草业学报 ›› 2022, Vol. 31 ›› Issue (11): 15-24.DOI: 10.11686/cyxb2021460
郭碧花1(), 张雪梅1, 刘金平1(), 游明鸿2, 甘小洪1, 羊勇3
收稿日期:
2021-12-10
修回日期:
2022-01-11
出版日期:
2022-11-20
发布日期:
2022-10-01
通讯作者:
刘金平
作者简介:
E-mail: jpgg2000@163.com基金资助:
Bi-hua GUO1(), Xue-mei ZHANG1, Jin-ping LIU1(), Ming-hong YOU2, Xiao-hong GAN1, Yong YANG3
Received:
2021-12-10
Revised:
2022-01-11
Online:
2022-11-20
Published:
2022-10-01
Contact:
Jin-ping LIU
摘要:
针对高寒草甸公路护坡建设的实际技术需求,选择G248四川省红原县机场段,建成10年的5个坡度级(缓坡6°~15°、斜坡16°~25°、陡坡26°~35°、急坡36°~45°、峭坡>45°)公路护坡,通过测定土壤颗粒组成和理化指标、植被盖度和退化面积、有机质和全氮相对减少率等指标,分析不同坡度上土壤保水保肥能力、沙化等级比例组成及沙化表现差异,研究坡度对护坡土壤性状及沙化度的影响。结果表明:1)坡度升高显著降低黏粒和粉粒比例而增加砂粒和石砾比例(P<0.05),坡度越大土壤容重和pH值越大而含水量越低。2)坡度对土壤碳含量影响为有机质(SOM)>总碳(TC)>无机碳(IC)>溶解性有机碳(DOC),缓坡和斜坡使>70%的DOC和IC流失,斜坡和陡坡使约40%的SOM流失,急坡和陡坡使>90%的SOM和>60%的TC流失。3)坡度对土壤肥力影响为有效N>碱解N>全N>有效K>有效P>全K>全P,有效N比全N和碱解N更易流失,缓坡和斜坡下有效N流失最快,陡坡下全N和碱解N流失最快,全P和有效P仅在斜坡下流失,坡度升高会增加全K而降低有效K含量。4)坡度对沙化等级影响为极重度沙化(ED)>未沙化(ND)>中度沙化(MD)>轻度沙化(LD)>重度沙化(SD),斜坡下MD比例达52.46%,坡度>15°后增加SD比例,坡度>25°后ED比例快速增加。5)坡度>15°后沙化面积相对增加率几乎无变化,坡度>25°后有机质含量和全氮含量相对减少率变化较小,总盖度百分数和<0.02 mm粉粒相对减少率与>0.05 mm砂粒相对增加率随坡度显著增加。综上,不同坡度土壤粒级组成、养分流失程度、沙化度和沙化表现不同,故应依坡度大小制定相应的生态护坡建设技术方案。
郭碧花, 张雪梅, 刘金平, 游明鸿, 甘小洪, 羊勇. 坡度对高寒草甸公路护坡土壤性状及沙化表现的影响[J]. 草业学报, 2022, 31(11): 15-24.
Bi-hua GUO, Xue-mei ZHANG, Jin-ping LIU, Ming-hong YOU, Xiao-hong GAN, Yong YANG. Effects of slope on soil properties and post construction desertification of highway embankments in an Alpine Meadow region[J]. Acta Prataculturae Sinica, 2022, 31(11): 15-24.
