Si | 2.67±0.03defg | 0.33±0.04ef | 4.76±0.02c | 1.24±0.03fg | ||
100 | +Si | 2.79±0.04de | 0.34±0.01e | 4.72±0.12c | 1.17±0.02gh | |
-Si | 2.49±0.02ghi | 0.30±0.01f | 4.31±0.03d | 1.44±0.01d | ||
150 | +Si | 2.57±0.03efgh | 0.27±0.01g | 4.28±0.05d | 1.32±0.02e | |
-Si | 2.33±0.04hijkl | 0.23±0.01hi | 3.92±0.06e | 1.64±0.01c | ||
200 | +Si | 2.39±0.05hijk | 0.24±0.01hi | 3.61±0.05efg | 1.58±0.02c | |
-Si | 2.17±0.03kl | 0.22±0.01ijk | 3.34±0.04hijk | 1.78±0.01b | ||
250 | +Si | 2.14±0.10lm | 0.22±0.01ijk | 3.39±0.07ghi | 1.88±0.01a | |
-Si | 1.93±0.03m | 0.23±0.03ij | 3.10±0.14ijk | 1.91±0.01a |
品种Cultivars | 盐浓度Salinity (mmol·L-1) | 硅处理Si | ||||
---|---|---|---|---|---|---|
XD | 0 | +Si | 3.85±0.05a | 0.51±0.01a | 1.83±0.07cde | 1.57±0.09j |
-Si | 3.99±0.06a | 0.50±0.01ab | 1.77±0.01ef | 1.61±0.05j | ||
50 | +Si | 3.66±0.06b | 0.48±0.01bc | 1.80±0.01def | 3.46±0.20hi | |
-Si | 3.24±0.05d | 0.45±0.01de | 1.75±0.01efg | 4.52±0.32g | ||
100 | +Si | 3.43±0.03c | 0.46±0.00cd | 1.77±0.01ef | 4.39±0.30g | |
-Si | 3.02±0.13e | 0.42±0.01fg | 1.70±0.00fgh | 5.71±0.14f | ||
150 | +Si | 3.26±0.03d | 0.43±0.01ef | 1.72±0.01fg | 5.80±0.31f | |
-Si | 2.75±0.03f | 0.37±0.01h | 1.66±0.01ghi | 6.60±0.14de | ||
200 | +Si | 2.99±0.04e | 0.39±0.02gh | 1.65±0.00ghi | 6.97±0.75cd | |
-Si | 2.52±0.09gh | 0.33±0.01i | 1.57±0.00ij | 7.55±0.20b | ||
250 | +Si | 2.43±0.03hi | 0.32±0.01ij | 1.51±0.01jk | 8.23±0.14a | |
-Si | 2.30±0.05ij | 0.31±0.01ij | 1.50±0.01jk | 8.67±0.11a | ||
K31 | 0 | +Si | 2.62±0.08fg | 0.41±0.00fg | 2.29±0.00a | 0.85±0.06k |
-Si | 2.58±0.03fgh | 0.36±0.01h | 2.28±0.00a | 0.80±0.02k | ||
50 | +Si | 2.71±0.03f | 0.37±0.01h | 2.27±0.01a | 0.94±0.03j | |
-Si | 2.21±0.01j | 0.33±0.00i | 2.17±0.01b | 1.24±0.16fg | ||
100 | +Si | 2.42±0.03hi | 0.33±0.01i | 2.20±0.10ab | 1.17±0.14gh | |
-Si | 1.94±0.06k | 0.29±0.01j | 1.87±0.01cd | 1.44±0.13d | ||
150 | +Si | 2.03±0.05k | 0.29±0.00j | 1.91±0.01c | 1.32±0.04e | |
-Si | 1.74±0.01l | 0.24±0.01k | 1.61±0.03hi | 1.64±0.11c | ||
200 | +Si | 1.64±0.05l | 0.25±0.01k | 1.43±0.03kl | 1.58±0.23c | |
-Si | 1.36±0.03m | 0.20±0.01l | 1.29±0.03m | 1.78±0.12b | ||
250 | +Si | 1.02±0.06n | 0.20±0.01l | 1.41±0.02l | 1.88±0.06a | |
-Si | 0.93±0.02n | 0.18±0.01l | 1.21±0.01m | 1.91±0.12a |
表4 不同盐浓度下硅对两个高羊茅品种地下部N、P、K+、Na+含量的影响
Table 4 Effect of Si on P, K+, Na+, N content in roots of two tall fescue cultivars under different salinities (%)
品种Cultivars | 盐浓度Salinity (mmol·L-1) | 硅处理Si | ||||
---|---|---|---|---|---|---|
XD | 0 | +Si | 3.85±0.05a | 0.51±0.01a | 1.83±0.07cde | 1.57±0.09j |
-Si | 3.99±0.06a | 0.50±0.01ab | 1.77±0.01ef | 1.61±0.05j | ||
50 | +Si | 3.66±0.06b | 0.48±0.01bc | 1.80±0.01def | 3.46±0.20hi | |
-Si | 3.24±0.05d | 0.45±0.01de | 1.75±0.01efg | 4.52±0.32g | ||
100 | +Si | 3.43±0.03c | 0.46±0.00cd | 1.77±0.01ef | 4.39±0.30g | |
