草业学报 ›› 2023, Vol. 32 ›› Issue (5): 118-126.DOI: 10.11686/cyxb2022240
• 研究论文 • 上一篇
收稿日期:
2022-05-30
修回日期:
2022-07-28
出版日期:
2023-05-20
发布日期:
2023-03-20
通讯作者:
曲波
作者简介:
E-mail: syau_qb@163.com基金资助:
Mei-shan CHEN(), Xian CHEN, Xiao-zhen MAN, Chuang LIU, Jia-lin TONG, Bo QU()
Received:
2022-05-30
Revised:
2022-07-28
Online:
2023-05-20
Published:
2023-03-20
Contact:
Bo QU
摘要:
细根是植物吸收地下水分与养分的重要器官,影响植物生长。细根可通过调整自身的形态或解剖结构支持不同环境条件下的植物生长。入侵植物多为群落内的优势种,其根系解剖结构及资源获取能力是否比本地物种的更强?本研究以外来入侵植物瘤突苍耳和本地同属种苍耳为研究对象,设置4种水分-氮梯度模拟异质环境,利用石蜡切片法比较盆栽两种苍耳的细根直径、皮层厚度、中柱直径和气腔面积等的差异。结果表明:瘤突苍耳细根皮层的气腔结构比苍耳的发达。高资源下,瘤突苍耳的细根直径增长程度小于苍耳。氮含量充足时,高水中瘤突苍耳的皮层厚度、内皮层厚度和导管直径均显著小于苍耳;水分充足时,高氮中瘤突苍耳的总导管面积显著小于苍耳。相比低资源环境处理,高资源下瘤突苍耳的皮层厚度是显著升高的。上述结果表明,气腔与皮层结构的可塑性是影响瘤突苍耳细根解剖结构的驱动因子,且瘤突苍耳根部解剖结构可塑性对异质性环境的响应变化与苍耳比相对稳定。瘤突苍耳自身结构可塑性能在多种环境下获得生长优势。因此,本研究认为相比苍耳,瘤突苍耳细根具有相对进化的解剖结构及塑形变化体系,构成一种高地下资源吸收和低成本消耗的高效入侵策略。
陈美杉, 陈鲜, 满晓珍, 刘闯, 佟佳林, 曲波. 入侵种瘤突苍耳细根解剖结构的可塑性与入侵性间的关系[J]. 草业学报, 2023, 32(5): 118-126.
Mei-shan CHEN, Xian CHEN, Xiao-zhen MAN, Chuang LIU, Jia-lin TONG, Bo QU. Relationship between plasticity and invasiveness in the anatomical structure of the fine roots of the invasive species Xanthium strumarium[J]. Acta Prataculturae Sinica, 2023, 32(5): 118-126.
处理 Treatments | 高氮高水 High nitrogen high water (NW) | 高氮低水 High nitrogen low water (N) | 低氮高水 Low nitrogen high water (W) | 低氮低水 Low nitrogen low water (0) |
---|---|---|---|---|
养分Nitrogen dosage (g·kg-1) | 0.196 | 0.196 | 0 | 0 |
水分Water dosage (mL·d-1) | 1000 | 200 | 1000 | 200 |
表1 瘤突苍耳和苍耳的4种处理
Table 1 Four treatments of X. strumarium and X. sibiricum
处理 Treatments | 高氮高水 High nitrogen high water (NW) | 高氮低水 High nitrogen low water (N) | 低氮高水 Low nitrogen high water (W) | 低氮低水 Low nitrogen low water (0) |
---|---|---|---|---|
养分Nitrogen dosage (g·kg-1) | 0.196 | 0.196 | 0 | 0 |
水分Water dosage (mL·d-1) | 1000 | 200 | 1000 | 200 |
指标Parameter | 低氮低水0 | 高氮低水N | 低氮高水W | 高氮高水NW |
---|---|---|---|---|
根直径Root diameter (μm) | 794.03±51.96ab | 862.52±72.63a | 746.92±76.52b | 856.32±115.22a |
皮层厚度Cortical thickness (μm) | 146.37±18.27b | 196.80±35.87a | 156.17±35.07b | 165.76±36.37b |
中柱直径Stele diameter (μm) | 412.23±37.77a | 367.68±93.30a | 382.62±55.79a | 382.62±55.79a |
内皮层厚度Endodermis thickness (μm) | 21.53±3.48c | 22.99±3.27c | 30.78±6.79b | 41.40±8.37a |
导管直径Xylem diameter (μm) | 22.70±5.14b | 21.85±5.01b | 28.00±5.70a | 24.29±7.53ab |
总气腔面积Total aerenchyma area (μm2) | 43210.20±8782.19a | 47946.31±27169.54a | 58218.06±13587.42a | 52994.21±26575.90a |
表2 瘤突苍耳不同资源水平各指标差异
Table 2 Differences in each parameter among X. strumarium in different treatments
指标Parameter | 低氮低水0 | 高氮低水N | 低氮高水W | 高氮高水NW |