坡度等级 Slope gradient | 黏粒 Clay (<0.002 mm) | 粉粒 Powder (0.002~0.020 mm) | 细砂粒 Fine sand (0.02~0.20 mm) | 粗砂粒 Coarse sand (0.2~2.0 mm) | 石砾 Stone smash (>2 mm) |
---|---|---|---|---|---|
CK | 22.14±0.23a | 34.65±2.32a | 37.49±1.81a | 5.67±0.17f | 0.05±0.00e |
缓坡Gentle | 19.03±0.44b | 27.19±2.01b | 35.48±1.46ab | 18.22±0.92e | 0.08±0.00e |
斜坡Inclined | 14.07±0.26c | 23.32±1.12c | 33.95±2.12b | 27.48±0.63d | 1.16±0.12d |
陡坡Steep | 11.01±0.31d | 10.25±0.27d | 28.15±0.83c | 44.48±0.87c | 6.11±0.23c |
急坡Heavy | 6.05±0.24e | 7.17±0.16e | 24.92±0.95d | 51.62±0.31b | 10.24±2.37b |
峭坡Abrupt | 3.12±0.02f | 3.69±0.22f | 13.87±0.71e | 61.20±1.44a | 18.12±1.52a |
F | 28.83 | 31.05 | 24.75 | 46.71 | 56.16 |
P | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
表1 坡度对土壤粒级组成的影响
Table 1 Effects of slope size on grassland soil granularity composition (%)
坡度等级 Slope gradient | 黏粒 Clay (<0.002 mm) | 粉粒 Powder (0.002~0.020 mm) | 细砂粒 Fine sand (0.02~0.20 mm) | 粗砂粒 Coarse sand (0.2~2.0 mm) | 石砾 Stone smash (>2 mm) |
---|---|---|---|---|---|
CK | 22.14±0.23a | 34.65±2.32a | 37.49±1.81a | 5.67±0.17f | 0.05±0.00e |
缓坡Gentle | 19.03±0.44b | 27.19±2.01b | 35.48±1.46ab | 18.22±0.92e | 0.08±0.00e |
斜坡Inclined | 14.07±0.26c | 23.32±1.12c | 33.95±2.12b | 27.48±0.63d | 1.16±0.12d |
陡坡Steep | 11.01±0.31d | 10.25±0.27d | 28.15±0.83c | 44.48±0.87c | 6.11±0.23c |
急坡Heavy | 6.05±0.24e | 7.17±0.16e | 24.92±0.95d | 51.62±0.31b | 10.24±2.37b |
峭坡Abrupt | 3.12±0.02f | 3.69±0.22f | 13.87±0.71e | 61.20±1.44a | 18.12±1.52a |
F | 28.83 | 31.05 | 24.75 | 46.71 | 56.16 |
P | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
坡度等级 Slope gradient | pH值 pH value | 容重 Bulk density (g·cm-2) | 含水量 Water content (%) | 有机质 Soil organic matter (SOM, g·kg-1) | 总碳 Total carbon (TC, mg·kg-1) | 溶解性有机碳 Dissolved organic carbon (DOC, mg·kg-1) | 无机碳 Inorganic carbon (IC, mg·kg-1) |
---|---|---|---|---|---|---|---|
CK | 5.86±0.01e | 1.08±0.12f | 52.58±1.32a | 115.23±2.12a | 137.08±3.14a | 35.41±0.26a | 10.96±0.56a |
缓坡Gentle | 6.39±0.02d | 1.66±0.11c | 38.44±1.51b | 92.49±3.21b | 119.21±0.68b | 17.66±0.91b | 4.30±0.24b |
斜坡Inclined | 6.81±0.02c | 2.23±0.09d | 25.69±0.82c | 71.85±2.36c | 68.62±3.06c | 14.28±0.51c | 2.37±0.11c |
陡坡Steep | 6.90±0.01c | 2.96±0.14c | 16.91±0.32d | 30.32±3.17d | 51.18±0.17d | 10.51±0.19d | 1.29±0.05d |
急坡Heavy | 7.69±0.02b | 3.97±0.31b | 12.47±0.34e | 9.56±2.04e | 47.89±1.11e | 10.34±0.08d | 1.32±0.18d |
峭坡Abrupt | 8.11±0.01a | 5.31±0.04a | 7.94±0.09f | 3.37±0.08f | 36.65±0.19f | 9.24±0.05d | 1.28±0.62d |
F | 19.13 | 56.87 | 109.14 | 315.27 | 227.35 | 21.75 | 26.38 |
P | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
表2 坡度对土壤物理性状和碳含量的影响
Table 2 Effects of slope size on soil physical properties and carbon content
坡度等级 Slope gradient | pH值 pH value | 容重 Bulk density (g·cm-2) | 含水量 Water content (%) | 有机质 Soil organic matter (SOM, g·kg-1) | 总碳 Total carbon (TC, mg·kg-1) | 溶解性有机碳 Dissolved organic carbon (DOC, mg·kg-1) | 无机碳 Inorganic carbon (IC, mg·kg-1) |