-Si | 3.02±0.13e | 0.42±0.01fg | 1.70±0.00fgh | 5.71±0.14f | ||
150 | +Si | 3.26±0.03d | 0.43±0.01ef | 1.72±0.01fg | 5.80±0.31f | |
-Si | 2.75±0.03f | 0.37±0.01h | 1.66±0.01ghi | 6.60±0.14de | ||
200 | +Si | 2.99±0.04e | 0.39±0.02gh | 1.65±0.00ghi | 6.97±0.75cd | |
-Si | 2.52±0.09gh | 0.33±0.01i | 1.57±0.00ij | 7.55±0.20b | ||
250 | +Si | 2.43±0.03hi | 0.32±0.01ij | 1.51±0.01jk | 8.23±0.14a | |
-Si | 2.30±0.05ij | 0.31±0.01ij | 1.50±0.01jk | 8.67±0.11a | ||
K31 | 0 | +Si | 2.62±0.08fg | 0.41±0.00fg | 2.29±0.00a | 0.85±0.06k |
-Si | 2.58±0.03fgh | 0.36±0.01h | 2.28±0.00a | 0.80±0.02k | ||
50 | +Si | 2.71±0.03f | 0.37±0.01h | 2.27±0.01a | 0.94±0.03j | |
-Si | 2.21±0.01j | 0.33±0.00i | 2.17±0.01b | 1.24±0.16fg | ||
100 | +Si | 2.42±0.03hi | 0.33±0.01i | 2.20±0.10ab | 1.17±0.14gh | |
-Si | 1.94±0.06k | 0.29±0.01j | 1.87±0.01cd | 1.44±0.13d | ||
150 | +Si | 2.03±0.05k | 0.29±0.00j | 1.91±0.01c | 1.32±0.04e | |
-Si | 1.74±0.01l | 0.24±0.01k | 1.61±0.03hi | 1.64±0.11c | ||
200 | +Si | 1.64±0.05l | 0.25±0.01k | 1.43±0.03kl | 1.58±0.23c | |
-Si | 1.36±0.03m | 0.20±0.01l | 1.29±0.03m | 1.78±0.12b | ||
250 | +Si | 1.02±0.06n | 0.20±0.01l | 1.41±0.02l | 1.88±0.06a | |
-Si | 0.93±0.02n | 0.18±0.01l | 1.21±0.01m | 1.91±0.12a |
1 | Cao Y J, Wei Q, Liao Y, et al. Ectopic overexpression of AtHDG11 in tall fescue resulted in enhanced tolerance to drought and salt stress. Plant Cell Reports, 2009, 28(4): 579-588. |
2 | Abbasdokht H, Edalatpisheh M R. The effect of priming and salinity on physiological and chemical characteristics of wheat (Triticum aestivum L.). Desert, 2013, 17(1): 183-192. |
3 | Rozema J, Flowers T. Crops for a salinized world. Science, 2008, 322: 1478-1480. |
4 | Soylemezoglu G, Demir K, Inal A, et al. Effect of silicon on antioxidant and stomatal response of two grapevine (Vitis vinifera L.) rootstocks grown in boron toxic, saline and boron toxic-saline soil. Scientia Horticulturae, 2009, 123(2): 240-246. |
5 | Yin L, Wang S, Li J, et al. Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiologiae Plantarum, 2013, 35(11): 3099-3107. |
6 | Hellal F A, Abdelhameid M, Abo-Basha D M, et al. Alleviation of the adverse effects of soil salinity stress by foliar application of silicon on faba bean (Vica faba L.). Journal of Applied Sciences Research, 2012, 8(8): 4428-4433. |
7 | Hussein M. Growth and mineral status of moringa plants as affected by silicate and salicylic acid under salt stress. International Journal of Plant & Soil Science, 2014, 3(2): 163-177. |
8 | Ali A, Basra S M A, Iqbal J, et al. Silicon mediated biochemical changes in wheat under salinized and non-salinized solution cultures. African Journal of Biotechnology, 2012, 11(3): 606-615. |
