草业学报 ›› 2023, Vol. 32 ›› Issue (6): 112-119.DOI: 10.11686/cyxb2022266
收稿日期:
2022-06-28
修回日期:
2022-07-29
出版日期:
2023-06-20
发布日期:
2023-04-21
通讯作者:
宋桂龙
作者简介:
Corresponding author. E-mail: syihan@163.com基金资助:
Xiao-ming CHEN(), Dong-ying HAN, Gui-long SONG()
Received:
2022-06-28
Revised:
2022-07-29
Online:
2023-06-20
Published:
2023-04-21
Contact:
Gui-long SONG
摘要:
采用盆栽试验研究了2个砷(As)浓度处理(10、100 mg·kg-1)对海滨雀稗5个部位[茎、新叶、老叶、粗根(D>0.5 mm)、细根(D<0.5 mm)]生长及富集特征的影响。结果表明:不同浓度As处理下,海滨雀稗各部位生长均表现为抑制,各部位的耐受性也发生了较大变化,最明显的是茎,表现出了低耐高不耐的特点,粗根在不同浓度下均表现出了较耐的特点;海滨雀稗各部位As含量表现为细根>粗根>茎>新叶>老叶,且差异显著;根系对As胁迫的响应体现在粗根生长受到促进,细根生长受到抑制,即随着As浓度的增加,D>0.5 mm径级根长、根表面积、根体积所占比例逐渐升高,D<0.5 mm径级所占比例下降。
陈晓明, 韩东英, 宋桂龙. 砷(As)胁迫对海滨雀稗As吸收特征及根系形态影响[J]. 草业学报, 2023, 32(6): 112-119.
Xiao-ming CHEN, Dong-ying HAN, Gui-long SONG. Effect of arsenic stress on arsenic uptake and root morphological changes in seashore paspalum[J]. Acta Prataculturae Sinica, 2023, 32(6): 112-119.
图1 砷胁迫下海滨雀稗各部位生物量变化不同小写字母表示不同处理间在海滨雀稗相同部位的差异显著性(P<0.05)。The lowercase letters indicate significant differences among different treatments in same parts of seashore paspalum (P<0.05).
Fig.1 The biomass of various parts in seashore paspalum treated with different concentration of arsenic
图2 砷胁迫下海滨雀稗各部位耐受系数不同小写字母表示海滨雀稗在砷处理下不同部位的差异显著性(P<0.05)。The lowercase letters indicate the significant difference between different parts of seashore paspalum under arsenic treatment (P<0.05).
Fig.2 Tolerance index of various parts in seashore paspalum treated with different concentration of arsenic
图3 海滨雀稗不同部位砷含量不同小写字母表示海滨雀稗同一部位不同处理间差异显著,不同大写字母表示同一处理不同部位间差异显著(P<0.05)。下同。The lowercase letters indicate the degree of significant difference in the same part of the seashore paspalum, while the uppercase letters indicate the degree of significant difference between different parts of the seashore paspalum under the treatments of As10 and As100 respectively (P<0.05). The same below.
Fig.3 The content of arsenic in different parts of seashore paspalum
处理 Treatment | 总根长 Total root length (cm) | 总根表面积 Total root surface area (cm2) | 平均直径 Average diameter (mm) | 总根体积 Total root volume(cm3) | 根尖数 Number of root tips (No.) | 分枝数 Number of branches (No.) |
---|---|---|---|---|---|---|
CK | 737.657±32.453a | 54.953±2.321a | 0.234±0.041b | 0.328±0.071a | 3812±164c | 2921±113a |
As10 | 695.321±25.282b | 48.866±3.118b | 0.233±0.052b | 0.276±0.052b | 5551±103a | 2725±184ab |
As100 | 558.665±22.310c | 46.327±3.225c | 0.262±0.013a | 0.307±0.093ab | 5033±76b | 2559±96b |
表1 砷胁迫下海滨雀稗根系形态参数变化
Table 1 Changes of root morphological of seashore paspalum under arsenic treatment
处理 Treatment | 总根长 Total root length (cm) | 总根表面积 Total root surface area (cm2) | 平均直径 Average diameter (mm) | 总根体积 Total root volume(cm3) | 根尖数 Number of root tips (No.) | 分枝数 Number of branches (No.) |
---|---|---|---|---|---|---|
CK | 737.657±32.453a | 54.953±2.321a | 0.234±0.041b | 0.328±0.071a | 3812±164c | 2921±113a |
As10 | 695.321±25.282b | 48.866±3.118b | 0.233±0.052b | 0.276±0.052b | 5551±103a | 2725±184ab |
As100 | 558.665±22.310c | 46.327±3.225c | 0.262±0.013a | 0.307±0.093ab | 5033±76b | 2559±96b |