---|---|---|---|---|
根直径Root diameter (μm) | 794.03±51.96ab | 862.52±72.63a | 746.92±76.52b | 856.32±115.22a |
皮层厚度Cortical thickness (μm) | 146.37±18.27b | 196.80±35.87a | 156.17±35.07b | 165.76±36.37b |
中柱直径Stele diameter (μm) | 412.23±37.77a | 367.68±93.30a | 382.62±55.79a | 382.62±55.79a |
内皮层厚度Endodermis thickness (μm) | 21.53±3.48c | 22.99±3.27c | 30.78±6.79b | 41.40±8.37a |
导管直径Xylem diameter (μm) | 22.70±5.14b | 21.85±5.01b | 28.00±5.70a | 24.29±7.53ab |
总气腔面积Total aerenchyma area (μm2) | 43210.20±8782.19a | 47946.31±27169.54a | 58218.06±13587.42a | 52994.21±26575.90a |
指标Parameter | 低氮低水0 | 高氮低水N | 低氮高水W | 高氮高水NW |
---|---|---|---|---|
根直径Root diameter (μm) | 672.84±21.96b | 838.60±30.50a | 799.80±111.06a | 797.11±95.68a |
皮层厚度Cortical thickness (μm) | 142.75±11.53b | 134.66±12.18bc | 108.92±38.58c | 207.80±15.67a |
中柱直径Stele diameter (μm) | 277.32±13.07b | 499.38±11.70a | 286.81±59.77b | 487.18±7.36a |
内皮层厚度Endodermis thickness (μm) | 15.53±2.42b | 30.01±8.51a | 26.73±6.49a | 31.31±3.08a |
导管直径Xylem diameter (μm) | 19.98±2.45b | 27.40±6.02a | 19.46±5.70b | 28.50±7.22a |
总气腔面积Total aerenchyma area (μm2) | 10559.00±4730.09b | 13310.83±11451.76b | 19912.83±1320.78b | 634486.33±22933.79a |
表3 苍耳不同资源水平各指标差异
Table 3 Differences in each parameter among X. sibiricum in different treatments
指标Parameter | 低氮低水0 | 高氮低水N | 低氮高水W | 高氮高水NW |
---|---|---|---|---|
根直径Root diameter (μm) | 672.84±21.96b | 838.60±30.50a | 799.80±111.06a | 797.11±95.68a |
皮层厚度Cortical thickness (μm) | 142.75±11.53b | 134.66±12.18bc | 108.92±38.58c | 207.80±15.67a |
中柱直径Stele diameter (μm) | 277.32±13.07b | 499.38±11.70a | 286.81±59.77b | 487.18±7.36a |
内皮层厚度Endodermis thickness (μm) | 15.53±2.42b | 30.01±8.51a | 26.73±6.49a | 31.31±3.08a |
导管直径Xylem diameter (μm) | 19.98±2.45b | 27.40±6.02a | 19.46±5.70b | 28.50±7.22a |
总气腔面积Total aerenchyma area (μm2) | 10559.00±4730.09b | 13310.83±11451.76b | 19912.83±1320.78b | 634486.33±22933.79a |
图2 不同水、氮处理下瘤突苍耳与苍耳指标对比C: 低氮低水苍耳Low nitrogen low water of X. sibiricum; L: 低氮低水瘤突苍耳Low nitrogen low water of X. strumarium; NC: 高氮低水苍耳High nitrogen low water of X. sibiricum; NL: 高氮低水瘤突苍耳High nitrogen low water of X. strumarium; NWC: 高氮高水苍耳High nitrogen high water of X. sibiricum; NWL: 高氮高水瘤突苍耳High nitrogen high water of X. strumarium; WC: 低氮高水苍耳Low nitrogen high water of X. sibiricum; WL: 低氮高水瘤突苍耳Low nitrogen high water of X. strumarium. A、C中不同字母表示处理间差异显著(P<0.1),B中不同字母表示处理间差异显著(P<0.05)。Different letters in A and C indicated significant differences among treatments (P<0.1), different letters in B indicated significant differences among treatments (P<0.05). 下同The same below.