9 | Ali A, Basra S M A, Ahmad R, et al. Optimizing silicon application to improve salinity tolerance in wheat. Soil and Environment, 2009, 28(2): 136-144. |
10 | Liu D L, Zhang H, Cao X C, et al. Effects of silicon on the physiological metabolism of tested Pennisetum under salt stress. Acta Agrestia Sinica, 2013(6): 1119-1123. |
刘大林, 张华, 曹喜春, 等. 硅对盐胁迫下不同狼尾草属牧草生理代谢的影响. 草地学报, 2013(6): 1119-1123. | |
11 | Zhu Y X, Xu X B, Hu Y H, et al. Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L. Plant Cell Reports, 2015, 34(9): 1629-1646. |
12 | Wang Y P, Wang Y X, Bai X L, et al. Effects of exogenous silicon on melon seed germination and the growth of seedlings under NaCl stress. Acta Prataculturae Sinica, 2015, 24(5): 108-116. |
王玉萍, 王映霞, 白向利, 等. 硅对NaCl胁迫下甜瓜种子萌发及幼苗生长的影响. 草业学报, 2015, 24(5): 108-116. | |
13 | Liu H X, Guo X H, Guo Z G. Effect of silicon supply on tall fescue (Festuca arundinacea) growth under the salinization conditions. Acta Ecologica Sinica, 2011, 31(23): 7039-7046. |
刘慧霞, 郭兴华, 郭正刚. 盐生境下硅对坪用高羊茅生物学特性的影响. 生态学报, 2011, 31(23): 7039-7046. | |
14 | Fahad S, Hussain S, Matloob A, et al. Phytohormones and plant responses to salinity stress: A review. Plant Growth Regulation, 2014, 75(2): 391-404. |
15 | Asish K P, Anath B D. Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety, 2005, 60(3): 324-349. |
16 | Mali M, Aery N C. Effect of silicon on growth, biochemical constituents, and mineral nutrition of cowpea. Communications in Soil Science and Plant Analysis, 2009, 40(7/8): 1041-1052. |
17 | Eun J B, Kwang S L, Moo R H, et al. Silicon significantly alleviates the growth inhibitory effects of NaCl in salt-sensitive ‘Perfection’ and ‘Midnight’ kentucky bluegrass ( Poa pratensis L.). Horticulture, Environment, and Biotechnology, 2012, 53(6): 477-483. |
18 | Zhu Z J, Wei G Q, Li J, et al. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science, 2004, 167(3): 527-533. |
19 | Wang G Y, Cui L. Effects of different substrate compositions on growth of potted Pyrus calleryana seedlings. Guizhou Agricultural Sciences, 2013, 41(3): 132-134. |
王贵元, 崔菻. 不同基质配比对盆栽豆梨实生苗生长的影响. 贵州农业科学, 2013, 41(3): 132-134. | |
20 | Wang G Y, Hu R. Effects of different substrate compositions on growth of pot trifoliate orange of seedlings. Henan Agricultural Sciences, 2012, 41(4): 121-124. |
王贵元, 胡容. 不同基质配比对盆栽枳壳实生苗生长的影响. 河南农业科学, 2012, 41(4): 121-124. | |
21 | Liang X L, Wang H H, Hu Y F, et al. Silicon does not mitigate cell death in cultured tobacco BY-2 cells subjected to salinity without ethylene emission. Plant Cell Reports, 2015, 34(2): 331-343. |
22 | Lekshmy S, Sairam R K, Kushwaha S R. Effect of long-term salinity stress on growth and nutrient uptake in contrasting wheat genotypes. Indian Journal of Plant Physiology, 2013, 18(4): 344-353. |