---|---|---|---|---|---|---|---|
CK | 5.86±0.01e | 1.08±0.12f | 52.58±1.32a | 115.23±2.12a | 137.08±3.14a | 35.41±0.26a | 10.96±0.56a |
缓坡Gentle | 6.39±0.02d | 1.66±0.11c | 38.44±1.51b | 92.49±3.21b | 119.21±0.68b | 17.66±0.91b | 4.30±0.24b |
斜坡Inclined | 6.81±0.02c | 2.23±0.09d | 25.69±0.82c | 71.85±2.36c | 68.62±3.06c | 14.28±0.51c | 2.37±0.11c |
陡坡Steep | 6.90±0.01c | 2.96±0.14c | 16.91±0.32d | 30.32±3.17d | 51.18±0.17d | 10.51±0.19d | 1.29±0.05d |
急坡Heavy | 7.69±0.02b | 3.97±0.31b | 12.47±0.34e | 9.56±2.04e | 47.89±1.11e | 10.34±0.08d | 1.32±0.18d |
峭坡Abrupt | 8.11±0.01a | 5.31±0.04a | 7.94±0.09f | 3.37±0.08f | 36.65±0.19f | 9.24±0.05d | 1.28±0.62d |
F | 19.13 | 56.87 | 109.14 | 315.27 | 227.35 | 21.75 | 26.38 |
P | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
坡度等级 Slope gradient | 全氮 Total nitrogen (g·kg-1) | 碱解氮 Alkali hydrolyzable nitrogen (mg·kg-1) | 有效氮 Available nitrogen (mg·kg-1) | 全磷 Total phosphorus (g·kg-1) | 有效磷 Available phosphorus (mg·kg-1) | 全钾 Total potassium (g·kg-1) | 有效钾 Available potassium (mg·kg-1) |
---|---|---|---|---|---|---|---|
CK | 5.83±0.24a | 132.27±9.22a | 236.17±7.11a | 11.35±0.27a | 347.73±9.76b | 14.49±1.21c | 442.02±13.51a |
缓坡Gentle | 3.29±0.13b | 79.45±6.27b | 107.23±3.14b | 12.03±0.71a | 363.69±8.13a | 15.78±1.07c | 415.61±12.04b |
斜坡Inclined | 2.47±0.12c | 45.74±3.07c | 68.12±2.06c | 9.38±0.92b | 214.55±6.11c | 23.81±0.34a | 280.18±6.11c |
陡坡Steep | 1.19±0.22d | 20.53±1.24d | 46.37±1.15d | 9.35±0.31b | 175.14±2.31d | 20.06±1.13b | 192.32±2.43d |
急坡Heavy | 0.68±0.09e | 12.67±0.31e | 25.66±4.13e | 8.61±1.37b | 171.33±0.49d | 19.72±0.54b | 172.83±1.18e |
峭坡Abrupt | 0.59±0.02e | 9.59±0.07f | 6.31±0.28f | 8.54±0.24b | 170.07±1.04d | 19.62±1.00b | 174.65±2.01e |
F | 66.24 | 87.62 | 213.08 | 9.16 | 31.67 | 9.41 | 37.25 |
P | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
表3 坡度对土壤肥力的影响
Table 3 Effects of slope size on soil fertility
坡度等级 Slope gradient | 全氮 Total nitrogen (g·kg-1) | 碱解氮 Alkali hydrolyzable nitrogen (mg·kg-1) | 有效氮 Available nitrogen (mg·kg-1) | 全磷 Total phosphorus (g·kg-1) | 有效磷 Available phosphorus (mg·kg-1) | 全钾 Total potassium (g·kg-1) | 有效钾 Available potassium (mg·kg-1) |
---|---|---|---|---|---|---|---|
CK | 5.83±0.24a | 132.27±9.22a | 236.17±7.11a | 11.35±0.27a | 347.73±9.76b | 14.49±1.21c | 442.02±13.51a |
缓坡Gentle | 3.29±0.13b | 79.45±6.27b | 107.23±3.14b | 12.03±0.71a | 363.69±8.13a | 15.78±1.07c | 415.61±12.04b |
斜坡Inclined | 2.47±0.12c | 45.74±3.07c | 68.12±2.06c | 9.38±0.92b | 214.55±6.11c | 23.81±0.34a | 280.18±6.11c |
陡坡Steep | 1.19±0.22d | 20.53±1.24d | 46.37±1.15d | 9.35±0.31b | 175.14±2.31d | 20.06±1.13b | 192.32±2.43d |
急坡Heavy | 0.68±0.09e | 12.67±0.31e | 25.66±4.13e | 8.61±1.37b | 171.33±0.49d | 19.72±0.54b | 172.83±1.18e |
峭坡Abrupt | 0.59±0.02e | 9.59±0.07f | 6.31±0.28f | 8.54±0.24b | 170.07±1.04d | 19.62±1.00b | 174.65±2.01e |
F | 66.24 | 87.62 | 213.08 | 9.16 | 31.67 | 9.41 | 37.25 |
P | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
坡度等级 Slope gradient | 未沙化 Non desertification (ND) | 轻度沙化 Light desertification (LD) | 中度沙化 Moderate desertification (MD) | 重度沙化 Severe desertification (SD) | 极重度沙化 Extremely severe desertification (ED) |
---|---|---|---|---|---|
CK | 70.36±2.31a | 25.88±2.15b | 3.68±0.06f | 0.08±0.01d | 0±0.00e |
缓坡Gentle | 52.63±4.02b | 38.91±2.64a | 8.37±0.12d | 0.09±0.01d | 0±0.00e |
斜坡Inclined | 2.35±0.21c | 17.68±1.30c | 52.46±3.27a | 26.32±0.35b | 1.19±0.12d |
陡坡Steep | 0.07±0.01d | 6.32±0.07d | 21.34±0.68b | 37.64±1.22a | 34.63±2.49c |
急坡Heavy | 0±0.00d | 4.18±0.06d | 10.32±1.34c | 26.18±2.31b | 59.32±3.24b |
峭坡Abrupt | 0±0.00d | 0.09±0.01e | 6.11±0.30e | 11.03±0.07c | 82.77±2.61a |
F | 68.49 | 41.88 | 60.65 | 39.42 | 71.69 |
P | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
表4 坡度对沙化等级比例的影响
Table 4 Effect of slope size on the proportion of desertification degree (%)
坡度等级 Slope gradient | 未沙化 Non desertification (ND) | 轻度沙化 Light desertification (LD) | 中度沙化 Moderate desertification (MD) | 重度沙化 Severe desertification (SD) | 极重度沙化 Extremely severe desertification (ED) |
---|---|---|---|---|---|
CK | 70.36±2.31a | 25.88±2.15b | 3.68±0.06f | 0.08±0.01d | 0±0.00e |
缓坡Gentle | 52.63±4.02b | 38.91±2.64a | 8.37±0.12d | 0.09±0.01d | 0±0.00e |
斜坡Inclined | 2.35±0.21c | 17.68±1.30c | 52.46±3.27a | 26.32±0.35b | 1.19±0.12d |
陡坡Steep | 0.07±0.01d | 6.32±0.07d | 21.34±0.68b | 37.64±1.22a | 34.63±2.49c |
急坡Heavy | 0±0.00d | 4.18±0.06d | 10.32±1.34c | 26.18±2.31b | 59.32±3.24b |
峭坡Abrupt | 0±0.00d | 0.09±0.01e | 6.11±0.30e | 11.03±0.07c | 82.77±2.61a |
F | 68.49 | 41.88 | 60.65 | 39.42 | 71.69 |
P | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
坡度等级 Slope gradient | 总盖度相对百分数的 减少率Relatively low rate of projective cover | 沙化面积相对增加率Relative increase rate of desertification area | <0.02 mm粉粒相对减少率Relatively low rate of <0.02 mm powder particles | >0.05 mm砂粒相对增加率Relative increase rate of >0.05 mm sand particles | 有机质含量相对减少率Relatively low rate of organic matter content | 全氮含量相对减少率Relatively low rate of total nitrogen content |
---|---|---|---|---|---|---|
缓坡Gentle | 15.59±1.11e | 59.82±0.13c | 33.24±2.01e | 17.09±0.46e | 19.73±0.61d | 43.57±0.02d |
斜坡Inclined | 61.09±1.32d | 195.72±0.66b | 42.07±1.12d | 28.25±0.12d | 37.65±0.32c | 57.64±0.13c |
陡坡Steep | 76.01±2.02c | 234.11±0.28a | 58.20±0.27c | 48.07±0.23c | 75.69±0.09b | 79.59±0.17b |
急坡Heavy | 90.52±0.09b | 237.38±0.13a | 66.24±0.16b | 57.97±0.35b | 91.71±0.17a | 88.34±0.31a |
峭坡Abrupt | 97.49±0.03a | 237.38±1.06a | 72.65±0.22a | 68.90±0.31a | 94.48±0.24a | 89.82±1.44a |
F | 84.23 | 59.18 | 36.71 | 54.75 | 79.66 | 31.05 |
P | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
表5 坡度对沙化度评价指标的影响
Table 5 Effect of slope size on the evaluation index of desertification degree (%)
