草业学报 ›› 2021, Vol. 30 ›› Issue (4): 24-33.DOI: 10.11686/cyxb2020276
王子欣1,2(), 胡国铮1,2(), 水宏伟1,2, 葛怡情1,2, 韩玲1,2, 高清竹1,2, 干珠扎布1,2, 旦久罗布3
收稿日期:
2020-06-16
修回日期:
2020-10-10
出版日期:
2021-04-20
发布日期:
2021-03-16
通讯作者:
胡国铮
作者简介:
Corresponding author. E-mail: huguozheng@caas.cn基金资助:
Zi-xin WANG1,2(), Guo-zheng HU1,2(), Hong-wei SHUI1,2, Yi-qing GE1,2, Ling HAN1,2, Qing-zhu GAO1,2, Ganjurjav HASBAGAN1,2, Luo-bu DANJIU3
Received:
2020-06-16
Revised:
2020-10-10
Online:
2021-04-20
Published:
2021-03-16
Contact:
Guo-zheng HU
摘要:
极端干旱事件能够显著地改变土壤水热条件和群落特征,进而影响生态系统碳交换。以青藏高原高寒草甸为研究对象,通过设置截雨棚,模拟发生在生长季前期(返青期,5-6月)和中期(快速生长期,7-8月)的极端干旱事件,研究不同时期干旱对群落特征和生态系统碳交换的影响。结果发现:不同时期干旱事件对高寒草甸生态系统的影响均表现在生长季中期,生长季前期干旱处理(ED)下,群落植被高度、盖度和地上生物量均显著降低于对照(CK) (P<0.05);此外,ED和生长季中期干旱处理(MD)均显著抑制了总生态系统生产力(GEP)和生态系统呼吸(ER) (P<0.05),且MD显著降低了净生态系统碳交换(NEE)(P<0.05)。相关分析结果表明,ED处理下,生长季中期的土壤体积含水量与ER显著正相关(P<0.05);MD处理下,在生长季前期的土壤体积含水量、群落地上生物量均与ER显著正相关(P<0.05)。表明生长季不同时期干旱对生态系统碳交换的影响机理不同,生长季前期干旱主要通过抑制植物生长过程影响碳交换,而生长季中期干旱则主要通过抑制植物生理活动影响碳交换。研究结果加深了高寒草甸生态系统对不同时期干旱响应的认识,为气候变化预测研究提供了数据支撑。
王子欣, 胡国铮, 水宏伟, 葛怡情, 韩玲, 高清竹, 干珠扎布, 旦久罗布. 不同时期干旱对青藏高原高寒草甸生态系统碳交换的影响[J]. 草业学报, 2021, 30(4): 24-33.
Zi-xin WANG, Guo-zheng HU, Hong-wei SHUI, Yi-qing GE, Ling HAN, Qing-zhu GAO, Ganjurjav HASBAGAN, Luo-bu DANJIU. Effect of seasonal timing of drought on carbon exchange in the alpine meadow ecosystem of the Qinghai-Tibetan Plateau[J]. Acta Prataculturae Sinica, 2021, 30(4): 24-33.
图1 不同时期降水量及干旱对土壤体积含水量的影响EGS: 生长季前期Early growing season;MGS: 生长季中期Middle growing season.不同小写字母表示在0.05水平上差异显著。下同。The different lowercase letters represent significant differences at the 0.05 level. The same below.