23 | Gurmani A R, Bano A, Ullah N, et al. Exogenous abscisic acid (ABA) and silicon (Si) promote salinity tolerance by reducing sodium (Na+) transport and bypass flow in rice (Oryza sativa indica). Australian Journal of Crop Science, 2013, 7(9): 1219-1226. |
24 | Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651-681. |
25 | Liang Y C. Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant and Soil, 1999, 209(2): 217-224. |
26 | Manivannan A, Soundararajan P, ArumAbinaya L S, et al. Silicon-mediated enhancement of physiological and biochemical characteristics of Zinnia elegans “Dreamland Yellow” grown under salinity stress. Horticulture, Environment, and Biotechnology, 2016, 56(6): 721-731. |
27 | Liang Y, Zhang W, Qin C, et al. Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.). Environmental & Experimental Botany, 2006, 57(3): 212-219. |
28 | Tuna A L, Kaya C, Higgs D, et al. Silicon improves salinity tolerance in wheat plants. Environmental and Experimental Botany, 2007, 62(1): 10-16. |
29 | Liang Y C, Ding R X, Liu Q. Effects of silicon on salt tolerance of barley and its mechanism. Scientia Agricultura Sinica, 1999(6): 75-83. |
梁永超, 丁瑞兴, 刘谦. 硅对大麦耐盐性的影响及其机制. 中国农业科学, 1999(6): 75-83. | |
30 | Frechilla S, Lasa B, Ibarretxe L, et al. Pea responses to saline stress is affected by the source of nitrogen nutrition (ammonium or nitrate). Plant Growth Regulation, 2001, 35(2): 171-179. |
[1] | 秦格霞, 吴静, 李纯斌, 吉珍霞, 邱政超, 李颖. 基于机器学习算法的天祝藏族自治县草地地上生物量反演[J]. 草业学报, 2022, 31(4): 177-188. |
[2] | 郭文婷, 王国华, 缑倩倩, 刘婧. 河西走廊荒漠绿洲过渡带3种典型一年生藜科植物构件生长及生物量分配特征[J]. 草业学报, 2022, 31(2): 25-38. |
[3] | 韩小雨, 郭宁, 李冬冬, 谢明阳, 焦峰. 氮添加对内蒙古不同草原生物量及土壤碳氮变化特征的影响[J]. 草业学报, 2022, 31(1): 13-25. |
[4] | 杨志民, 邢瑞, 丁鋆嘉, 庄黎丽. 基于转录组测序的高羊茅分蘖与株高相关差异表达基因分析[J]. 草业学报, 2022, 31(1): 145-163. |
[5] | 薛晴, 陈斌, 杨小梅, 杨宇佳, 李子葳, 薄杉, 何淼. 不同光强下4种鸭跖草科植物的生物量分配、水分生理及光响应特征[J]. 草业学报, 2022, 31(1): 69-80. |
[6] | 郭丰辉, 丁勇, 马文静, 李贤松, 李西良, 侯向阳. 母体放牧经历对羊草克隆后代干旱敏感性的影响[J]. 草业学报, 2021, 30(8): 119-126. |
[7] | 马婧婧, 刘耘华, 盛建东, 李宁, 武红旗, 贾宏涛, 孙宗玖, 程军回. 新疆草地优势种植物相对生物量沿海拔梯度变化特征[J]. 草业学报, 2021, 30(8): 25-35. |
[8] | 彭磊, 张力, 周小龙, 万彦博, 师庆东. 水分胁迫对新疆准东地区钠猪毛菜的生活史对策的影响[J]. 草业学报, 2021, 30(5): 65-74. |
[9] | 张亦然, 刘廷玺, 童新, 段利民, 吴宇辰. 基于XGBoost算法的草甸地上生物量的高光谱遥感反演[J]. 草业学报, 2021, 30(4): 1-12. |
[10] | 王子欣, 胡国铮, 水宏伟, 葛怡情, 韩玲, 高清竹, 干珠扎布, 旦久罗布. 不同时期干旱对青藏高原高寒草甸生态系统碳交换的影响[J]. 草业学报, 2021, 30(4): 24-33. |
[11] | 顾继雄, 郭天斗, 王红梅, 李雪颖, 梁丹妮, 杨青莲, 高锦月. 宁夏东部荒漠草原向灌丛地转变过程土壤微生物响应[J]. 草业学报, 2021, 30(4): 46-57. |
[12] | 张茹, 李建平, 彭文栋, 王芳, 李志刚. 柠条枝条覆盖对宁夏荒漠草原土壤水热及补播牧草生物量的影响[J]. 草业学报, 2021, 30(4): 58-67. |
[13] | 吕广一, 徐学宝, 高翠萍, 于志慧, 王新雅, 王成杰. 放牧对内蒙古不同类型草原植物和土壤总氮与稳定氮同位素的影响[J]. 草业学报, 2021, 30(3): 208-214. |
[14] | 张殿岱, 王雪梅, 昝梅. 基于Landsat 8 OLI影像的渭-库绿洲植被地上生物量估算[J]. 草业学报, 2021, 30(11): 1-12. |
[15] | 王玲玲, 库努都孜阿依·吐鲁洪null, 孟广飞, 郭正刚. 土壤水分和植株密度互作对垂穗披碱草地下营养繁殖及生物量的影响[J]. 草业学报, 2021, 30(11): 52-61. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||