草业学报 ›› 2023, Vol. 32 ›› Issue (7): 122-134.DOI: 10.11686/cyxb2022343
• 研究论文 • 上一篇
凌文卿1(), 张磊1(), 李珏1, 冯启贤1, 李妍1,2, 周燚1, 刘一佳1,2, 阳伏林1(), 周晶2()
收稿日期:
2022-08-27
修回日期:
2022-11-21
出版日期:
2023-07-20
发布日期:
2023-05-26
通讯作者:
阳伏林,周晶
作者简介:
E-mail: zhoujing_lz@hotmail.com基金资助:
Wen-qing LING1(), Lei ZHANG1(), Jue LI1, Qi-xian FENG1, Yan LI1,2, Yi ZHOU1, Yi-jia LIU1,2, Fu-lin YANG1(), Jing ZHOU2()
Received:
2022-08-27
Revised:
2022-11-21
Online:
2023-07-20
Published:
2023-05-26
Contact:
Fu-lin YANG,Jing ZHOU
摘要:
旨在研究布氏乳杆菌和不同糖类联用对紫花苜蓿青贮营养成分、发酵品质、瘤胃降解率以及有氧稳定性的影响。以紫花苜蓿为原料,采用了4种处理:LB(添加1×106 cfu·g-1布氏乳杆菌);GLB(添加1×106 cfu·g-1布氏乳杆菌和2%葡萄糖);FLB(添加1×106 cfu·g-1布氏乳杆菌和2%岩藻多糖);CK(无添加)。青贮60 d后,测定以上4个处理紫花苜蓿的营养成分、发酵品质、瘤胃降解率和有氧稳定性。结果表明,在营养成分上,与CK相比各处理均显著提高了紫花苜蓿青贮料的干物质(DM)、粗蛋白(CP)和可溶性碳水化合物(WSC)含量(P<0.05),其中GLB处理DM和CP含量最高,FLB处理WSC含量最高。各处理均能显著降低酸性洗涤纤维(ADF)含量(P<0.05),GLB处理能显著降低青贮料中性洗涤纤维(NDF)含量(P<0.05)。发酵品质上,除FLB处理外其余处理均能显著降低青贮料pH(P<0.05),GLB处理显著增加了乳酸(LA)和丙酸(PA)含量(P<0.05),显著降低了氨态氮/总氮(AN/TN, P<0.05)。LB和FLB处理LA、乙酸(AA)含量和AN/TN显著降低(P<0.05),PA含量显著增加(P<0.05)。在瘤胃降解方面,除GLB处理的ADF有效降解率无显著提高外(P>0.05),各处理DM、CP、ADF和NDF有效降解率均显著提升(P<0.05)。与CK相比,各处理均能在有氧暴露6 d显著降低pH、酵母菌和好氧菌数(P<0.05),其中FLB处理表现最佳。根据隶属函数法综合评价各项指标,各处理按优劣排序为:GLB(0.76)>LB(0.53)>FLB(0.52)>CK(0.14)。综上所述,LB、GLB和FLB处理均对紫花苜蓿青贮营养成分、发酵品质、瘤胃降解率及有氧稳定性有积极影响,其中GLB处理效果最好。
凌文卿, 张磊, 李珏, 冯启贤, 李妍, 周燚, 刘一佳, 阳伏林, 周晶. 布氏乳杆菌和不同糖类联用对紫花苜蓿青贮营养成分、发酵品质、瘤胃降解率及有氧稳定性的影响[J]. 草业学报, 2023, 32(7): 122-134.
Wen-qing LING, Lei ZHANG, Jue LI, Qi-xian FENG, Yan LI, Yi ZHOU, Yi-jia LIU, Fu-lin YANG, Jing ZHOU. Effects of Lentilactobacillus buchneri combined with different sugars on nutrient composition, fermentation quality, rumen degradation rate, and aerobic stability of alfalfa silage[J]. Acta Prataculturae Sinica, 2023, 32(7): 122-134.
测定项目Items | 含量Content |
---|---|
干物质Dry matter (DM, % FW) | 19.30 |
粗蛋白Crude protein (CP, % DM) | 24.01 |
中性洗涤纤维Neutral detergent fiber (NDF, % DM) | 39.62 |
酸性洗涤纤维Acid detergent fiber (ADF, % DM) | 28.75 |
半纤维素Hemicellulose (HC, % DM) | 10.87 |
可溶性碳水化合物Water-soluble carbohydrate (WSC, % DM) | 6.04 |
pH | 6.28 |
乳酸菌Lactic acid bacteria (LAB, lg cfu·g-1 FW) | 4.15 |
好氧细菌Aerobic bacteria (AB, lg cfu·g-1 FW) | 4.38 |
酵母菌及霉菌Yeasts and Molds (lg cfu·g-1 FW) | 5.81 |
表1 紫花苜蓿营养成分和微生物组成
Table 1 Nutrient composition and microbial composition of alfalfa
测定项目Items | 含量Content |
---|---|
干物质Dry matter (DM, % FW) | 19.30 |
粗蛋白Crude protein (CP, % DM) | 24.01 |
中性洗涤纤维Neutral detergent fiber (NDF, % DM) | 39.62 |
酸性洗涤纤维Acid detergent fiber (ADF, % DM) | 28.75 |
半纤维素Hemicellulose (HC, % DM) | 10.87 |
可溶性碳水化合物Water-soluble carbohydrate (WSC, % DM) | 6.04 |
pH | 6.28 |
乳酸菌Lactic acid bacteria (LAB, lg cfu·g-1 FW) | 4.15 |
好氧细菌Aerobic bacteria (AB, lg cfu·g-1 FW) | 4.38 |
酵母菌及霉菌Yeasts and Molds (lg cfu·g-1 FW) | 5.81 |
测定项目 Items | 处理Treatments | |||
---|---|---|---|---|
CK | LB | GLB | FLB | |
干物质Dry matter (DM, % FW) | 18.89±0.68b | 19.18±0.84b | 22.35±0.82a | 21.05±0.65a |
粗蛋白Crude protein (CP, % DM) | 17.27±0.51c | 20.61±0.46b | 24.34±0.16a | 19.74±1.66b |
中性洗涤纤维Neutral detergent fiber (NDF, % DM) | 39.44±1.06a | 39.68±2.10a | 34.50±1.70b | 40.00±0.44a |
酸性洗涤纤维Acid detergent fiber (ADF, % DM) | 31.66±0.07a | 28.75±0.46c | 25.70±0.15d | 29.95±0.77b |
半纤维素Hemicellulose (HC, % DM) | 7.78±1.13b | 10.93±2.21a | 8.81±1.56ab | 10.04±0.68ab |
