草业学报 ›› 2022, Vol. 31 ›› Issue (5): 115-123.DOI: 10.11686/cyxb2021375
• 研究论文 • 上一篇
丁杰萍1(), 罗永清2(), 刘伟春3, 温飞1, 王立龙2, 王旭洋2, 段育龙2, 连杰2
收稿日期:
2021-10-19
修回日期:
2021-11-23
出版日期:
2022-05-20
发布日期:
2022-03-30
通讯作者:
罗永清
作者简介:
Corresponding author. E-mail: luoyongqing@nieer.ac.cn基金资助:
Jie-ping DING1(), Yong-qing LUO2(), Wei-chun LIU3, Fei WEN1, Li-long WANG2, Xu-yang WANG2, Yu-long DUAN2, Jie LIAN2
Received:
2021-10-19
Revised:
2021-11-23
Online:
2022-05-20
Published:
2022-03-30
Contact:
Yong-qing LUO
摘要:
细根分解过程中的营养元素释放是低覆盖度植被区土壤物质循环的关键环节,菌根在该过程中的作用目前尚不明确。本研究以退化沙质草地植被恢复过程中的先锋灌木差不嘎蒿为对象,采用内生芯法,分别研究了活细根+菌根、菌根以及无根(对照)处理下其细根分解过程中的营养元素(氮、磷、钾)释放动态。结果表明:菌根对差不嘎蒿细根分解过程中营养元素含量的影响主要发生在分解后期(1 a以后)。当分解超过1 a,菌根的存在显著降低了细根氮含量,这种效应不受活的细根的影响,菌根+活细根以及菌根处理下的氮含量分别较对照低15.3%和9.5%;而对于磷和钾,菌根处理下的含量均显著低于对照(P<0.05),但该效应受活根的影响,活细根+菌根处理下的差不嘎蒿磷含量与钾含量均与对照无显著差异(P>0.05);从营养元素的物质残留动态分析发现,菌根显著促进了分解细根中氮素的释放(P<0.05),这种促进效应主要发生在分解的中期;而对于磷和钾主要发生在分解的后期,且受活细根干扰。研究结果表明,菌根是影响根系分解过程中营养元素释放的关键要素,在植物根系分解及其与土壤物质周转关系的研究中应当重点关注。
丁杰萍, 罗永清, 刘伟春, 温飞, 王立龙, 王旭洋, 段育龙, 连杰. 退化沙质草地菌根对细根分解过程中营养元素释放的影响[J]. 草业学报, 2022, 31(5): 115-123.
Jie-ping DING, Yong-qing LUO, Wei-chun LIU, Fei WEN, Li-long WANG, Xu-yang WANG, Yu-long DUAN, Jie LIAN. Effects of mycorrhiza on nutrient release during fine root decomposition in degraded sandy grassland[J]. Acta Prataculturae Sinica, 2022, 31(5): 115-123.
元素Elements | 平均值Mean value | 标准差Standard deviation | 最大值Maximum | 最小值Minimum |
---|---|---|---|---|
碳Carbon (C) | 40.76 | 1.00 | 39.66 | 41.59 |
氮Nitrogen (N) | 1.43 | 0.16 | 1.26 | 1.63 |
磷Phosphorus (P) | 0.22 | 0.01 | 0.21 | 0.24 |
钾Potassium (K) | 1.43 | 0.10 | 1.29 | 1.54 |
钠Sodium (Na) | 0.03 | 0.01 | 0.02 | 0.05 |
钙Calcium (Ca) | 0.47 | 0.05 | 0.38 | 0.51 |
镁Magnesium (Mg) | 0.16 | 0.02 | 0.14 | 0.19 |
表1 差不嘎蒿细根元素含量本底值
Table 1 Initial value of element content in fine roots of A. halodendron (%, n=5)
元素Elements | 平均值Mean value | 标准差Standard deviation | 最大值Maximum | 最小值Minimum |
---|---|---|---|---|
碳Carbon (C) | 40.76 | 1.00 | 39.66 | 41.59 |
氮Nitrogen (N) | 1.43 | 0.16 | 1.26 | 1.63 |
磷Phosphorus (P) | 0.22 | 0.01 | 0.21 | 0.24 |
钾Potassium (K) | 1.43 | 0.10 | 1.29 | 1.54 |
钠Sodium (Na) | 0.03 | 0.01 | 0.02 | 0.05 |
钙Calcium (Ca) | 0.47 | 0.05 | 0.38 | 0.51 |
镁Magnesium (Mg) | 0.16 | 0.02 | 0.14 | 0.19 |
指标 Parameters | 处理 Treatments (T) | 分解时间Decomposition time (DT) | 处理×分解时间T×DT | |||
---|---|---|---|---|---|---|
F值F-value | P值P-value | F值F-value | P值P-value | F值F-value | P值P-value | |
氮含量N content | 5.090 | 0.008 | 98.740 | <0.001 | 3.680 | 0.001 |
磷含量P content | 17.144 | <0.001 | 13.617 | <0.001 | 3.548 | 0.001 |
钾含量K content | 6.877 | 0.002 | 494.427 | <0.001 | 0.970 | 0.465 |
N∶P | 10.414 | <0.001 | 56.373 | <0.001 | 5.955 | <0.001 |
N∶K | 4.779 | 0.011 | 118.078 | <0.001 | 1.282 | 0.264 |
P∶K | 0.037 | 0.963 | 55.034 | <0.001 | 0.862 | 0.551 |
表2 不同处理和分解时间对差不嘎蒿细根凋落物氮、磷、钾含量的差异性二因素方差分析