坡度等级 Slope gradient | 总盖度相对百分数的 减少率Relatively low rate of projective cover | 沙化面积相对增加率Relative increase rate of desertification area | <0.02 mm粉粒相对减少率Relatively low rate of <0.02 mm powder particles | >0.05 mm砂粒相对增加率Relative increase rate of >0.05 mm sand particles | 有机质含量相对减少率Relatively low rate of organic matter content | 全氮含量相对减少率Relatively low rate of total nitrogen content |
---|---|---|---|---|---|---|
缓坡Gentle | 15.59±1.11e | 59.82±0.13c | 33.24±2.01e | 17.09±0.46e | 19.73±0.61d | 43.57±0.02d |
斜坡Inclined | 61.09±1.32d | 195.72±0.66b | 42.07±1.12d | 28.25±0.12d | 37.65±0.32c | 57.64±0.13c |
陡坡Steep | 76.01±2.02c | 234.11±0.28a | 58.20±0.27c | 48.07±0.23c | 75.69±0.09b | 79.59±0.17b |
急坡Heavy | 90.52±0.09b | 237.38±0.13a | 66.24±0.16b | 57.97±0.35b | 91.71±0.17a | 88.34±0.31a |
峭坡Abrupt | 97.49±0.03a | 237.38±1.06a | 72.65±0.22a | 68.90±0.31a | 94.48±0.24a | 89.82±1.44a |
F | 84.23 | 59.18 | 36.71 | 54.75 | 79.66 | 31.05 |
P | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
1 | Yu B H, Lv C H. Assessment of ecological vulnerability on the Tibetan Plateau. Geographical Research, 2011, 30(12): 2290-2295. |
于伯华, 吕昌河. 青藏高原高寒区生态脆弱性评价. 地理研究, 2011, 30(12): 2290-2295. | |
2 | Luo J G, Zheng W J. Research on the present situation of desertification of grassland in northwest Sichuan and its control measures. Journal of Sichuan Forestry Science and Technology, 2006, 27(1): 63-66. |
骆建国, 郑文靖. 川西北草地沙漠化现状与防治对策研究. 四川林业科技, 2006, 27(1): 63-66. | |
3 | Ji L, Gan Y M, Luo Y J, et al. Comparison between the vegetation characteristics of alpine and subalpine meadow with different degradation degrees in North-west of Sichuan province. Pratacultural Science, 2011, 28(6): 1101-1105. |
纪磊, 干友民, 罗元佳, 等.川西北不同退化程度高山草甸和亚高山草甸的植被特征. 草业科学, 2011, 28(6): 1101-1105. | |
4 | Zeng X L, Wang D W, Liu J P, et al. Effects of slope aspect on apparent traits and chlorophyll content of three cool season turf species. Pratacultural Science, 2015, 32(11): 1823-1831. |
曾晓琳, 王大伟, 刘金平, 等. 坡向对3种冷季型草坪草表观性状及叶绿素含量的影响. 草业科学, 2015, 32(11): 1823-1831. | |
5 | Liu C X, Han L B. Review of researches in vegetation restoration of freeway slopes. Acta Ecologica Sinica, 2007, 27(5): 2090-2098. |
刘春霞, 韩烈保. 高速公路边坡植被恢复研究进展. 生态学报, 2007, 27(5): 2090-2098. | |
6 | Zhang X F, Su A L, Dong S K, et al. Effect of different soil matrix on performance of herbages for highway slope protection. Journal of Soil and Water Conservation, 2008, 22(6): 193-196. |
张相锋, 苏爱莲, 董世魁, 等. 不同基质对护坡绿化植物群落数量特征的影响. 水土保持学报, 2008, 22(6): 193-196. | |
7 | Jiao F Y. The effects of slopes and substrates on the seeding spraying restoration on damaged slope. Tai’an: Shandong Agricultural University, 2019. |
焦方园. 坡度和基质对边坡喷播修复的影响研究. 泰安: 山东农业大学, 2019. | |
8 | Li G Y, Tu J L, Ai J G, et al. Plant selection, layout and planting measures on hill section. Journal of Zhejiang Forestry College, 2002,19(1): 97-101. |
李根有, 屠娟丽, 哀建国, 等. 山体断面绿化植物的选择、配置及种植措施. 浙江林学院学报, 2002, 19(1): 97-101. | |
9 | Liu T J, Lu J N, Zhang Z Q, et al. Screening of green substrate suitable for spraying and sowing in uncovering slope of arid and semi-arid zone.Pratacultural Science, 2016, 33(7): 1291-1296. |