可溶性碳水化合物Water-soluble carbohydrate (WSC, % DM) | 2.57±0.22b | 1.73±0.12c | 2.68±0.18b | 4.15±0.11a |
表2 布氏乳杆菌和不同糖类联用对紫花苜蓿青贮营养成分的影响
Table 2 Effects of L. buchneri combined with different sugars on nutritional composition of alfalfa silage
测定项目 Items | 处理Treatments | |||
---|---|---|---|---|
CK | LB | GLB | FLB | |
干物质Dry matter (DM, % FW) | 18.89±0.68b | 19.18±0.84b | 22.35±0.82a | 21.05±0.65a |
粗蛋白Crude protein (CP, % DM) | 17.27±0.51c | 20.61±0.46b | 24.34±0.16a | 19.74±1.66b |
中性洗涤纤维Neutral detergent fiber (NDF, % DM) | 39.44±1.06a | 39.68±2.10a | 34.50±1.70b | 40.00±0.44a |
酸性洗涤纤维Acid detergent fiber (ADF, % DM) | 31.66±0.07a | 28.75±0.46c | 25.70±0.15d | 29.95±0.77b |
半纤维素Hemicellulose (HC, % DM) | 7.78±1.13b | 10.93±2.21a | 8.81±1.56ab | 10.04±0.68ab |
可溶性碳水化合物Water-soluble carbohydrate (WSC, % DM) | 2.57±0.22b | 1.73±0.12c | 2.68±0.18b | 4.15±0.11a |
测定项目 Items | 处理Treatments | |||
---|---|---|---|---|
CK | LB | GLB | FLB | |
pH | 5.83±0.02b | 5.72±0.09c | 5.64±0.01c | 6.14±0.02a |
乳酸Lactic acid (LA, % DM) | 2.13±0.07b | 2.02±0.01c | 3.89±0.07a | 2.07±0.01c |
乙酸Acetic acid (AA, %DM) | 0.43±0.01a | 0.33±0.01b | 0.22±0.02d | 0.28±0.02c |
丙酸Propionic acid (PA, %DM) | 0.34±0.01d | 0.71±0.16b | 1.08±0.45a | 0.53±0.37c |
丁酸Butyric acid (BA, % DM) | 0.05±0.00a | 0.04±0.00b | 0.04±0.01ab | 0.05±0.01a |
氨态氮/总氮Ammonia nitrogen/total nitrogen (AN/TN) | 13.57±0.08a | 10.48±0.23c | 6.27±0.05d | 11.24±0.47b |
表3 布氏乳杆菌和不同糖类联用对紫花苜蓿青贮发酵品质的影响
Table 3 Effects of L. buchneri combined with different sugars on fermentation quality of alfalfa silage
测定项目 Items | 处理Treatments | |||
---|---|---|---|---|
CK | LB | GLB | FLB | |
pH | 5.83±0.02b | 5.72±0.09c | 5.64±0.01c | 6.14±0.02a |
乳酸Lactic acid (LA, % DM) | 2.13±0.07b | 2.02±0.01c | 3.89±0.07a | 2.07±0.01c |
乙酸Acetic acid (AA, %DM) | 0.43±0.01a | 0.33±0.01b | 0.22±0.02d | 0.28±0.02c |
丙酸Propionic acid (PA, %DM) | 0.34±0.01d | 0.71±0.16b | 1.08±0.45a | 0.53±0.37c |
丁酸Butyric acid (BA, % DM) | 0.05±0.00a | 0.04±0.00b | 0.04±0.01ab | 0.05±0.01a |
氨态氮/总氮Ammonia nitrogen/total nitrogen (AN/TN) | 13.57±0.08a | 10.48±0.23c | 6.27±0.05d | 11.24±0.47b |
参数 Parameters | DM降解率DM degradation rate | |||
---|---|---|---|---|
CK (%) | LB (%) | GLB (%) | FLB (%) | |
4 h | 15.11±1.08Fc | 21.56±1.37Fb | 24.48±0.56Fa | 24.61±0.94Fa |
8 h | 22.42±2.66Eb | 29.49±1.23Ea | 32.08±1.71Ea | 30.91±1.57Ea |
12 h | 33.49±1.07Dc | 38.29±0.88Db | 39.65±1.23Db | 42.75±2.46Da |
24 h | 42.02±3.14Cb | 53.83±2.28Ca | 54.49±1.81Ca | 56.71±0.05Ca |
48 h | 62.30±1.96Bc | 65.76±1.11Bb | 68.91±0.23Ba | 62.94±2.05B |
72 h | 65.52±2.15Ab | 68.27±0.92Aab | 71.57±1.22Aa | 66.62±2.70Ab |
a (%) | 6.40±1.41d | 8.91±0.77c | 13.60±0.66a | 9.67±1.53b |
b (%) | 63.79±1.43a | 60.90±0.69b | 60.69±0.60c | 56.70±1.41d |
a+b (%) | 70.19±0.02b | 69.81±0.08c | 74.29±0.06a | 66.37±0.12d |
c (%·h-1) | 0.04±0.00c | 0.05±0.00b | 0.05±0.00b | 0.07±0.00a |
ED (%) | 45.03±0.54d | 50.57±0.30c | 53.05±0.27a | 51.17±0.50b |
R2 | 0.98 | 0.99 | 0.99 | 0.98 |
表4 不同时间点DM降解率及降解参数
Table 4 DM degradation rate at different time and degradation parameters
参数 Parameters | DM降解率DM degradation rate | |||
---|---|---|---|---|
CK (%) | LB (%) | GLB (%) | FLB (%) | |
4 h | 15.11±1.08Fc | 21.56±1.37Fb | 24.48±0.56Fa | 24.61±0.94Fa |