Table 2 Two-Way ANOVA analysis of the effect of different treatments and decomposition time on A. halodendron fine root litter contents of N, P and K
指标 Parameters | 处理 Treatments (T) | 分解时间Decomposition time (DT) | 处理×分解时间T×DT | |||
---|---|---|---|---|---|---|
F值F-value | P值P-value | F值F-value | P值P-value | F值F-value | P值P-value | |
氮含量N content | 5.090 | 0.008 | 98.740 | <0.001 | 3.680 | 0.001 |
磷含量P content | 17.144 | <0.001 | 13.617 | <0.001 | 3.548 | 0.001 |
钾含量K content | 6.877 | 0.002 | 494.427 | <0.001 | 0.970 | 0.465 |
N∶P | 10.414 | <0.001 | 56.373 | <0.001 | 5.955 | <0.001 |
N∶K | 4.779 | 0.011 | 118.078 | <0.001 | 1.282 | 0.264 |
P∶K | 0.037 | 0.963 | 55.034 | <0.001 | 0.862 | 0.551 |
图3 不同处理和分解时间下差不嘎蒿细根氮(a)、磷(b)和钾(c)含量R+M、M和S分别代表活细根+菌根处理、菌根处理和对照(无活细根和菌根)。Ⅰ、Ⅱ、Ⅲ、Ⅳ和V分别表示取样时间为分解的1、3、5、12和29个月。数据为平均值±标准差。不同小写字母表示相同处理不同分解时间差异显著(P<0.05);NS表示相同分解时间不同处理间差异不显著(P>0.05);**表示相同分解时间不同处理间差异显著(P<0.01)。 下同。R+M, M and S represents treatments of live fine roots+mycorrhiza, mycorrhiza and control (without live fine roots and mycorrhiza), respectively. Ⅰ, Ⅱ, Ⅲ, Ⅳ and V represent the sampling time was 1, 3, 5, 12 and 29 months after decomposition, respectively. The data are mean±standard deviation. Different lowercase letters represent significant differences among different decomposition time of the same treatment (P<0.05); NS represent insignificant difference among same decomposition time of different treatments (P>0.05); ** represent significant differences among same decomposition time of different treatments (P<0.01). The same below.
Fig.3 Contents of N, P and K in fine roots litter of A. halodendron under different treatments and decomposition time
指标 Parameters | 处理 Treatments (T) | 分解时间Decomposition time (DT) | 处理×分解时间T×DT | |||
---|---|---|---|---|---|---|
F值 F-value | P值 P-value | F值 F-value | P值 P-value | F值 F-value | P值 P-value | |
N | 8.709 | <0.001 | 10.350 | <0.001 | 1.455 | 0.186 |
P | 19.953 | <0.001 | 87.194 | <0.001 | 1.008 | 0.436 |
K | 5.549 | 0.005 | 564.419 | <0.001 | 1.035 | 0.417 |
表3 不同处理和分解时间对差不嘎蒿细根氮、磷、钾残留率的差异性二因素方差分析
Table 3 Two-Way ANOVA analysis of the effect of different treatments and decomposition time on A. halodendron fine root litter mass remaining rate of N, P and K
指标 Parameters | 处理 Treatments (T) | 分解时间Decomposition time (DT) | 处理×分解时间T×DT | |||
---|---|---|---|---|---|---|
F值 F-value | P值 P-value | F值 F-value | P值 P-value | F值 F-value | P值 P-value | |
N | 8.709 | <0.001 | 10.350 | <0.001 | 1.455 | 0.186 |
P | 19.953 | <0.001 | 87.194 | <0.001 | 1.008 | 0.436 |
K | 5.549 | 0.005 | 564.419 | <0.001 | 1.035 | 0.417 |
图4 不同处理下差不嘎蒿细根氮、磷、钾残留率动态正值表示高于对照,负值表示低于对照。*表示在该处理下的残留率与对照差异显著(P<0.05)。Positive value indicates that the value is higher than control, and negative value indicates which is lower than control. * indicates that the remaining under this treatment is differed significantly from that of control (P<0.05).