刘铁军, 卢建男, 张哲乾, 等. 干旱半干旱区裸露边坡适宜喷播的绿化基质筛选. 草业科学, 2016, 33(7): 1291-1296. | |
10 | Ma S S, Wang Y Y, Song G L, et al. Soil nutrient characteristics and the influencing factors in vegetation restoration on rock slope.Bulletin of Soil and Water Conservation, 2013, 33(3): 24-28. |
马帅帅, 王英宇, 宋桂龙, 等. 岩石边坡植被恢复初期土壤养分特征及其影响因素. 水土保持通报, 2013, 33(3): 24-28. | |
11 | Zhuo M N, Li D Q, Zheng Y J. Study on soil and water conservation effect of bioengineering techniques for slope protection in highway. Journal of Soil and Water Conservation, 2006, 20(1): 164-167. |
卓慕宁, 李定强, 郑煜基. 高速公路生态护坡技术的水土保持效应研究. 水土保持学报, 2006, 20(1): 164-167. | |
12 | Wang D W, Sun S, Liu J P, et al. Effect of slope direction on species and diversity of plant in the degenerative cold season lawn. Grassland and Livestock, 2017(1): 40-48. |
王大伟, 孙帅, 刘金平, 等. 坡向对退化冷季型护坡草坪中植物种类及多样性的影响. 草业与畜牧, 2017(1): 40-48. | |
13 | Su J N. Forest survey technology. Beijing: Higher Education Press, 2017. |
苏杰南. 森林调查技术. 北京: 高等教育出版社, 2017. | |
14 | Lu R K. Analytical methods for soil and agro-chemistry. Beijing: China Agricultural Science and Technology Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科学技术出版社, 2000. | |
15 | State Administration of Quality Supervision. Classification standard for degradation, desertification and salinization of natural grassland, GB 19377-2003. Beijing: China Standards Press, 2003. |
国家质量监督检验检疫总局. 天然草地退化、沙化、盐渍化的分级标准, GB 19377-2003. 北京: 中国标准出版社, 2003. | |
16 | Zhu S B, Xu W N, Liu G, et al. Effect of slope gradient on physiological characteristics of Medicago sativa and Cynodon dactylon. Research of Soil and Water Conservation, 2012, 19(2): 218-221. |
祝顺波, 许文年, 刘刚, 等. 坡度对紫花苜蓿和狗牙根光合生理特性的影响. 水土保持研究, 2012,19(2): 218-221. | |
17 | Xu H Y. Effect of gradient to distribute characteristics and pull-out resistance of plants on rock slopes. Beijing: Beijing Forestry University, 2013. |
徐洪雨. 坡度对岩石边坡植物根系分布及抗拔力的影响. 北京: 北京林业大学, 2013. | |
18 | Zhou L, Zhang D G, Yun X J, et al. The vegetation and soil characteristics of degraded alpine meadow. Pratacultural Science, 2016, 33(11): 2196-2201. |
周丽, 张德罡, 贠旭江, 等. 退化高寒草甸植被与土壤特征. 草业科学, 2016, 33(11): 2196-2201. | |
19 | Li Q J, Xue Z J, Zhou Z C. Effects of vegetation restoration on nutrient and microbial properties of soil aggregates with different particle sizes in the loess hilly regions of Ningxia, Northwest China. Chinese Journal of Applied Ecology, 2019, 30(1): 137-145. |
李秋嘉, 薛志婧, 周正朝. 宁南山区植被恢复对土壤团聚体养分特征及微生物特性的影响. 应用生态学报, 2019, 30(1): 137-145. | |
20 | Zhu L, Li Y, Yang W Q, et al. Effects of desertification on soil carbon and nitrogen, enzyme activity and bacterial diversity in alpine grassland. Journal of Soil and Water Conservation, 2021, 35(3): 350-358. |
朱灵, 李易, 杨婉秋, 等. 沙化对高寒草地土壤碳、氮、酶活性及细菌多样性的影响. 水土保持学报, 2021, 35(3): 350-358. | |