8 h | 22.42±2.66Eb | 29.49±1.23Ea | 32.08±1.71Ea | 30.91±1.57Ea |
12 h | 33.49±1.07Dc | 38.29±0.88Db | 39.65±1.23Db | 42.75±2.46Da |
24 h | 42.02±3.14Cb | 53.83±2.28Ca | 54.49±1.81Ca | 56.71±0.05Ca |
48 h | 62.30±1.96Bc | 65.76±1.11Bb | 68.91±0.23Ba | 62.94±2.05B |
72 h | 65.52±2.15Ab | 68.27±0.92Aab | 71.57±1.22Aa | 66.62±2.70Ab |
a (%) | 6.40±1.41d | 8.91±0.77c | 13.60±0.66a | 9.67±1.53b |
b (%) | 63.79±1.43a | 60.90±0.69b | 60.69±0.60c | 56.70±1.41d |
a+b (%) | 70.19±0.02b | 69.81±0.08c | 74.29±0.06a | 66.37±0.12d |
c (%·h-1) | 0.04±0.00c | 0.05±0.00b | 0.05±0.00b | 0.07±0.00a |
ED (%) | 45.03±0.54d | 50.57±0.30c | 53.05±0.27a | 51.17±0.50b |
R2 | 0.98 | 0.99 | 0.99 | 0.98 |
参数 Parameters | CP降解率CP degradation rate | |||
---|---|---|---|---|
CK (%) | LB (%) | GLB (%) | FLB (%) | |
4 h | 40.29±0.99Ea | 38.07±2.96Ea | 41.51±1.27Ea | 40.22±2.00Ea |
8 h | 55.96±1.58Dab | 54.58±1.12Db | 56.50±1.01Dab | 58.20±1.22Da |
12 h | 61.65±1.27Ca | 61.16±1.53Ca | 62.61±1.78Ca | 64.01±1.35Ca |
24 h | 64.92±0.56Bb | 65.29±0.49Bb | 67.56±1.20Ba | 68.78±1.21Ba |
48 h | 72.84±1.27Ab | 75.48±1.84Aab | 77.12±1.60Aa | 74.73±1.98Aab |
72 h | 74.46±0.69Ab | 76.45±2.41Aab | 78.48±0.62Aa | 76.48±0.55Aab |
a (%) | 21.58±3.04b | 21.54±3.07b | 27.96±2.31a | 13.23±3.41c |
b (%) | 50.61±2.89c | 53.19±2.92b | 49.09±2.18d | 60.92±3.28a |
a+b (%) | 72.20±0.15d | 74.73±0.16b | 77.05±0.13a | 74.15±0.13c |
c (%·h-1) | 0.13±0.01b | 0.11±0.01c | 0.09±0.01d | 0.15±0.01a |
ED (%) | 63.71±0.63d | 64.44±0.72c | 66.64±0.59a | 65.48±0.59b |
R2 | 0.95 | 0.94 | 0.96 | 0.96 |
表5 不同时间点CP降解率及降解参数
Table 5 CP degradation rate at different time and degradation parameters
参数 Parameters | CP降解率CP degradation rate | |||
---|---|---|---|---|
CK (%) | LB (%) | GLB (%) | FLB (%) | |
4 h | 40.29±0.99Ea | 38.07±2.96Ea | 41.51±1.27Ea | 40.22±2.00Ea |
8 h | 55.96±1.58Dab | 54.58±1.12Db | 56.50±1.01Dab | 58.20±1.22Da |
12 h | 61.65±1.27Ca | 61.16±1.53Ca | 62.61±1.78Ca | 64.01±1.35Ca |
24 h | 64.92±0.56Bb | 65.29±0.49Bb | 67.56±1.20Ba | 68.78±1.21Ba |
48 h | 72.84±1.27Ab | 75.48±1.84Aab | 77.12±1.60Aa | 74.73±1.98Aab |
72 h | 74.46±0.69Ab | 76.45±2.41Aab | 78.48±0.62Aa | 76.48±0.55Aab |
a (%) | 21.58±3.04b | 21.54±3.07b | 27.96±2.31a | 13.23±3.41c |
b (%) | 50.61±2.89c | 53.19±2.92b | 49.09±2.18d | 60.92±3.28a |
a+b (%) | 72.20±0.15d | 74.73±0.16b | 77.05±0.13a | 74.15±0.13c |
c (%·h-1) | 0.13±0.01b | 0.11±0.01c | 0.09±0.01d | 0.15±0.01a |
ED (%) | 63.71±0.63d | 64.44±0.72c | 66.64±0.59a | 65.48±0.59b |
R2 | 0.95 | 0.94 | 0.96 | 0.96 |
参数 Parameters | ADF降解率ADF degradation rate | |||
---|---|---|---|---|
CK (%) | LB (%) | GLB (%) | FLB (%) | |
4 h | 15.31±1.81Eb | 18.65±5.23Eab | 15.88±1.34Eb | 23.89±1.37Ea |
8 h | 26.32±1.80Db | 30.40±2.07Da | 26.04±1.69Db | 27.97±1.41Dab |
12 h | 32.69±1.38Cab | 35.72±2.51Ca | 31.71±0.82Cb | 33.62±1.74Cab |
24 h | 42.42±1.09Bab | 42.78±0.83Bab | 40.30±2.51Bb | 43.55±1.50Ba |
48 h | 52.61±1.11Aab | 53.99±1.51Aab | 50.46±2.52Ab | 55.03±3.15Aa |
72 h | 54.07±1.75Aab | 55.80±0.91Aa | 52.65±1.61Ab | 56.79±1.92Aa |
a (%) | 4.93±1.10d | 10.69±1.81b | 7.48±1.20c | 16.58±0.93a |
b (%) | 49.38±1.00a | 45.22±1.64b | 45.44±1.09b | 43.07±0.89c |
a+b (%) | 54.31±0.09c | 55.91±0.17b | 52.91±0.11d | 59.64±0.04a |
c (%·h-1) | 0.07±0.00a | 0.06±0.01a | 0.06±0.00a | 0.04±0.00b |