处理 Treatment | 根长Root length (cm) | 根表面积Root surface-area (cm2) | 根体积Root volume (cm3) | |||
---|---|---|---|---|---|---|
D: 0~0.5 mm | D>0.5 mm | D: 0~0.5 mm | D>0.5 mm | D: 0~0.5 mm | D>0.5 mm | |
CK | 636.112±20.192a | 101.141±9.255b | 25.890±2.262a | 21.964±4.226b | 0.185±0.029a | 0.224±0.048c |
As10 | 599.313±22.274a | 95.567±9.189b | 23.477±3.611a | 19.384±1.194b | 0.114±0.031b | 0.296±0.087b |
As100 | 438.809±17.341b | 119.148±7.224a | 16.300±1.807b | 25.737±0.970a | 0.080±0.017c | 0.359±0.031a |
表2 砷胁迫下海滨雀稗不同径级根长、根表面积和根体积
Table 2 Root length, root surface area and root volume with different diameter of seashore paspalum under arsenic treatment
处理 Treatment | 根长Root length (cm) | 根表面积Root surface-area (cm2) | 根体积Root volume (cm3) | |||
---|---|---|---|---|---|---|
D: 0~0.5 mm | D>0.5 mm | D: 0~0.5 mm | D>0.5 mm | D: 0~0.5 mm | D>0.5 mm | |
CK | 636.112±20.192a | 101.141±9.255b | 25.890±2.262a | 21.964±4.226b | 0.185±0.029a | 0.224±0.048c |
As10 | 599.313±22.274a | 95.567±9.189b | 23.477±3.611a | 19.384±1.194b | 0.114±0.031b | 0.296±0.087b |
As100 | 438.809±17.341b | 119.148±7.224a | 16.300±1.807b | 25.737±0.970a | 0.080±0.017c | 0.359±0.031a |
图5 砷胁迫下海滨雀稗根长、根表面积和根体积各径级所占百分比不同小写字母表示海滨雀稗根系D 0~0.5 mm径级显著性差异程度,大写字母表示D>0.5 mm径级显著性差异程度(P<0.05)。The lowercase letters indicate the degree of significant difference at the D 0-0.5 mm level of the seashore paspalum root system, and the uppercase letters indicate the degree of significant difference at the D>0.5 mm level (P<0.05).
Fig.5 Root length, root surface area and root volume of different root diameter classes expressed as percentages for seashore paspalum under arsenic treatment
1 | Rahaman M S, Rahman M M, Mise N, et al. Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. Environmental Pollution, 2021, 289: 117940. |
2 | Yang Q Q, Li Z Y, Lu X N, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Science of the Total Environment, 2018, 642: 690-700. |
3 | Hao J, Zhang J, Zhang P P, et al. A study on the herbs at the initial natural reclamation stage of plants in gangue fields. Acta Prataculturae Sinica, 2013, 22(4): 51-60. |
郝婧, 张婕, 张沛沛, 等. 煤矸石场植被自然恢复初期草本植物生物量研究. 草业学报, 2013, 22(4): 51-60. | |
4 | Chen T, Liu Y G, Wang Y, et al. Effects of exogenous phosphorus on antioxidant enzyme system of emergent plants under arsenic stress. Jiangsu Journal of Agricultural Sciences, 2019, 35(5): 1040-1046. |
陈天, 刘云根, 王妍, 等. 外源磷对砷胁迫下挺水植物抗氧化酶系统的影响. 江苏农业学报, 2019, 35(5): 1040-1046. | |
5 | Kofroňová M, Hrdinová A, Mašková P, et al. Strong antioxidant capacity of horseradish hairy root cultures under arsenic stress indicates the possible use of Armoracia rusticana plants for phytoremediation. Ecotoxicology and Environmental Safety, 2019, 174: 295-304. |
6 | Miteva E. Accumulation and effect of arsenic on tomatoes. Communications in Soil Science and Plant Analysis, 2002, 33(11/12): 1917-1926. |
7 | Zhang J L, Huang Y, Wu L F, et al. As subcellular distribution and physiological response of Typha angustifolia L. to as exposure. Ecology and Environmental Sciences, 2021, 30(5): 1042-1050. |