21 | Bi S Q, Zhang L J, He X M, et al. Primary research on soil enzymes runoff rules from sloping field. Chinese Agricultural Science Bulletin, 2006, 22(7): 500-503. |
毕淑芹, 张丽娟, 贺晓敏, 等. 坡地土壤酶流失规律初探. 中国农学通报, 2006, 22(7): 500-503. | |
22 | Ma L. Study on soil characteristics and their relationships with topographic factors of alpine desertified grassland in Hongyuan. Mianyang: Southwest University of Science and Technology, 2021. |
马丽. 红原高寒沙化草地土壤特征及其与地形因子的关系研究. 绵阳: 西南科技大学, 2021. | |
23 | Wang X X, Dong S K, Yang B, et al. The effects of grassland degradation on plant diversity, primary productivity, and soil fertility in the alpine region of Asia’s headwaters. Environmental Monitoring & Assessment, 2014, 186(10): 6903-6917. |
24 | Cai X B, Peng Y L, Yu B Z. Soil aggregates organic carbon change and its influence in Tibetan alpine steppe. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(11): 92-99. |
蔡晓布, 彭岳林, 于宝政. 西藏高寒草原土壤团聚体有机碳变化及其影响因素分析. 农业工程学报, 2013, 29(11): 92-99. | |
25 | Xu X R, Wang J K. A review on different stabilized mechanisms of soil aggregates and organic carbon. Chinese Journal of Soil Science, 2017, 48(6): 1523-1529. |
徐香茹, 汪景宽. 土壤团聚体与有机碳稳定机制的研究进展. 土壤通报, 2017, 48(6): 1523-1529. | |
26 | Li L H, Yang Y, Sarengerile. Soil organic contents in relation to soil physic-chemical properties in typical steppe of Inner Mongolia. Anhui Agricultural Science Bulletin, 2015, 21(19): 68-70. |
李兰花, 杨勇, 萨仁格日勒. 内蒙古典型草原土壤有机碳与土壤理化性质的关系. 安徽农学通报, 2015, 21(19): 68-70. | |
27 | Wang Y B, Zhao R F, Zhang L H, et al. Soil organic carbon and its influencing factors on the different plant communities in the middle reaches of the Heihe River wetland. Pratacultural Science, 2020, 37(5): 833-844. |
王園博, 赵锐锋, 张丽华, 等. 黑河中游湿地不同植物群落土壤有机碳分布及影响因素. 草业科学, 2020, 37(5): 833-844. | |
28 | Tao D X. Effects of precipitation changes and nutrient addition on ecosystem carbon exchange of a meadow grassland in Hulunber. Beijing: Chinese Academy of Agricultural Sciences, 2021. |
陶冬雪. 降水变化和养分添加对呼伦贝尔草甸草原生态系统碳交换的影响. 北京: 中国农业科学院, 2021. | |
29 | Wu Y H. The nitrogen loss feature of the throughflow on weathering granite soil slope. Hangzhou: Zhejiang University, 2017. |
邬燕虹. 风化花岗岩母质土壤氮素随表层流的流失特征. 杭州: 浙江大学, 2017. | |
30 | Liu B Z, Li G L, Wu F Q, et al. The regular patterns of the loss of soil nutrients on Southern Loess Plateau. Journal of Soil and Water Conservation, 1995, 21(2): 77-86. |
刘秉正, 李光录, 吴发启, 等. 黄土高原南部土壤养分流失规律. 水土保持学报, 1995, 21(2): 77-86. | |
31 | He S Q, Gong Y B, Zheng Z C. Phosphorus loss via interflow from sloping cropland of purple soil region.Journal of Soil and Water Conservation, 2014, 28(2): 20-24. |
何淑勤, 宫渊波, 郑子成. 紫色土区坡耕地壤中流磷素流失特征研究. 水土保持学报, 2014, 28(2): 20-24. | |
32 | Bai X F, Xu F L, Wang W L, et al. Ecological stoichiometry of soil carbon, nitrogen and phosphorus in a Larix principis-rupprechtii plantation. Science of Soil and Water Conservation, 2015, 13(6): 68-75. |
白小芳, 徐福利, 王渭玲, 等. 华北落叶松人工林土壤碳氮磷生态化学计量特征. 中国水土保持科学, 2015,13(6): 68-75. | |