ED (%) | 40.61±0.37c | 42.69±0.65b | 40.05±0.42c | 43.41±0.38a |
R2 | 0.99 | 0.96 | 0.98 | 0.98 |
表6 不同时间点ADF降解率及降解参数
Table 6 ADF degradation rate at different time and degradation parameters
参数 Parameters | ADF降解率ADF degradation rate | |||
---|---|---|---|---|
CK (%) | LB (%) | GLB (%) | FLB (%) | |
4 h | 15.31±1.81Eb | 18.65±5.23Eab | 15.88±1.34Eb | 23.89±1.37Ea |
8 h | 26.32±1.80Db | 30.40±2.07Da | 26.04±1.69Db | 27.97±1.41Dab |
12 h | 32.69±1.38Cab | 35.72±2.51Ca | 31.71±0.82Cb | 33.62±1.74Cab |
24 h | 42.42±1.09Bab | 42.78±0.83Bab | 40.30±2.51Bb | 43.55±1.50Ba |
48 h | 52.61±1.11Aab | 53.99±1.51Aab | 50.46±2.52Ab | 55.03±3.15Aa |
72 h | 54.07±1.75Aab | 55.80±0.91Aa | 52.65±1.61Ab | 56.79±1.92Aa |
a (%) | 4.93±1.10d | 10.69±1.81b | 7.48±1.20c | 16.58±0.93a |
b (%) | 49.38±1.00a | 45.22±1.64b | 45.44±1.09b | 43.07±0.89c |
a+b (%) | 54.31±0.09c | 55.91±0.17b | 52.91±0.11d | 59.64±0.04a |
c (%·h-1) | 0.07±0.00a | 0.06±0.01a | 0.06±0.00a | 0.04±0.00b |
ED (%) | 40.61±0.37c | 42.69±0.65b | 40.05±0.42c | 43.41±0.38a |
R2 | 0.99 | 0.96 | 0.98 | 0.98 |
参数 Parameters | NDF降解率NDF degradation rate | |||
---|---|---|---|---|
CK (%) | LB (%) | GLB (%) | FLB (%) | |
4 h | 15.52±2.77Fb | 18.12±4.30Eab | 18.16±1.81Fab | 21.52±0.61Fa |
8 h | 24.59±0.72Ec | 27.75±1.46Dab | 25.60±1.42Ebc | 28.51±0.92Ea |
12 h | 31.78±1.64Db | 36.09±0.51Ca | 37.65±1.26Da | 35.84±1.57Da |
24 h | 40.34±0.96Cb | 47.01±1.36Ba | 46.10±0.74Ca | 47.74±0.91Ca |
48 h | 55.82±1.37Bab | 58.28±1.56Aa | 55.66±1.28Bab | 54.49±2.19Bb |
72 h | 59.00±0.82Aab | 59.88±1.96Aa | 57.99±0.98Aab | 57.32±1.00Ab |
a (%) | 8.29±1.03b | 6.82±1.28c | 5.59±1.32d | 10.66±0.80a |
b (%) | 53.31±0.97a | 53.75±1.16a | 52.27±1.21b | 46.75±0.73c |
a+b (%) | 61.60±0.06a | 60.57±0.12b | 57.86±0.11c | 57.41±0.07c |
c (%·h-1) | 0.04±0.00b | 0.06±0.00a | 0.07±0.00a | 0.06±0.00a |
ED (%) | 41.87±0.42c | 44.91±0.46a | 43.67±0.44b | 44.10±0.28a |
R2 | 0.99 | 0.98 | 0.98 | 0.99 |
表7 不同时间点NDF降解率及降解参数
Table 7 NDF degradation rate at different time and degradation parameters
参数 Parameters | NDF降解率NDF degradation rate | |||
---|---|---|---|---|
CK (%) | LB (%) | GLB (%) | FLB (%) | |
4 h | 15.52±2.77Fb | 18.12±4.30Eab | 18.16±1.81Fab | 21.52±0.61Fa |
8 h | 24.59±0.72Ec | 27.75±1.46Dab | 25.60±1.42Ebc | 28.51±0.92Ea |
12 h | 31.78±1.64Db | 36.09±0.51Ca | 37.65±1.26Da | 35.84±1.57Da |
24 h | 40.34±0.96Cb | 47.01±1.36Ba | 46.10±0.74Ca | 47.74±0.91Ca |
48 h | 55.82±1.37Bab | 58.28±1.56Aa | 55.66±1.28Bab | 54.49±2.19Bb |
72 h | 59.00±0.82Aab | 59.88±1.96Aa | 57.99±0.98Aab | 57.32±1.00Ab |
a (%) | 8.29±1.03b | 6.82±1.28c | 5.59±1.32d | 10.66±0.80a |
b (%) | 53.31±0.97a | 53.75±1.16a | 52.27±1.21b | 46.75±0.73c |
a+b (%) | 61.60±0.06a | 60.57±0.12b | 57.86±0.11c | 57.41±0.07c |
c (%·h-1) | 0.04±0.00b | 0.06±0.00a | 0.07±0.00a | 0.06±0.00a |
ED (%) | 41.87±0.42c | 44.91±0.46a | 43.67±0.44b | 44.10±0.28a |
R2 | 0.99 | 0.98 | 0.98 | 0.99 |
图1 紫花苜蓿青贮有氧暴露期间pH、酵母菌及好氧菌数量的变化n=3。不同小写字母表示相同天数不同处理之间差异显著(P<0.05),不同大写字母表示相同处理不同天数之间差异显著(P<0.05)。Different lowercase letters represent significant differences between different treatments in the same days (P<0.05), and different uppercase letters represent significant differences between different days in the same treatment (P<0.05).