Fig.2 Comparison of X. strumarium and X. sibiricum under different water and nitrogen treatments
图3 不同水、氮处理下瘤突苍耳与苍耳二级根解剖结构变化率NC-C: 高氮低水苍耳比低氮低水苍耳的变化率Change rate of high nitrogen low water of X. sibiricum to low nitrogen low water of X. sibiricum; NL-L: 高氮低水瘤突苍耳比低氮低水瘤突苍耳的变化率Change rate of high nitrogen low water of X. strumarium to low nitrogen low water of X. strumarium; NWC-C: 高氮高水苍耳比低氮低水苍耳的变化率Change rate of high nitrogen high water of X. sibiricum to low nitrogen low water of X. sibiricum; NWL-L: 高氮高水瘤突苍耳比低氮低水瘤突苍耳的变化率Change rate of high nitrogen high water of X. strumarium to low nitrogen low water of X. strumarium; NWC-WC: 高氮高水苍耳比低氮高水苍耳的变化率Change rate of high nitrogen high water of X. sibiricum to low nitrogen high water of X. sibiricum; NWL-WL: 高氮高水瘤突苍耳比低氮高水瘤突苍耳的变化率Change rate of high nitrogen high water of X. strumarium to low nitrogen high water of X. strumarium; NWC-NC: 高氮高水苍耳比高氮低水苍耳的变化率Change rate of high nitrogen high water of X. sibiricum to high nitrogen low water of X. sibiricum; NWL-NL: 高氮高水瘤突苍耳比高氮低水瘤突苍耳的变化率Change rate of high nitrogen high water of X. strumarium to high nitrogen low water of X. strumarium; WC-C: 低氮高水苍耳比低氮低水苍耳的变化率Change rate of low nitrogen high water of X. sibiricum to low nitrogen low water X. sibiricum; WL-L: 低氮高水瘤突苍耳比低氮低水瘤突苍耳的变化率Change rate of low nitrogen high water of X. strumarium to low nitrogen low water X. strumarium. a~e中不同字母表示处理间差异显著(P<0.05),f和g中不同字母表示处理间差异显著(P<0.1)。Different letters in a-e indicated significant differences among treatments (P<0.05), different letters in f and g indicated significant differences among treatments (P<0.1).
Fig.3 Change rate of X. strumarium and X. sibiricum anatomic structure of second-order root under different water and nitrogen treatments
图4 不同处理下瘤突苍耳与苍耳二级根解剖结构气腔为红色箭头所指,导管为蓝色箭头所指。Aerenchyma by the red arrow, xylem by the blue arrow.