Fig.4 Dynamics of A. halodendron fine root litter N, P and K remaining rate under different treatments
1 | Luo Y Q, Zhou J, Yue X F, et al. Effect of precipitation frequency on litter decomposition of three annual species (Setaria viridis, Artemisia sacrorum, and Chenopodium acuminatum) in a semi-arid sandy grassland of northeastern China. Arid Land Research and Management, 2021, 35(4): 397-413. |
2 | Luo Y Q, Zhao X Y, Li Y Q, et al. Wind disturbance on litter production affects soil carbon accumulation in degraded sandy grasslands in semi-arid sandy grassland. Ecological Engineering, 2021, 171: 106373. |
3 | Luo Y Q, Zhao X Y, Wang T, et al. Characteristics of the plant-root system and its relationships with soil organic carbon and total nitrogen in a degraded sandy grassland. Acta Prataculturae Sinica, 2017, 26(8): 200-206. |
罗永清, 赵学勇, 王涛, 等. 沙地植物根系特征及其与土壤有机碳和总氮的关系. 草业学报, 2017, 26(8): 200-206. | |
4 | Liu Y, Liu S, Wan S, et al. Effects of experimental throughfall reduction and soil warming on fine root biomass and its decomposition in a warm temperate oak forest. Science of the Total Environment, 2017, 574: 1448-1455. |
5 | Luo Y Q, Ding J P, Zhao X Y, et al. Grazing exclusion altered the effect of plant root diameter on decomposition rates in a semiarid grassland ecosystem, northeastern China. Ecological Research, 2020, 35(3): 405-415. |
6 | Li Y Y, Wang Z W, Sun T. Response of fine root decomposition to long-term nitrogen addition in the temperate forest. Bulletin of Botanical Research, 2017, 37(6): 848-854. |
李媛媛, 王正文, 孙涛. 氮添加对温带森林细根长期分解的影响. 植物研究, 2017, 37(6): 848-854. | |
7 | Hong H B, Lin C F, Peng J Q, et al. Effects of phosphorus addition on fine root decomposition and enzyme activity of Castanopsis carlesii and Cunninghamia lanceolata in subtropical forest. Acta Ecologica Sinica, 2017, 37(1): 136-146. |
洪慧滨, 林成芳, 彭建勤, 等. 磷添加对中亚热带米槠和杉木细根分解及其酶活性的影响. 生态学报, 2017, 37(1): 136-146. | |
8 | Peng J Q. Effects of phosphorus availability on fine roots decomposition in mid-subtropical forest. Fuzhou: Fujian Normal University, 2016. |
彭建勤. 磷有效性对中亚热带林木细根分解的影响. 福州: 福建师范大学, 2016. | |
9 | Lin C F, Yang Y S, Guo J F, et al. Fine root decomposition of evergreen broadleaved and coniferous tree species in mid-subtropical China: Dynamics of dry mass, nutrient and organic fractions. Plant and Soil, 2011, 338: 311-327. |
10 | Sall S N, Masse D, Bernhard-Reversat F, et al. Microbial activities during the early stage of laboratory decomposition of tropical leaf litters: The effect of interactions between litter quality and exogenous inorganic nitrogen. Biology and Fertility of Soils, 2003, 39(2): 103-111. |
11 | Luo Y Q, Zhao X Y, Li Y Q, et al. Root decomposition of Artemisia halodendron and its effect on soil nitrogen and soil organic carbon in the Horqin Sandy Land, northeastern China. Ecological Research, 2016, 31(4): 535-545. |