Fig.1 Varieties of pH, quantity of yeast, and aerobic bacteria during aerobic exposure of alfalfa silage
测定项目 Items | 处理Treatments | |||
---|---|---|---|---|
CK | LB | GLB | FLB | |
干物质Dry matter (DM) | 0.00 | 0.08 | 1.00 | 0.62 |
粗蛋白Crude protein (CP) | 0.00 | 0.47 | 1.00 | 0.35 |
中性洗涤纤维Neutral detergent fiber (NDF) | 0.10 | 0.06 | 1.00 | 0.29 |
酸性洗涤纤维Acid detergent fiber (ADF) | 0.00 | 0.45 | 1.00 | 0.29 |
可溶性碳水化合物Water-soluble carbohydrate (WSC) | 0.35 | 0.00 | 0.39 | 1.00 |
pH (青贮60 d ) pH (silage for 60 days) | 0.62 | 0.84 | 1.00 | 0.00 |
乳酸Lactic acid (LA) | 0.06 | 0.01 | 1.00 | 0.00 |
乙酸Acetic acid (AA) | 1.00 | 0.52 | 0.00 | 0.29 |
丙酸Propionic acid (PA) | 0.00 | 0.50 | 1.00 | 0.26 |
丁酸 Butyric acid (BA) | 0.00 | 1.00 | 1.00 | 0.00 |
氨态氮/总氮Ammonia nitrogen/total nitrogen (AN/TN) | 0.00 | 0.42 | 1.00 | 0.32 |
干物质有效降解率Effective degradation rate of dry matter | 0.00 | 0.69 | 1.00 | 0.77 |
酸性洗涤纤维有效降解率Effective degradation rate of acid detergent fiber | 0.17 | 0.79 | 0.00 | 1.00 |
中性洗涤纤维有效降解率Effective degradation rate of neutral detergent fiber | 0.00 | 1.00 | 0.59 | 0.73 |
pH (有氧暴露6 d) pH (on the 6 d of aerobic exposure) | 0.00 | 0.39 | 0.32 | 1.00 |
有氧暴露6 d酵母菌数量Quantity of yeast on the 6 days of aerobic exposure | 0.00 | 0.78 | 0.78 | 1.00 |
有氧暴露6 d好氧菌数量Quantity of aerobic bacteria on the 6 days of aerobic exposure | 0.00 | 1.00 | 0.91 | 0.95 |
隶属度平均值Average value | 0.14 | 0.53 | 0.76 | 0.52 |
排序Rank | 4 | 2 | 1 | 3 |
表8 综合价值评定和排序
Table 8 Comprehensive value evaluation and ranking
测定项目 Items | 处理Treatments | |||
---|---|---|---|---|
CK | LB | GLB | FLB | |
干物质Dry matter (DM) | 0.00 | 0.08 | 1.00 | 0.62 |
粗蛋白Crude protein (CP) | 0.00 | 0.47 | 1.00 | 0.35 |
中性洗涤纤维Neutral detergent fiber (NDF) | 0.10 | 0.06 | 1.00 | 0.29 |
酸性洗涤纤维Acid detergent fiber (ADF) | 0.00 | 0.45 | 1.00 | 0.29 |
可溶性碳水化合物Water-soluble carbohydrate (WSC) | 0.35 | 0.00 | 0.39 | 1.00 |
pH (青贮60 d ) pH (silage for 60 days) | 0.62 | 0.84 | 1.00 | 0.00 |
乳酸Lactic acid (LA) | 0.06 | 0.01 | 1.00 | 0.00 |
乙酸Acetic acid (AA) | 1.00 | 0.52 | 0.00 | 0.29 |
丙酸Propionic acid (PA) | 0.00 | 0.50 | 1.00 | 0.26 |
丁酸 Butyric acid (BA) | 0.00 | 1.00 | 1.00 | 0.00 |
氨态氮/总氮Ammonia nitrogen/total nitrogen (AN/TN) | 0.00 | 0.42 | 1.00 | 0.32 |
干物质有效降解率Effective degradation rate of dry matter | 0.00 | 0.69 | 1.00 | 0.77 |
酸性洗涤纤维有效降解率Effective degradation rate of acid detergent fiber | 0.17 | 0.79 | 0.00 | 1.00 |
中性洗涤纤维有效降解率Effective degradation rate of neutral detergent fiber | 0.00 | 1.00 | 0.59 | 0.73 |
pH (有氧暴露6 d) pH (on the 6 d of aerobic exposure) | 0.00 | 0.39 | 0.32 | 1.00 |
有氧暴露6 d酵母菌数量Quantity of yeast on the 6 days of aerobic exposure | 0.00 | 0.78 | 0.78 | 1.00 |
有氧暴露6 d好氧菌数量Quantity of aerobic bacteria on the 6 days of aerobic exposure | 0.00 | 1.00 | 0.91 | 0.95 |
隶属度平均值Average value | 0.14 | 0.53 | 0.76 | 0.52 |
排序Rank | 4 | 2 | 1 | 3 |
1 | Zhao S, Yang F, Wang Y, et al. Dynamics of fermentation parameters and bacterial community in high-moisture alfalfa silage with or without lactic acid bacteria. Microorganisms, 2021, 9(6): 1225. |
2 | Li G Y, Zhang L J. Alfalfa silage additives and their applying progress. Animal Husbandry and Feed Science, 2013, 34(10): 32-34. |
李光耀, 张力君. 苜蓿青贮添加剂及其应用进展. 畜牧与饲料科学, 2013, 34(10): 32-34. | |
3 | Wang T, Song L, Wang X Z, et al. Effect of compound Lactobacillus and mixture ratio on fermentation quality and rumen degradability of mixed tomato pomace and alfalfa silage mixed storage. Acta Prataculturae Sinica, 2022, 31(10): 167-177. |
王挺, 宋磊, 王旭哲, 等. 复合乳酸菌对番茄皮渣与苜蓿混合青贮发酵品质及瘤胃降解率的影响. 草业学报, 2022, 31(10): 167-177. | |
4 | Arriola K G, Oliveira A, Jiang Y, et al. Meta-analysis of effects of inoculation with Lactobacillus buchneri, with or without other bacteria, on silage fermentation, aerobic stability, and performance of dairy cows. Journal of Dairy Science, 2021, 104(7): 7653-7670. |
5 | Drouin P, Tremblay J, da Silva É B, et al. Changes to the microbiome of alfalfa during the growing season and after ensiling with Lentilactobacillus buchneri and Lentilactobacillus hilgardii inoculant. Journal of Applied Microbiology, 2022, 133(4): 2331-2347. |