Fig.4 Anatomical structure of second-order root of X. strumarium and X. sibiricum under different treatments
1 | Bradshaw A D. Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics, 1965, 13(1): 115-155. |
2 | Sultan S E. Phenotypic plasticity in plants: A case study in ecological development. Evolution & Development, 2003, 5(1): 25-33. |
3 | Alpert P, Simms E L. The relative advantages of plasticity and fixity in different environments: When is it good for a plant to adjust. Evolutionary Ecology, 2002, 16: 285-297. |
4 | Reich P B, Cornelissen H. The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto. Journal of Ecology, 2004, 102: 275-301. |
5 | Grime J P, Mackey J M L. The role of plasticity in resource capture by plants. Evolutionary Ecology, 2002, 16: 299-307. |
6 | Klimesova J, Martinkova J, Herben T. Horizontal growth: An overlooked dimension in plant trait space. Perspectives in Plant Ecology Evolution and Systematics, 2008, 32: 18-21. |
7 | Long Y, Kong D, Chen Z, et al. Variation of the linkage of root function with root branch order. PLoS One, 2013, 8(2): e57153. |
8 | Grossman J D, Rice K J. Evolution of root plasticity responses to variation in soil nutrient distribution and concentration. Evolutionary Applications, 2012, 5: 850-857. |
9 | Jagodzinski A M, Kałucka I. Fine root biomass and morphology in an age-sequence of post-agricultural Pinus sylvestris L. stands. Dendrobiology, 2011, 66: 71-84. |
10 | Pregitzer K S, Deforest J L, Burton A J, et al. Fine root architecture of nine North American trees. Ecological Monographs, 2002, 72(2): 293-309. |
11 | Du X, Wei X. Definition of fine roots on the basis of the root anatomy, diameter, and branch orders of one-year old Fraxinus mandshurica seedlings. Journal of Forestry Research, 2018, 29: 1321-1327. |
12 | Kloss R B, Castro E M D, Magalhes P C, et al. Anatomical and physiological traits of maize under contrasting water levels and cattail occurrence. Acta Physiologiae Plantarum, 2021, 43(2): 16. |
13 | Colmer T D, Flowers T J. Flooding tolerance in halophytes. New Phytologist, 2008, 179: 964-974. |
14 | Zhai F F, Li H D, Zhang S W, et al. Male and female plants of Salix viminalis perform similarly to flooding in morphology, anatomy, and physiology. Forests, 2020, 11(3): 321. |
15 | Jia W, Ma M, Chen J, et al. Plant morphological, physiological and anatomical adaption to flooding stress and the underlying molecular mechanisms. International Journal of Molecular Sciences, 2021, 22(3): 1088. |
16 | Turhadi T, Hamim H, Ghulamahdi M, et al. Morpho-physiological and anatomical character changes of rice under waterlogged and water-saturated acidic and high Fe content soil. Sains Malaysiana, 2020, 49(10): 2411-2424. |
17 | Jacobsen A L, Valdovinos-Ayala J, Pratt R B. Functional lifespans of xylem vessels: Development, hydraulic function, and post-function of vessels in several species of woody plants. American Journal of Botany, 2018, 105(2): 142. |
18 | Wang W N, Wang Y, Wang S Z, et al. Effects of elevated N availability on anatomy, morphology and mycorrhizal colonization of fine roots: A review. Chinese Journal of Applied Ecology, 2016, 27(4): 1294-1302. |
王文娜, 王燕, 王韶仲, 等. 氮有效性增加对细根解剖、形态特征和菌根侵染的影响. 应用生态学报, 2016, 27(4): 1294-1302. | |
19 | Chen X. Transgenerational plasticity of Xanthium strumarium and X. sibiricum. Shenyang: Shenyang Agricultural University, 2019. |
陈鲜. 瘤突苍耳和苍耳表型可塑性代间传递的研究. 沈阳: 沈阳农业大学, 2019. | |
20 | Li Z L. Plant production technology. Beijing: Science Press, 1978. |
李正理. 植物制片技术. 北京: 科学出版社, 1978. | |