12 | Phillips R P, Meier I C, Bernhardt E S, et al. Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2. Ecology Letters, 2012, 15: 1042-1049. |
13 | Jin W H, Shao S, Chen J H, et al. Research progress in the impact of different mycorrhizal types on soil carbon cycling. Journal of Zhejiang A&F University, 2021, 38(5): 953-962. |
金文豪, 邵帅, 陈俊辉, 等. 不同类型菌根对土壤碳循环的影响差异研究进展. 浙江农林大学学报, 2021, 38(5): 953-962. | |
14 | Phillips R P, Brzostek E, Midgley M G. The mycorrhizal-associated nutrient economy: A new framework for predicting carbon-nutrient couplings in temperate forests. New Phytologist, 2013, 199: 41-51. |
15 | Hodge A, Fitter A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107: 13754-13759. |
16 | Qian Y Q, Peng X Q, Zeng W J, et al. The effect of mycorrhizal fungi on soil respiration and litter decomposition. Microbiology China, 2013, 40(12): 2306-2318. |
钱雨奇, 彭晓茜, 曾文静, 等. 菌根真菌对土壤呼吸以及凋落物分解的影响. 微生物学通报, 2013, 40(12): 2306-2318. | |
17 | Colpaert J V, VanLaere A. A comparison of the extracellular enzyme activities of two ectomycorrhizal and a leaf-saprotrophic basidiomycete colonizing beech leaf litter. New Phytologist, 1996, 134(1): 133-141. |
18 | Hodge A, Campbell C D, Fitter A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 2001, 413(6853): 297-299. |
19 | Cheng L, Booker F L, Tu C, et al. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science, 2012, 337(6098): 1084-1087. |
20 | Te B Q. Diversity and seasonality of arbuscular mycorrhizal fungi of Artemisia halodendron community in Horqin sandy land. Hohhot: Inner Mongolia University, 2007. |
特布沁. 科尔沁沙地差不嘎蒿群落AM真菌多样性及其动态变化的研究. 呼和浩特: 内蒙古大学, 2007. | |
21 | Li F R, Zhang A S, Duan S S, et al. Patterns of reproductive allocation in Artemisia halodendron inhabiting two contrasting habitats. Acta Oecologica, 2005, 28(1): 57-64. |
22 | Zhang J Y, Zhao H L, Zhang T H, et al. Community succession along a chronosequence of vegetation restoration on sand dunes in Horqin Sandy Land. Journal of Arid Environments, 2005, 62: 555-566. |
23 | Luo Y Q, Du Z, Yan Z Q, et al. Artemisia halodendron litters have strong negative allelopathic effects on earlier successional plants in a semi-arid sandy dune region in China. Frontiers in Plant Science, 2020, 11: 961. |
24 | Yin H J, Liu Q. Ecological studies on root exudation of subalpine forest in southwest China. Beijing: Science Press, 2019: 102-107. |
尹华军, 刘庆. 西南亚高山森林根系分泌物生态学研究. 北京: 科学出版社, 2019: 102-107. | |
25 | Lu R K. Methods of soil agrochemical analysis. Beijing: China Agricultural Science and Technology Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. | |
26 | Liu X P, Luo Y Q, Cheng L, et al. Effect of root and mycelia on fine root decomposition and release of carbon and nitrogen under Artemisia halodendron in a semi-arid sandy grassland in China. Frontiers in Plant Science, 2021, 12: 698054. |