张晋龙, 黄颖, 吴丽芳, 等. 砷胁迫对狭叶香蒲生理生态及砷亚细胞分布的影响. 生态环境学报, 2021, 30(5): 1042-1050. | |
8 | Lou L Q, Shi G L, Wu J H, et al. The influence of phosphorus on arsenic uptake/efflux and as toxicity to wheat roots in comparison with sulfur and silicon. Journal of Plant Growth Regulation, 2015, 34(2): 242-250. |
9 | Li J S, Huang N, Ma J X, et al. Comparison of physiological response and resistances of four Paspalum vaginatum to low temperature stress. Acta Agrestia Sinica, 2018, 26(6): 1444-1448. |
李静思, 黄宁, 麻加欣, 等. 4个海滨雀稗对低温胁迫的生理响应及抗寒性比较. 草地学报, 2018, 26(6): 1444-1448. | |
10 | Wu X L, Guo Z F, Chen S M, et al. Advances in research on the tolerance of seashore paspalum (Paspalums vaginatium). Acta Agrestia Sinica, 2019, 27(5): 1117-1125. |
吴雪莉, 郭振飞, 陈申秒, 等. 海滨雀稗耐逆性研究进展. 草地学报, 2019, 27(5): 1117-1125. | |
11 | Moreno B, Cañizares R, Macci C, et al. Molecular tools to understand the bioremediation effect of plants and earthworms on contaminated marine sediments. Journal of Hazardous Materials, 2015, 300: 398-405. |
12 | Wang K. The stress responses and tolerance thresholds to soil lead, cadmium and zinc contamination in centipedegrass and seashore paspalum. Shanghai: Shanghai Jiao Tong University, 2010. |
王恺. 假俭草和海滨雀稗对土壤Pb、Cd、Zn污染胁迫的响应及耐受阈值研究. 上海: 上海交通大学, 2010. | |
13 | Green J J, Baddeley J A, Cortina J, et al. Root development in the Mediterranean shrub Pistacia lentiscus as affected by nursery treatments. Journal of Arid Environments, 2004, 61(1): 1-12. |
14 | Xu P X. Studies on cadmium tolerance and detoxification in tall fescue and kentucky bluegrass. Shanghai: Shanghai Jiao Tong University, 2014. |
徐佩贤. 高羊茅和草地早熟禾对镉的耐受能力和解毒机制研究. 上海: 上海交通大学, 2014. | |
15 | Johnson L D, Marquez-Ortiz J J, Lamb J F S, et al. Root morphology of alfalfa plant introductions and cultivars. Crop Science, 1998, 38(2): 497-502. |
16 | Li X M, Song G L. Cadmium uptake and root morphological changes in Medicago sativa under cadmium stress. Acta Prataculturae Sinica, 2016, 25(2): 178-186. |
李希铭, 宋桂龙. 镉胁迫对紫花苜蓿镉吸收特征及根系形态影响. 草业学报, 2016, 25(2): 178-186. | |
17 | Liu W, Pan Q S, Zhang P, et al. Determination of total arsenic in Chinese traditional herbs by high pressure digestion-hydride generation atomic fluorescence spectrometry. Advanced Materials Research, 2012(554/555/556):1967-1970. |
18 | Liu W Q, Zhong X Y, Xue W T. Effects of heavy metal pollution on roots. Science & Technology Vision, 2014(5): 282-283. |
刘伟强, 钟小玉, 薛文涛. 重金属污染对根系的影响. 科技视界, 2014(5): 282-283. | |
19 | Kubo K, Watanabe Y, Matsunaka H, et al. Differences in cadmium accumulation and root morphology in seedlings of Japanese wheat varieties with distinctive grain cadmium concentration. Plant Production Science, 2011, 14(2): 148-155. |
20 | Arduini I, Masoni A, Mariotti M, et al. Low cadmium application increase Miscanthus growth and cadmium translocation. Environmental & Experimental Botany, 2004, 52(2): 89-100. |
21 | Wang S F, Shi X, Sun H J, et al. Metal uptake and root morphological changes for two varieties of Salix integra under cadmium stress. Acta Ecologica Sinica, 2013, 33(19): 6065-6073. |