6 | Dong Z H, Yuan X J, Wen A Y, et al. Effect of lactic acid bacteria and fermentation substrates on the quality of mulberry (Morus alba) leaf silage. Acta Prataculturae Sinica, 2016, 25(6): 167-174. |
董志浩, 原现军, 闻爱友, 等. 添加乳酸菌和发酵底物对桑叶青贮发酵品质的影响. 草业学报, 2016, 25(6): 167-174. | |
7 | Xu H, Liu Y, Kan H. Research progress on extraction, purification and physiological activity of natural polysaccharides. Food Safety and Quality Detection Technology, 2022, 13(5): 1382-1390. |
徐涵, 刘云, 阚欢. 天然多糖提取纯化及生理功能活性研究进展. 食品安全质量检测学报, 2022, 13(5): 1382-1390. | |
8 | Zhang L, Zhang J, Han X L, et al. Study on biological activity of fucoidan and its application in animal production. Heilongjiang Animal Science and Veterinary Medicine, 2022(1): 47-52. |
张磊, 张娟, 韩雪林, 等. 岩藻多糖的生物学活性研究及在动物生产中的应用. 黑龙江畜牧兽医, 2022(1): 47-52. | |
9 | Zhang L Y. Feed analysis and feed quality detection technology (2nd Edition). Beijing: China Agricultural University Press, 2007: 46-75. |
张丽英. 饲料分析及饲料质量检测技术(第2版). 北京: 中国农业大学出版社, 2007: 46-75. | |
10 | Feng Q X, Shi W J, Chen S Q, et al. Addition of organic acids and Lactobacillus acidophilus to the leguminous forage Chamaecrista rotundifolia improved the quality and decreased harmful bacteria of the silage. Animals, 2022, 12(17): 2260. |
11 | Broderick G A, Kang J H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science, 1980, 63(1): 64-75. |
12 | Yuan X J, Wen A Y, Wang J, et al. Effects of four short-chain fatty acids or salts on fermentation characteristics and aerobic stability of alfalfa (Medicago sativa L.) silage. Journal of the Science of Food and Agriculture, 2018, 98(1): 328-335. |
13 | Ørskov E R, Mcdonald I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agricultural Science, 1979, 92(2): 499-503. |
14 | Wang X Z, Jia S A, Zhang F F, et al. Fermentation quality and microbial quantity during aerobic storage of corn silage. Acta Prataculturae Sinica, 2017, 26(9): 156-166. |
王旭哲, 贾舒安, 张凡凡, 等. 紧实度对青贮玉米有氧稳定期发酵品质、微生物数量的效应研究. 草业学报, 2017, 26(9): 156-166. | |
15 | Abdul R N, Abd H M R, Mahawi N, et al. Determination of the use of Lactobacillus plantarum and Propionibacterium freudenreichii application on fermentation profile and chemical composition of corn silage. BioMed Research International, 2017(1): 2038062. |
16 | Jones D J C. The biochemistry of silage (2nd edition). UK: Chalcombe Publications, 1991: 386. |
17 | Zhang H, Mu Y X, Zhang G J. Effects of Lycium barbarum by-products on fermentation quality and microbial diversity of alfalfa silage. Acta Prataculturae Sinica, 2022, 31(4): 136-144. |
张欢, 牟怡晓, 张桂杰. 添加枸杞副产物对紫花苜蓿青贮发酵品质及微生物多样性的影响. 草业学报, 2022, 31(4): 136-144. | |
18 | Kung Jr L, Ranjit N K. The effect of Lactobacillus buchneri and other additives on the fermentation and aerobic stability of barley silage. Journal of Dairy Science, 2001, 84(5): 1149-1155. |
19 | Ranjit N K, Kung Jr L. The effect of Lactobacillus buchneri, Lactobacillus plantarum, or a chemical preservative on the fermentation and aerobic stability of corn silage. Journal of Dairy Science, 2000, 83(3): 526-535. |
20 | Rong H, Yu C Q, Chen J, et al. Effect of FJLB, LAB and glucose addition on the fermentation quality of napier grass(Pennisetum purpureum) silage. Acta Prataculturae Sinica, 2013, 22(3): 108-115. |
荣辉, 余成群, 陈杰, 等. 添加绿汁发酵液、乳酸菌制剂和葡萄糖对象草青贮发酵品质的影响. 草业学报, 2013, 22(3): 108-115. | |
21 | Li M, Zi X J, Hu H C, et al. The effect of glucose on the quality and nutrient composition of cassava foliage. Acta Ecologiae Animalis Domastici, 2019, 40(7): 34-37. |
李茂, 字学娟, 胡海超, 等. 添加葡萄糖对木薯叶青贮品质和营养成分的影响. 家畜生态学报, 2019, 40(7): 34-37. | |
22 | Wang L, Bao J Z, Tian F B, et al. Effect of adding Lactobacillus buchneri on ensiling quality of high moisture corn. Feed Industry, 2022, 43(2): 35-39. |
王磊, 包锦泽, 田逢博, 等. 布氏乳杆菌对高湿玉米青贮饲料品质的影响. 饲料工业, 2022, 43(2): 35-39. | |