Fig.1 Effects of precipitation and drought on soil volume water content at different times
图3 不同生长期干旱对总生态系统生产力、生态系统呼吸和生态系统净碳循环的影响
Fig.3 Effects of drought in different growth period on gross ecosystem productivity (GEP), ecosystem respiration (ER) and ecosystem net carbon cycle (NEE)
图4 土壤体积含水量与总生态系统生产力、生态系统呼吸、净生态系统碳交换之间的相关性分析
Fig.4 Correlation analysis of soil volume water content and gross ecosystem productivity (GEP), ecosystem respiration (ER), net ecosystem carbon exchange (NEE)
图5 群落地上生物量与总生态系统生产力、生态系统呼吸、净生态系统碳交换之间的相关性分析
Fig.5 Correlation analysis of above-ground biomass and gross ecosystem productivity (GEP), ecosystem respiration (ER), net ecosystem carbon exchange (NEE)
1 | Zhang Y L, Li B Y, Zheng D. A discussion on the boundary and area of the Tibetan Plateau in China. Geographical Research, 2002, 21(1):1-8. |
张镱锂, 李炳元, 郑度. 论青藏高原范围与面积. 地理研究, 2002, 21(1): 1-8. | |
2 | Gao Q Z, Li Y, Xu H M, et al. Adaptation strategies of climate variability impacts on alpine grassland ecosystems in Tibetan Plateau. Mitigation and Adaptation Strategies for Global Change, 2014, 19(2): 199-209. |
3 | Zheng D, Lin Z Y, Zhang X Q. Progress in studies of Tibetan Plateau and global environmental China. Earth Science Frontiers, 2002, 9(1): 95-102. |
郑度, 林振耀, 张雪芹. 青藏高原与全球环境变化研究进展. 地学前缘, 2002, 9(1): 95-102. | |
4 | Wu G L, Du G Z. Discussion on ecological construction and sustainable development of degraded alpine grassland ecosystem of the Qinghai-Tibetan Plateau. China Journal of Nature, 2007, 29(3): 159-164. |
武高林, 杜国祯. 青藏高原退化高寒草地生态系统恢复和可持续发展探讨. 自然杂志, 2007, 29(3): 159-164. | |
5 | Gao Q Z, Duan M J, Wan Y F, et al. Comprehensive evaluation of eco-environmental sensitivity in Northern Tibet. Acta Ecological Sinica,2010, 30(15): 4129-4136. |
高清竹, 段敏杰, 万运帆, 等. 藏北地区生态与环境敏感性评价. 生态学报, 2010, 30(15): 4129-4136. | |
6 | Geng X D, Xu R, Liu Y W. Responses of ecosystem carbon exchange to multi-level water addition in an alpine meadow in Namtso of Qinghai-Xizang Plateau, China. Chinese Journal of Plant Ecology, 2018, 42(3): 143-151. |
耿晓东, 旭日, 刘永稳. 青藏高原纳木错高寒草甸生态系统碳交换对多梯度增水的响应. 植物生态学报, 2018, 42(3): 143-151. | |
7 | Li Y, Ganjurjav H, Hu G Z, et al. Effects of warming on carbon exchange in an alpine steppe in the Tibetan Plateau. Acta Ecological Sinica, 2019, 39(6): 2004-2012. |
李岩, 干珠扎布, 胡国铮, 等. 增温对青藏高原高寒草原生态系统碳交换的影响. 生态学报, 2019, 39(6): 2004-2012. | |
8 | Yan W C, Sun G, Zhang C B, et al. Impacts of experimental warming and moderate grazing on ecosystem carbon exchange and its compositions in an alpine meadow on the eastern Qinghai Tibetan Plateau. Chinese Journal of Applied and Environmental Biology, 2018, 24(1): 132-139. |