33 | Zhao X N, Tang J N, Fan B L, et al. Soil seed bank characteristics of grasslands with different desertification degrees in a high-cold region. Pratacultural Science, 2020, 37(12): 2431-2443. |
赵晓男, 唐进年, 樊宝丽, 等. 高寒地区不同程度沙化草地土壤种子库特征. 草业科学, 2020, 37(12): 2431-2443. | |
34 | Chen L L, Shi J J, Wang Y L, et al. Study on different degraded degrees grassland community structure characteristics of the alpine area. Acta Agrestia Sinica, 2016, 24(1): 210-213. |
陈乐乐, 施建军, 王彦龙, 等. 高寒地区不同退化程度草地群落结构特征研究. 草地学报, 2016, 24(1): 210-213. | |
35 | Wang H Y, Guo J Y, Dong Z, et al. Effect of degradation on the community structure and plant species diversity of Stipa grandis steppe. Journal of Arid Land Resources and Environment, 2016, 30(3): 106-111. |
王合云, 郭建英, 董智, 等. 退化程度对大针茅草原植物群落结构特征及物种多样性的影响. 干旱区资源与环境, 2016, 30(3): 106-111. | |
36 | Xiao R H, Man X L, Ding L Z. Effects of slope position on soil microbial biomass carbon and nitrogen in natural Pinus sylvestris var. mongolia forest in the cold temperature zone. Journal of Beijing Forestry University, 2020, 42(2): 31-39. |
肖瑞晗, 满秀玲, 丁令智. 坡位对寒温带天然樟子松林土壤微生物生物量碳氮的影响. 北京林业大学学报, 2020, 42(2): 31-39. | |
37 | Liu H J, Zong R X, Liu J P, et al. Impact of slope position about population characteristics and morphological plasticity of the dioecious herb Anaphalis lactea. Pratacultural Science, 2018, 35(9): 2105-2114. |
刘航江, 宗人旭, 刘金平, 等. 坡位对乳白香青种群特征及雌雄株形态可塑性的影响. 草业科学, 2018, 35(9): 2105-2114. |
[1] | 王亚妮, 胡宜刚, 王增如, 李以康, 张振华, 周华坤. 沙化和人工植被重建对高寒草地土壤细菌群落特征的影响[J]. 草业学报, 2022, 31(5): 26-39. |
[2] | 周磊, 魏雪, 王长庭, 吴鹏飞. 高寒草地小型土壤节肢动物群落特征及其对草地退化的指示作用[J]. 草业学报, 2022, 31(3): 34-46. |
[3] | 孙彩彩, 董全民, 刘文亭, 冯斌, 时光, 刘玉祯, 俞旸, 张春平, 张小芳, 李彩弟, 杨增增, 杨晓霞. 放牧方式对青藏高原高寒草地土壤节肢动物群落结构和多样性的影响[J]. 草业学报, 2022, 31(2): 62-75. |
[4] | 刘佳丽, 范建容, 张茜彧, 杨超, 徐富宝, 张晓雪, 梁博. 高寒草地生长季/非生长季植被盖度遥感反演[J]. 草业学报, 2021, 30(9): 15-26. |
[5] | 宋梅玲, 王玉琴, 王宏生, 鲍根生. 内生真菌对高寒草地紫花针茅凋落物分解的影响[J]. 草业学报, 2021, 30(9): 150-158. |
[6] | 石明明, 王晓敏, 陈奇, 韩炳宏, 周秉荣, 肖建设, 肖宏斌. 高寒草地干湿生态系统土壤水分及入渗对降水的响应[J]. 草业学报, 2021, 30(12): 49-58. |
[7] | 李聪聪, 周亚星, 谷强, 杨明新, 朱传鲁, 彭子原, 薛凯, 赵新全, 王艳芬, 纪宝明, 张静. 三江源区典型高寒草地丛枝菌根真菌多样性及构建机制[J]. 草业学报, 2021, 30(1): 46-58. |
[8] | 陈红, 马文明, 周青平, 杨智, 刘超文, 刘金秋, 杜中曼. 高寒草地灌丛化对土壤团聚体稳定性及其铁铝氧化物分异的研究[J]. 草业学报, 2020, 29(9): 73-84. |
[9] | 宋梅玲, 王玉琴, 鲍根生, 王宏生. 狼毒防除对高寒草地群落植物养分重吸收的影响[J]. 草业学报, 2020, 29(10): 47-57. |
[10] | 刘雪儿, 马金凤, 杨成德, 李统华. 青海高寒草地针茅根际土壤细菌拮抗功能评价及鉴定[J]. 草业学报, 2019, 28(8): 161-169. |
[11] | 李海云, 姚拓, 马亚春, 张慧荣, 路晓雯, 杨晓蕾, 夏东慧, 张建贵, 高亚敏. 祁连山中段退化高寒草地土壤细菌群落分布特征[J]. 草业学报, 2019, 28(8): 170-179. |
[12] | 张建贵, 王理德, 姚拓, 李海云, 高亚敏, 杨晓玫, 李昌宁, 李琦, 冯影, 胡彦婷. 祁连山高寒草地不同退化程度植物群落结构与物种多样性研究[J]. 草业学报, 2019, 28(5): 15-25. |
[13] | 雷玮倩, 胡玉福, 杨泽鹏, 何剑锋, 肖海华, 舒向阳, 阳帆, 李正青. 垦殖对川西北高寒草地土壤中不同磷组分含量的影响[J]. 草业学报, 2019, 28(5): 36-45. |
[14] | 焦婷, 吴铁成, 吴建平, 赵生国, 雷赵民, 梁建勇, 冉福, 九麦扎西, 刘振恒. 不同类型藏羊消化率与采食量的比较研究[J]. 草业学报, 2019, 28(5): 100-108. |
[15] | 张苗苗, 陈伟, 林丽, 张德罡, 吴玉鑫, 肖海龙. 青海省不同高寒草地土壤主要养分及可溶性有机碳特性研究[J]. 草业学报, 2019, 28(3): 20-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||