23 | Contreras-Govea F E, Muck R E, Broderick G A, et al. Lactobacillus plantarum effects on silage fermentation and in vitro microbial yield. Animal Feed Science and Technology, 2013, 179(1/2/3/4): 61-68. |
24 | Wan J C, Xie K Y, Wang Y X, et al. Effects of homo- and hetero-fermentative lactic acid bacteria on yeast community structure and fermentation characteristics during the silage process of Sudangrass. Pratacultural Science, 2019, 36(2): 565-572. |
万江春, 谢开云, 王玉祥, 等. 同/异质型乳酸菌添加对苏丹草青贮酵母菌群落结构及发酵品质的影响. 草业科学, 2019, 36(2): 565-572. | |
25 | Hong M, Diao Q Y, Jiang C G, et al. Review for effect of Lactobacillus buchneri on the silage. Acta Prataculturae Sinica, 2011, 20(5): 266-271. |
洪梅, 刁其玉, 姜成钢, 等. 布氏乳杆菌对青贮发酵及其效果的研究进展. 草业学报, 2011, 20(5): 266-271. | |
26 | Krooneman J, Faber F, Alderkamp A C, et al. Lactobacillus diolivorans sp. nov. a 1,2-propanediol-degrading bacterium isolated from aerobically stable maize silage. International Journal of Systematic and Evolutionary Microbiology, 2002, 52(2): 639-646. |
27 | Wang Y, Zhang X Q, Yang F Y. Effect of adding propionic acid and lactic acid bacteria on fermentation quality of hybrid Pennisetum silage. Pratacultural Science, 2012, 29(9): 1468-1472. |
王雁, 张新全, 杨富裕. 添加丙酸和乳酸菌对杂交狼尾草青贮发酵品质的影响. 草业科学, 2012, 29(9): 1468-1472. | |
28 | Zhang J, Guo G, Chen L, et al. Effect of applying lactic acid bacteria and propionic acid on fermentation quality and aerobic stability of oats-common vetch mixed silage on the Tibetan Plateau. Animal Science Journal, 2015, 86(6): 595-602. |
29 | Li M, Zhang L, Zhang Q, et al. Impacts of citric acid and malic acid on fermentation quality and bacterial community of cassava foliage silage. Frontiers in Microbiology, 2020, 11: 595622. |
30 | Peyrat J, Noziere P, Le Morvan A, et al. Effects of ensiling maize and sample conditioning on in situ rumen degradation of dry matter, starch and fibre. Animal Feed Science and Technology, 2014, 196: 12-21. |
31 | Jaakkola S, Huhtanen P, Hissa K. The effect of cell wall degrading enzymes or formic acid on fermentation quality and on digestion of grass silage by cattle. Grass and Forage Science, 1991, 46(1): 75-87. |
32 | Spears J W, Schlegel P, Seal M C, et al. Bioavailability of zinc from zinc sulfate and different organic zinc sources and their effects on ruminal volatile fatty acid proportions. Livestock Production Science, 2004, 90(2/3): 211-217. |
33 | Wang C J. Evaluation on nutritional value and feeding effect of alfalfa and red bean grass. Lanzhou: Gansu Agricultural University, 2018. |
王春军. 紫花苜蓿和红豆草的营养价值及饲喂效果评价. 兰州: 甘肃农业大学, 2018. | |
34 | Zhang L X, Tu Y, Li Y L, et al. Effects of different microbes and their combinations on rumen degradation rate of corn stalk. Chinese Journal of Animal Nutrition, 2014, 26(8): 2433-2444. |
张立霞, 屠焰, 李艳玲, 等. 不同微生物菌株及其组合处理对玉米秸秆瘤胃降解率的影响. 动物营养学报, 2014, 26(8): 2433-2444. | |
35 | Li F F, Zhang F F, Wang X Z, et al. Effects of homo- and heterofermentative lactic acid bacteria on the nutritional quality and ruminal degradation rate of the whole plant maize silage. Acta Prataculturae Sinica, 2019, 28(6): 128-136. |
李菲菲, 张凡凡, 王旭哲, 等. 同/异型发酵乳酸菌对全株玉米青贮营养成分和瘤胃降解特征的影响. 草业学报, 2019, 28(6): 128-136. | |
36 | Meng L K, Guo C H, Peng Z L, et al. Effect of microorganism fermented grass on growth performance, nutrient digestion metabolism and digestive tract microorganism quantity of goats. Feed Industry, 2015, 36(3): 48-52. |
孟令凯, 郭春华, 彭忠利, 等. 微贮牧草对山羊生产性能,饲粮养分消化率和消化道微生物数量的影响. 饲料工业, 2015, 36(3): 48-52. | |
37 | Liu H H. Effects of different additives on alfalfa silage quality, aerobic stability and fermentation parameters.Yinchuan: Ningxia University, 2020. |
刘欢欢. 不同添加剂对苜蓿青贮品质和有氧稳定性及发酵参数的影响. 银川: 宁夏大学, 2020. | |
38 | Li M C, Wang D F, Zhou H L, et al. Effect of cellulase or formic acid on feeding value of silage pineapple leaves. China Animal Husbandry and Veterinary Medicine, 2014, 41(8): 95-100. |
李梦楚, 王定发, 周汉林, 等. 添加纤维素酶或甲酸对青贮菠萝茎叶饲用品质的影响. 中国畜牧兽医, 2014, 41(8): 95-100. | |