严文超, 孙庚, 张春波, 等. 模拟增温和中度放牧对青藏高原东部高寒草甸生态系统净碳交换及组分的影响. 应用与环境生物学报, 2018, 24(1): 132-139. | |
9 | Zhu T H, Cheng S L, Fang H J, et al. Early responses of soil CO2 emission to simulating atmospheric nitrogen deposition in an alpine meadow on the Qinghai Tibetan Plateau. Acta Ecological Sinica, 2011, 31(10): 2687-2696. |
朱天鸿, 程淑兰, 方华军, 等. 青藏高原高寒草甸土壤CO2 排放对模拟氮沉降的早期响应. 生态学报, 2011, 31(10): 2687-2696. | |
10 | Jiang Q. Responses and adaptation mechanisms of ecosystem carbon exchange to a simulated drought in Songnen Grassland. Changchun: Northeast Normal University, 2016. |
姜琦. 松嫩草地生态系统碳交换对模拟干旱的响应及适应机制. 长春: 东北师范大学, 2016. | |
11 | Lv X R, Lv X Y. Climate tendency analysis of warming and drying in grassland of northeast Qingzang Plateau of China. Grassland of China, 2002, 24(4): 8-13. |
吕晓蓉, 吕晓英. 青藏高原东北部草地气候暖干化趋势分析. 中国草地, 2002, 24(4): 8-13. | |
12 | Gong D Y, Shi P J, Wang J A. Daily precipitation changes in the semi-arid region over Northern China. Journal of Arid Environments, 2004, 59(4): 771-784. |
13 | Wu L, Bai Y F, Zhang B C. Influence of precipitation on productivity of alpine grassland. Heilongjiang Animal Science and Veterinary Medicine, 2015(9): 147-148. |
吴霖, 白艳芬, 张宝成. 降水对高寒草原生产力的影响. 黑龙江畜牧兽医, 2015(9): 147-148. | |
14 | Chen S H, Zhang H, Hou Q, et al. Study on drought index of Inner Mongolia grassland. Pratacultural Science, 2007, 24(6): 82-86. |
陈素华, 张化, 侯琼, 等. 内蒙古草原干旱指标的研究. 草业科学, 2007, 24(6): 82-86. | |
15 | Huang X Z, Hao Y B, Wang Y F, et al. Impact of extreme on net ecosystem exchange from Leymus chinensis steppe in Xilin river basin, China. Journal of Plant Ecology, 2006, 30(6): 894-900. |
黄祥忠, 郝彦宾, 王艳芬, 等. 极端干旱条件下锡林河流域羊草草原净生态系统碳交换特征. 植物生态学报, 2006, 30(6): 894-900. | |
16 | Hao Y B, Cui X Y, Wang Y F, et al. Predominance of precipitation and temperature controls on ecosystem CO2 exchange in Zoige Alpine Wetlands of Southwest China. Wetlands, 2011, 31(2): 413-422. |
17 | Choat B, Jansen S, Brodribb T J, et al. Global convergence in the vulnerability of forests to drought. Nature, 2012, 491: 752-755. |
18 | Miranda A C, Miranda H S, Lloyd J, et al. Fluxes of carbon, water and energy over Brazilian cerrado: An analysis using eddy covariance and stable isotopes. Plant Cell & Environment, 2010, 20(3): 315-328. |
19 | Reichstein M, Bahn M, Ciais P, et al. Climate extremes and the carbon cycle. Nature, 2013, 500: 287-295. |
20 | Ge S, Ai J F, Nima C R, et al. CI index was used to analyze the characteristics of drought climate change in Tibet in the past 50 years. Tibets Science Technology, 2011(5): 65-69. |
格桑, 艾俊峰, 尼玛次仁, 等. 初步采用CI指标分析西藏近50年干旱气候变化特征. 西藏科技, 2011(5): 65-69. | |