27 | Nygren C M R, Edqvist J, Elfstrand M, et al. Detection of extracellular protease activity in different species and genera of ectomycorrhizal fungi. Mycorrhiza, 2007, 17(3): 241-248. |
28 | Chen W, Koide R T, Adams T S, et al. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proceedings of the National Academy of Sciences, 2016, 113(31): 8741-8746. |
29 | Tan Q Y, Si J P, He Y J, et al. Improvement of karst soil nutrients by arbuscular mycorrhizal fungi through promoting nutrient release from the litter. International Journal of Phytoremediation, 2021, 23(12): 1244-1254. |
30 | He Y J, Cornelissen J H C, Zhong Z C, et al. How interacting fungal species and mineral nitrogen inputs affect transfer of nitrogen from litter via arbuscular mycorrhizal mycelium. Environmental Science and Pollution Research, 2017, 24(10): 9791-9801. |
31 | Hodge A, Storer K. Arbuscular mycorrhiza and nitrogen: Implications for individual plants through to ecosystems. Plant and Soil, 2015, 386: 1-19. |
32 | Chigineva N I, Aleksandrova A V, Marhan S, et al. The importance of mycelial connection at the soil-litter interface for nutrient translocation, enzyme activity and litter decomposition. Applied Soil Ecology, 2011, 51: 35-41. |
33 | Luo Y Q, Zhao X Y, Wang T, et al. Plant root decomposition and its responses to biotic and abiotic factors. Acta Prataculturae Sinica, 2017, 26(2): 197-207. |
罗永清, 赵学勇, 王涛, 等. 植物根系分解及其对生物和非生物因素的响应机理研究进展. 草业学报, 2017, 26(2): 197-207. |
[1] | 李彦忠, 喻军强, 李明. 48个苜蓿品种对3种病害抗性的初步评价[J]. 草业学报, 2021, 30(9): 62-75. |
[2] | 孙红, 郑玉龙, 林炎丽, 陈超, 杨富裕. 生物炭、磷及AMF对Cd胁迫下柳枝稷生长及土壤性质的影响[J]. 草业学报, 2021, 30(12): 71-80. |
[3] | 刘荣荣, 王平, 代心灵, 陈科宇, 李国梁, 宛新荣, 纪宝明. 不同密度布氏田鼠对内蒙古典型草原菌根真菌群落的影响[J]. 草业学报, 2021, 30(11): 76-86. |
[4] | 李聪聪, 周亚星, 谷强, 杨明新, 朱传鲁, 彭子原, 薛凯, 赵新全, 王艳芬, 纪宝明, 张静. 三江源区典型高寒草地丛枝菌根真菌多样性及构建机制[J]. 草业学报, 2021, 30(1): 46-58. |
[5] | 邢易梅, 蕫理, 战力峰, 才华, 杨圣秋, 孙娜. 混合接种摩西球囊霉和根瘤菌对紫花苜蓿耐碱能力的影响[J]. 草业学报, 2020, 29(9): 136-145. |
[6] | 贾红梅, 方千, 张秫华, 严铸云, 柳敏. AM真菌对丹参生长及根际土壤酶活性的影响[J]. 草业学报, 2020, 29(6): 83-92. |
[7] | 赵昕, 吴子龙, 张浩, 杨旭钊, 韩超, 高杰. 峰峰矿区煤矸石山周边植物丛枝菌根真菌的侵染及Cd含量研究[J]. 草业学报, 2020, 29(5): 78-87. |
[8] | 王英逵, 杨玉荣, 王德利. 盐碱胁迫下AMF对羊草的离子吸收和分配作用[J]. 草业学报, 2020, 29(12): 95-104. |
[9] | 高亚敏, 罗慧琴, 姚拓, 张建贵, 李海云, 杨琰珊, 兰晓君. 高寒退化草地委陵菜根围丛枝菌根菌(AMF)分离鉴定及促生效应[J]. 草业学报, 2020, 29(1): 145-154. |
[10] | 李文彬, 宁楚涵, 李伟, 李峰, 郭绍霞. 菲和芘胁迫下AMF和PGPR对高羊茅生理生态的响应[J]. 草业学报, 2019, 28(8): 84-94. |
[11] | 李继伟, 悦飞雪, 王艳芳, 张亚梅, 倪瑞景, 王发园, 付国占, 刘领. 施用生物炭和AM真菌对镉胁迫下玉米生长和生理生化指标的影响[J]. 草业学报, 2018, 27(5): 120-129. |
[12] | 李金波, 李诗刚, 宋桂龙, 濮阳雪华, 薛博晗. 两种黑麦草砷吸收特征及其与茎叶营养元素积累的关系研究[J]. 草业学报, 2018, 27(2): 79-87. |
[13] | 亓琳, 杨莹博, 张博, 赵威, 王晓凌, 刘玉华. 丛枝菌根真菌强化高粱幼苗修复锶污染土壤的研究[J]. 草业学报, 2018, 27(12): 103-112. |
[14] | 李文彬, 宁楚涵, 徐孟, 刘润进, 郭绍霞. 丛枝菌根真菌和高羊茅对压实土壤的改良效应[J]. 草业学报, 2018, 27(11): 131-141. |
[15] | 刘芳, 景戍旋, 胡健, 肖燕, 张英俊. 镉污染和接种丛枝菌根真菌对紫花苜蓿生长和氮吸收的影响[J]. 草业学报, 2017, 26(2): 69-77. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||