39 | Liu T T, Wang S W, Li Q F, et al. Ruminal degradation characteristics of whole maize plant material before and after ensiling in beef cattle as determined in situ using the nylon bag method. Acta Prataculturae Sinica, 2021, 30(1): 159-169. |
刘桃桃, 王思伟, 李秋凤, 等. 利用尼龙袋法比较3个全株玉米品种青贮前后肉牛瘤胃降解特性. 草业学报, 2021, 30(1): 159-169. | |
40 | Ballard C S, Thomas E D, Tsang D S, et al. Effect of corn silage hybrid on dry matter yield, nutrient composition, in vitro digestion, intake by dairy heifers, and milk production by dairy cows. Journal of Dairy Science, 2001, 84(2): 442-452. |
41 | Leng J, Zhang Y, Zhu R J, et al. Rumen degradation characteristics of six types of forages in the Yunnan Yellow Cattle. Chinese Journal of Animal Nutrition, 2011, 23(1): 53-60. |
冷静, 张颖, 朱仁俊, 等. 6种牧草在云南黄牛瘤胃中的降解特性. 动物营养学报, 2011, 23(1): 53-60. | |
42 | Zhao L S, Niu J L, Xu Y J, et al. Ruminal degradation characteristics and small intestinal digestibility of rumen undegraded protein of six feed ingredients. Chinese Journal of Animal Nutrition, 2017, 29(6): 2038-2046. |
赵连生, 牛俊丽, 徐元君, 等. 6种饲料原料瘤胃降解特性和瘤胃非降解蛋白质的小肠消化率. 动物营养学报, 2017, 29(6): 2038-2046. | |
43 | Besharati M, Palangi V, Ghozalpour V, et al. Essential oil and apple pomace affect fermentation and aerobic stability of alfalfa silage. South African Journal of Animal Science, 2021, 51(3): 371-377. |
44 | Besharati M, Palangi V, Nekoo M, et al. Effects of Lactobacillus buchneri inoculation and fresh whey addition on alfalfa silage quality and fermentation properties. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 2021, 24(3): 671-678. |
45 | Weiss K, Kroschewski B, Auerbach H. Effects of air exposure, temperature and additives on fermentation characteristics, yeast count, aerobic stability and volatile organic compounds in corn silage. Journal of Dairy Science, 2016, 99(10): 8053-8069. |
46 | Turan A, Nen S S. Effect of cumin essential oil usage on fermentation quality, aerobic stability and in vitro digestibility of alfalfa silage. Asian-Australasian Journal of Animal Sciences, 2018, 31(8): 1252-1258. |
47 | Chen L, Yuan X J, L J F, et al. Effect of lactic acid bacteria and propionic acid on conservation characteristics, aerobic stability and in vitro gas production kinetics and digestibility of whole-crop corn based total mixed ration silage. Journal of Integrative Agriculture, 2017, 16(7): 1592-1600. |
48 | Muck R E, Nadeau E M G, Mcallister T A, et al. Silage review: Recent advances and future uses of silage additives. Journal of Dairy Science, 2018, 101(5): 3980-4000. |
[1] | 李超男, 王磊, 周继强, 赵长兴, 谢晓蓉, 刘金荣. 微塑料对紫花苜蓿生长及生理特性的影响[J]. 草业学报, 2023, 32(5): 138-146. |
[2] | 梁梦琪, 武齐丰, 邵涛, 吴艾丽, 刘秦华. 添加剂对多花黑麦草青贮发酵品质、α-生育酚和β-胡萝卜素含量的影响[J]. 草业学报, 2023, 32(5): 180-189. |
[3] | 张振粉, 黄荣, 姚博, 张旺东, 杨成德, 陈秀蓉. 欧美进口紫花苜蓿可培养种带细菌及其对动植物的致病性[J]. 草业学报, 2023, 32(4): 161-172. |
[4] | 张士敏, 赵娇阳, 朱慧森, 卫凯, 王永新. 硒对不同品种紫花苜蓿发芽阶段物质转化和形态建成的影响[J]. 草业学报, 2023, 32(4): 79-90. |
[5] | 王园, 王晶, 李淑霞. 紫花苜蓿MsBBX24基因的克隆及耐盐性分析[J]. 草业学报, 2023, 32(3): 107-117. |
[6] | 田政, 杨正禹, 陆忠杰, 罗奔, 张茂, 董瑞. 44个紫花苜蓿品种的酸铝适应性与耐受性评价[J]. 草业学报, 2023, 32(3): 142-151. |
[7] | 孙守江, 唐艺涵, 马馼, 李曼莉, 毛培胜. 紫花苜蓿种子吸胀期胚根线粒体AsA-GSH循环对低温胁迫的响应[J]. 草业学报, 2023, 32(3): 152-162. |
[8] | 刘选帅, 孙延亮, 安晓霞, 马春晖, 张前兵. 施磷和接种解磷菌对紫花苜蓿光合特性及生物量的影响[J]. 草业学报, 2023, 32(3): 189-199. |
[9] | 王晓龙, 杨曌, 来永才, 李红, 钟鹏, 徐艳霞, 柴华, 李莎莎, 吴玥, 宋敏超, 周景明. 不同秋眠等级苜蓿根系性状对越冬的影响[J]. 草业学报, 2023, 32(1): 144-153. |
[10] | 孙延亮, 赵俊威, 刘选帅, 李生仪, 马春晖, 王旭哲, 张前兵. 施氮对苜蓿初花期光合日变化、叶片形态及干物质产量的影响[J]. 草业学报, 2022, 31(9): 63-75. |
[11] | 王星, 黄薇, 余淑艳, 李小云, 高雪芹, 伏兵哲. 宁夏地区地下滴灌水肥耦合对紫花苜蓿种子产量及构成因素的影响[J]. 草业学报, 2022, 31(9): 76-85. |
[12] | 付东青, 贾春英, 张力, 张凡凡, 马春晖. 南疆干旱灌溉区青贮玉米农艺性状和发酵品质动态分析及评价[J]. 草业学报, 2022, 31(8): 111-125. |
[13] | 李影正, 程榆林, 徐璐璐, 李万松, 严旭, 李晓锋, 何如钰, 周阳, 郑军军, 汪星宇, 张德龙, 程明军, 夏运红, 何建美, 唐祈林. 不同玉米品种(系)的全株、果穗与秸秆青贮特性比较[J]. 草业学报, 2022, 31(8): 144-156. |
[14] | 吴永杰, 丁浩, 邵涛, 赵杰, 董东, 代童童, 尹雪敬, 宗成, 李君风. 酶制剂对水稻秸秆青贮发酵品质及体外消化特性的影响[J]. 草业学报, 2022, 31(8): 167-177. |
[15] | 赵建涛, 岳亚飞, 张前兵, 马春晖. 不同秋眠级紫花苜蓿品种抗寒性对新疆北疆地区覆雪厚度的响应[J]. 草业学报, 2022, 31(8): 24-34. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||