21 | Yuan L, Liu Y L, Ma P F. Temporal and spatial patterns of drought based on standard precipitation index (SPI) in Tibet during 1981-2013. Chinese Agricultural Science Bulletin, 2015, 31(25): 228-234. |
袁雷, 刘依兰, 马鹏飞. 基于标准化降水指数的1981-2013年西藏干旱时空特征分析. 中国农学通报, 2015, 31(25): 228-234. | |
22 | Li M F, Dong Y S, Qi Y C, et al. Impact of extreme drought on the fluxes of CO2, CH4 and N2O from temperate steppe ecosystems. Resources Science, 2004(3): 89-95. |
李明峰, 董云社, 齐玉春, 等. 极端干旱对温带草地生态系统CO2、CH4、N2O通量特征的影响. 资源科学, 2004(3): 89-95. | |
23 | Zhu J T, Chen N, Zhang Y J, et al. Effects of experimental warming on net ecosystem CO2 exchange in Northern Xizang alpine meadow. Chinese Journal of Plant Ecology, 2016, 40(12): 1219-1229. |
朱军涛, 陈宁, 张扬建, 等. 不同幅度的实验增温对藏北高寒草甸净生态系统碳交换的影响. 植物生态学报, 2016, 40(12): 1219-1229. | |
24 | Wang D X. Emission fluxes of carbon dioxide, methane and nitrous oxide from peat marsh in Zoigê Plateau. Wetland Science, 2010, 8(3): 220-224. |
王德宣. 若尔盖高原泥炭沼泽二氧化碳、甲烷和氧化亚氮排放通量研究. 湿地科学, 2010, 8(3): 220-224. | |
25 | Ganjurjav H. Ecosystem carbon exchange under warming and precipitation enhancement in Kobresia pygmaea meadow in Northern Tibet. Beijing: Chinese Academy of Agricultural Sciences, 2013. |
干珠扎布. 增温增雨对藏北小嵩草草甸生态系统碳交换的影响. 北京: 中国农业科学院, 2013. | |
26 | Chelmeg, Liu X P, He Y H, et al. Response of herbaceous plant community characteristics to short-term precipitation change in semi-arid sandy land. Acta Prataculturae Sinica, 2020, 29(4):19-28. |
车力木格, 刘新平, 何玉惠, 等. 半干旱沙地草本植物群落特征对短期降水变化的响应. 草业学报, 2020, 29(4):19-28. | |
27 | Zhang H. Effects of extreme drought and species composition on carton exchange in semiarid steppe. Yangzhou: Yangzhou University, 2019. |
张慧. 极端干旱和物种组成对内蒙古半干旱草原碳交换影响及机制的研究. 扬州: 扬州大学, 2019. | |
28 | Arredondo T, Garcìa-Moya, Edmundo, et al. Drought manipulation and its direct and legacy effects on productivity of a monodominant and mixed-species semi-arid grassland. Agricultural & Forest Meteorology, 2016, 223: 132-140. |
29 | Zhu L F, Zhang D, Pang L. Effects of drought stress on plant physiology. Xiandai Horticulture, 2017(21): 71-72. |
朱丽芳, 张丹, 庞璐. 干旱胁迫对植物生理方面的影响. 现代园艺, 2017(21): 71-72. | |
30 | Jing M, Cao F L, Wang G B, et al. The effects of soil water stress on growth and biomass allocation of Ginkgo biloba. Journal of Nanjing Forestry University (Natural Sciences Edition), 2005, 29(3): 5-8. |
景茂, 曹福亮, 汪贵斌, 等. 土壤水分含量对银杏生长及生物量分配的影响. 南京林业大学学报(自然科学版), 2005, 29(3): 5-8. | |
31 | Piao S L, Zhang X P, Chen A P, et al. Effects of extreme weather events on the carbon cycle in terrestrial ecosystems. Science China Press (Earth Science), 2019, 49(9): 1321-1334. |
朴世龙, 张新平, 陈安平, 等. 极端气候事件对陆地生态系统碳循环的影响. 中国科学(地球科学), 2019, 49(9):1321-1334. | |