21 | Kramer-Walter K R, Laughlin D C. Root nutrient concentration and biomass allocation are more plastic than morphological traits in response to nutrient limitation. Plant and Soil, 2017, 416: 539-550. |
22 | Xiao S, Liu L, Zhang Y, et al. Tandem mass tag-based (TMT) quantitative proteomics analysis reveals the response of fine roots to drought stress in cotton (Gossypium hirsutum L.). BMC Plant Biology, 2020, 20(1): 328. |
23 | Pigliucci M, Kolodynska A. Phenotypic plasticity and integration in response to flooded conditions in natural accessions of Arabidopsis thaliana (L.) Heynh (Brassicaceae). Annals of Botany, 2002, 90(2): 199-207. |
24 | Travlos I S. Responses of invasive silverleaf nightshade (Solanum elaeagnifolium) populations to varying soil water availability. Phytoparasitica, 2003, 41: 41-48. |
25 | Poonam T, Dipali S, Abhishek S C, et al. Root system architecture, physiological analysis and dynamic transcriptomics unravel the drought-responsive traits in rice genotypes. Ecotoxicology and Environmental Safety, 2021, 207: 111252. |
26 | Yamauchi T, Abe F, Tsutsumi N, et al. Root cortex provides a venue for gas-space formation and is essential for plant adaptation to waterlogging. Frontiers in Plant Science, 2019, 10: 259. |
27 | Postma J A, Lynch J P. Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium.Plant Physiology, 2011, 156(3): 1190-1201. |
28 | Yamauchi T, Noshita K, Tsutsumi N. Climate-smart crops: Key root anatomical traits that confer flooding tolerance.Breed Science, 2021, 71: 51-61. |
29 | Huang Y X, Zhao X Y, Zhang H X, et al. A comparison of phenotypic plasticity between two species occupying different positions in a successional sequence. Ecological Research, 2009, 24: 1335-1344. |
30 | Hazman M, Brown K M. Progressive drought alters architectural and anatomical traits of rice roots. Rice, 2018, 11(1): 62. |
31 | Ouyang W, Yin X, Yang J, et al. Comparisons with wheat reveal root anatomical and histochemical constraints of rice under water-deficit stress. Plant and Soil, 2020, 452(1): 547-568. |
32 | Ma F S, Carol A P. Plasmodesmata: Dynamic channels for symplastic transport. Journal of Integrative Plant Biology, 2001, 43(5): 441-460. |
马丰山, Carol A P. 胞间连丝: 共质体运输的动态通道. 植物学报, 2001, 43(5): 441-460. |
[1] | 李惟婕, 王立, 马景永, 王自奎. 黄土旱塬区苹果园生草覆盖对深层土壤水分和根系分布特征的影响[J]. 草业学报, 2023, 32(1): 63-74. |
[2] | 赵俊威, 李生仪, 孙延亮, 刘选帅, 马春晖, 张前兵. 不同氮磷水平下不同土层中紫花苜蓿细根周转特征[J]. 草业学报, 2022, 31(9): 118-128. |
[3] | 丁杰萍, 罗永清, 刘伟春, 温飞, 王立龙, 王旭洋, 段育龙, 连杰. 退化沙质草地菌根对细根分解过程中营养元素释放的影响[J]. 草业学报, 2022, 31(5): 115-123. |
[4] | 孙艳梅, 苗晓茸, 刘俊英, 张前兵, 于磊, 马春晖. 滴灌条件下3种紫花苜蓿细根周转及不同土层分布特征[J]. 草业学报, 2019, 28(10): 91-100. |
[5] | 姜寒玉, 王亚峰, 徐明, 甘培文, 张金林, 马晖玲. 乙烯对匍匐翦股颖ISR抗病反应中AsA-GSH循环及胼胝质沉积的影响[J]. 草业学报, 2018, 27(9): 120-131. |
[6] | 赵威, 王艳杰, 李亚鸽. 草地入侵植物对枝叶去除的生理生态响应:模式、机理与研究展望[J]. 草业学报, 2017, 26(6): 195-202. |
[7] | 荀挚峰, 白龙, 曲波, 许玉凤, 李光海, 詹忠浪, 石九曜. 不同氮添加对入侵植物瘤突苍耳和本地近缘植物苍耳及两者杂交种的生长影响[J]. 草业学报, 2017, 26(5): 51-61. |
[8] | 刘兴菊, 马源, 马晖玲, 张咏梅, 余倩倩. 2,3-丁二醇诱导下匍匐翦股颖叶片细胞结构变化及抗病相关性分析[J]. 草业学报, 2017, 26(12): 170-178. |
[9] | 牛学礼, 南志标. 运用微根管技术研究草地植物细根的进展[J]. 草业学报, 2017, 26(11): 205-215. |
[10] | 任爱天, 鲁为华, 杨洁晶, 马春晖. 棉花、苜蓿细根生长和死亡的季节变化[J]. 草业学报, 2015, 24(6): 213-219. |
[11] | 赵晓红, 杨殿林, 王慧, 刘红梅, 曲波, 皇甫超河. 黄顶菊入侵对不同地区土壤氮循环及微生物量的影响[J]. 草业学报, 2015, 24(2): 62-69. |
[12] | 康萨如拉,牛建明,张庆,陈丽萍. 短花针茅叶片解剖结构及与气候因子的关系[J]. 草业学报, 2013, 22(1): 77-86. |
[13] | 王瑞,万方浩. 外来入侵植物意大利苍耳在我国适生区预测[J]. 草业学报, 2010, 19(6): 222-230. |
[14] | 荣丽,李贤伟,朱天辉,张健,袁渭阳,王巧. 光皮桦细根与扁穗牛鞭草草根分解的土壤微生物数量及优势类群[J]. 草业学报, 2009, 18(4): 117-124. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||