王树凤, 施翔, 孙海菁, 等. 镉胁迫下杞柳对金属元素的吸收及其根系形态构型特征. 生态学报, 2013, 33(19): 6065-6073. | |
22 | Liu D T, Jing Y P, Chen J J, et al. Rice lateral root development and its impact factors. Acta Agronomica Sinica, 2014, 40(8): 1403-1411. |
刘大同, 荆彦平, 陈晶晶, 等. 水稻的侧根发育及其影响因素. 作物学报, 2014, 40(8): 1403-1411. | |
23 | Li J X, He B H, Chen Y. Root features of typical herb plants for hillslope protection and their effects on soil infiltration. Acta Ecologica Sinica, 2013, 33(5), 1535-1544. |
李建兴, 何丙辉, 谌芸. 不同护坡草本植物的根系特征及对土壤渗透性的影响. 生态学报, 2013, 33(5): 1535-1544. | |
24 | Kong L S. Absorption, accumulation, tolerance and variation of heavy metal elements in plants. Environmental Science, 1983(1): 65-69. |
孔令韶. 植物对重金属元素的吸收积累及忍耐、变异. 环境科学, 1983(1): 65-69. | |
25 | Conesa H M, Evangelou M W H, Robinson B H, et al. A critical view of current state of phytotechnologies to remediate soils: Still a promising tool? The Scientific World Journal, 2012(5): 173829. |
26 | Meharg A A, Zhao F J. Arsenic & rice. Dordrecht: Springer, 2012: 1-6. |
27 | Song W Y, Park J Y, Mendozacózatl D G, et al. Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(49): 21187-21192. |
28 | Song W Y, Yamaki T, Yamaji N, et al. A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(44): 15699-15704. |
29 | Bao T, Lian M H, Sun L N, et al. Research progress on the phytoremediation of soils contaminated by heavy metals. Ecology and Environment, 2008(2): 858-865. |
鲍桐, 廉梅花, 孙丽娜, 等. 重金属污染土壤植物修复研究进展. 生态环境, 2008(2): 858-865. | |
30 | Chen W, Zhang M M, Song Y Y, et al. Impacts of heavy metals on the fluorescence characteristics and root morphology of 2 turfgrass species. Acta Prataculturae Sinica, 2014, 23(3): 333-342. |
陈伟, 张苗苗, 宋阳阳, 等. 重金属离子对2种草坪草荧光特性及根系形态的影响. 草业学报, 2014, 23(3): 333-342. |
[1] | 姜凯, 吴雪莉, 刘奕君, 马越, 宋洋, 卢文杰, 王增裕. 海滨雀稗以hpt与bar基因为筛选标记的转化体系比较研究[J]. 草业学报, 2023, 32(1): 165-177. |
[2] | 杨志新, 郑旭, 陈来宝, 于泳鑫, 张凤华, 李鲁华, 王家平. 干旱区盐碱地食叶草根系形态分布适应策略研究[J]. 草业学报, 2022, 31(7): 15-27. |
[3] | 孙小富, 黄莉娟, 王普昶, 赵丽丽, 刘芳. 不同供磷水平对宽叶雀稗形态及生理的影响[J]. 草业学报, 2020, 29(8): 58-69. |
[4] | 张翔, 杨勇, 刘学勇, 向佐湘. 外源水杨酸对低温胁迫下海滨雀稗抗寒生理特征的影响[J]. 草业学报, 2020, 29(1): 117-124. |
[5] | 卿悦, 李廷轩, 叶代桦. 无机氮处理对矿山生态型水蓼氮积累及根系形态的影响[J]. 草业学报, 2020, 29(1): 203-210. |
[6] | 钱晨, 刘智微, 钟小仙, 吴娟子, 张建丽, 潘玉梅. 海滨雀稗自交结实突变体及野生型幼穗组织的转录组分析[J]. 草业学报, 2019, 28(5): 132-142. |
[7] | 郭雄飞. 生物炭和AM真菌对重金属污染下土壤养分及望江南生长的影响[J]. 草业学报, 2018, 27(11): 150-161. |
[8] | 朱亚琼, 郑伟, 王祥, 关正翾. 混播方式对豆禾混播草地植物根系构型特征的影响[J]. 草业学报, 2018, 27(1): 73-85. |
[9] | 罗永清, 赵学勇, 王涛, 李玉强. 沙地植物根系特征及其与土壤有机碳和总氮的关系[J]. 草业学报, 2017, 26(8): 200-206. |
[10] | 刘天增, 谢新春, 张巨明. 海滨雀稗60Co-γ辐射诱变突变体筛选[J]. 草业学报, 2017, 26(7): 62-70. |
[11] | 高嵩涓, 曹卫东. 利用根管法对油菜和冬小麦苗期根系形态的研究[J]. 草业学报, 2017, 26(4): 134-142. |
[12] | 李帅, 赵国靖, 徐伟洲, 高志娟, 吴爱姣, 徐炳成. 白羊草根系形态特征对土壤水分阶段变化的响应[J]. 草业学报, 2016, 25(2): 169-177. |
[13] | 李希铭, 宋桂龙. 镉胁迫对紫花苜蓿镉吸收特征及根系形态影响[J]. 草业学报, 2016, 25(2): 178-186. |
[14] | 于景金, 李冉, 刘梦娴, 杨志民. 暖季型与冷季型草坪草差异响应干旱及旱后复水的生理生态机制[J]. 草业学报, 2016, 25(11): 86-93. |
[15] | 段桂芳, 单立山, 李毅, 张正中, 张荣, 种培芳. 红砂幼苗根系形态特征对降水格局变化的响应[J]. 草业学报, 2016, 25(10): 95-103. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||