32 | Bates J D, Svejcar T, Miller R F, et al. The effects of precipitation timing on sagebrush steppe vegetation. Journal of Arid Environments, 2006, 64(4): 670-697. |
33 | Li B Q, Liu P, Ciren Y P, et al. Correlation between biomass and environmental factors in alpine grassland. Journal of Plateau Agriculture, 2019, 3(1): 87-92, 110. |
李斌奇, 刘萍, 次仁央培, 等. 高寒草地生物量与环境因子的相关性研究. 高原农业, 2019, 3(1): 87-92, 110. | |
34 | Wang W L. Plant response to water stress. Plant Physiology Communications, 1981, 31(5): 57-66. |
王万里. 植物对水分胁迫的响应. 植物生理学通讯, 1981, 31(5): 57-66. | |
35 | Lu S. Effects of drought stress on plant growth and physiological traits. Journal of Jiangsu Forestry Science & Technology, 2012, 39(4): 51-54. |
鲁松. 干旱胁迫对植物生长及其生理的影响. 江苏林业科技, 2012, 39(4): 51-54. | |
36 | Knapp A K. Variation among biomes in temporal dynamics of aboveground primary production. Science, 2001, 291: 481-484. |
37 | Li C Y, Li X L, Sun H F, et al. Drought processes of alpine wetland and their influences on CO2 exchange. Acta Agrestia Sinica, 2020, 28(3): 750-758. |
李成一, 李希来, 孙华方, 等. 高寒湿地旱化过程及其对CO2交换的影响. 草地学报, 2020, 28(3): 750-758. | |
38 | Camarero J, Franquesa M, Gabriel S B. Timing of drought triggers distinct growth responses in holm oak: Implications to predict warming-induced forest defoliation and growth decline. Forests, 2015, 6(5): 1576-1597. |
[1] | 张亦然, 刘廷玺, 童新, 段利民, 吴宇辰. 基于XGBoost算法的草甸地上生物量的高光谱遥感反演[J]. 草业学报, 2021, 30(4): 1-12. |
[2] | 顾继雄, 郭天斗, 王红梅, 李雪颖, 梁丹妮, 杨青莲, 高锦月. 宁夏东部荒漠草原向灌丛地转变过程土壤微生物响应[J]. 草业学报, 2021, 30(4): 46-57. |
[3] | 张茹, 李建平, 彭文栋, 王芳, 李志刚. 柠条枝条覆盖对宁夏荒漠草原土壤水热及补播牧草生物量的影响[J]. 草业学报, 2021, 30(4): 58-67. |
[4] | 吕广一, 徐学宝, 高翠萍, 于志慧, 王新雅, 王成杰. 放牧对内蒙古不同类型草原植物和土壤总氮与稳定氮同位素的影响[J]. 草业学报, 2021, 30(3): 208-214. |
[5] | 罗文蓉, 胡国铮, 干珠扎布, 高清竹, 李岩, 葛怡情, 李钰, 何世丞, 旦久罗布. 模拟干旱对藏北高寒草甸植物物候期和生产力的影响[J]. 草业学报, 2021, 30(2): 82-92. |
[6] | 李静, 红梅, 闫瑾, 张宇晨, 梁志伟, 叶贺, 高海燕, 赵巴音那木拉. 短花针茅荒漠草原植被群落结构及生物量对水氮变化的响应[J]. 草业学报, 2020, 29(9): 38-48. |
[7] | 鲍根生, 宋梅玲, 王玉琴, 尹亚丽, 王宏生. 围封和防除狼毒对狼毒斑块土壤理化性质和微生物量影响的研究[J]. 草业学报, 2020, 29(9): 63-72. |
[8] | 孙小富, 黄莉娟, 王普昶, 赵丽丽, 刘芳. 不同供磷水平对宽叶雀稗形态及生理的影响[J]. 草业学报, 2020, 29(8): 58-69. |
[9] | 郭强, 王玉琴, 鲍根生, 王宏生. 气象因子对高原鼢鼠种群数量的影响[J]. 草业学报, 2020, 29(8): 188-194. |
[10] | 马千虎, 张学梅, 王自奎, 杨惠敏. 基于APSIM模型的高寒地区燕麦灌溉制度优化[J]. 草业学报, 2020, 29(7): 1-10. |
[11] | 杨子翰, 陈泰祥, 郑巧燕, 卫万荣. 高原鼢鼠干扰对高寒草甸植物群落特征的影响[J]. 草业学报, 2020, 29(5): 13-20. |
[12] | 徐田伟, 赵炯昌, 毛绍娟, 耿远月, 刘宏金, 赵新全, 徐世晓. 青海省海北地区高寒草甸群落特征和生物量对短期休牧的响应[J]. 草业学报, 2020, 29(4): 1-8. |
[13] | 崔雨萱, 孙宗玖, 刘慧霞, 董乙强. 短期封育对蒿类荒漠草地现存生物量及植物群落多样性的影响[J]. 草业学报, 2020, 29(12): 17-26. |
[14] | 赵慧芳, 李晓东, 张东, 校瑞香. 基于MODIS数据的青海省草地地上生物量估算及影响因素研究[J]. 草业学报, 2020, 29(12): 5-16. |
[15] | 聂莹莹, 徐丽君, 辛晓平, 陈宝瑞, 张保辉. 围栏封育对温性草甸草原植物群落构成及生态位特征的影响[J]. 草业学报, 2020, 29(11): 11-22. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||