草业学报 ›› 2023, Vol. 32 ›› Issue (10): 141-152.DOI: 10.11686/cyxb2022486
• 研究论文 • 上一篇
陆姣云1(), 田宏1, 张鹤山1, 熊军波1, 刘洋1(), 王振南2()
收稿日期:
2022-12-13
修回日期:
2023-02-02
出版日期:
2023-10-20
发布日期:
2023-07-26
通讯作者:
刘洋,王振南
作者简介:
wangzhennan@lyu.edu.cn基金资助:
Jiao-yun LU1(), Hong TIAN1, He-shan ZHANG1, Jun-bo XIONG1, Yang LIU1(), Zhen-nan WANG2()
Received:
2022-12-13
Revised:
2023-02-02
Online:
2023-10-20
Published:
2023-07-26
Contact:
Yang LIU,Zhen-nan WANG
摘要:
盐胁迫是全球范围内影响植物正常生长的主要非生物胁迫之一,外源H2O2可以通过调节植物过氧化酶活性及渗透调节物质含量来缓解盐胁迫对植物造成的伤害。本研究通过设置不同盐胁迫浓度(0,0.6%,1.2%,1.8% NaCl)及H2O2浸种处理(0、5、100 μmol·L-1 H2O2),研究H2O2浸种对不同浓度盐胁迫下紫花苜蓿种子萌发、幼苗生长、抗氧化酶活性及渗透调节物质的影响。结果表明:1)随着NaCl浓度的增加,苜蓿种子的发芽率、发芽势、发芽指数和活力指数均逐渐降低;苜蓿苗和全株的鲜重、干重、绝对含水量先增后减,根的鲜重、干重、绝对含水量逐渐减小;超氧化物歧化酶(SOD)活性和可溶性蛋白含量逐渐增加,过氧化氢酶(CAT)活性和丙二醛含量先增后减,过氧化物酶(POD)活性和可溶性糖含量均低于无盐胁迫。2)H2O2浸种提高了苜蓿种子的发芽势、发芽指数和活力指数。5 μmol·L-1 H2O2浸种处理下,苜蓿苗、根和全株的鲜重、干重、根冠比以及幼苗的SOD和CAT活性、脯氨酸和可溶性蛋白含量均高于100 μmol·L-1 H2O2和蒸馏水浸种处理,而丙二醛含量为5 μmol·L-1 H2O2浸种处理低于100 μmol·L-1 H2O2和蒸馏水浸种处理。综合分析表明,盐胁迫抑制了苜蓿种子的萌发和幼苗生长,苜蓿通过提高自身抗氧化酶活性和渗透调节物质含量来抵御盐胁迫;H2O2浸种提高了苜蓿种子和幼苗的抗盐能力,且5 μmol·L-1 H2O2浸种优于100 μmol·L-1 H2O2浸种。
陆姣云, 田宏, 张鹤山, 熊军波, 刘洋, 王振南. H2O2浸种对盐胁迫下紫花苜蓿种子萌发和幼苗生长的影响[J]. 草业学报, 2023, 32(10): 141-152.
Jiao-yun LU, Hong TIAN, He-shan ZHANG, Jun-bo XIONG, Yang LIU, Zhen-nan WANG. Effects of H2O2 immersion on seed germination and seedling growth of alfalfa under salt stress[J]. Acta Prataculturae Sinica, 2023, 32(10): 141-152.
指标 Index | 发芽率 Germination rate | 发芽势 Germination potential | 发芽指数 Germination index | 活力指数 Vigor index | ||||
---|---|---|---|---|---|---|---|---|
P | F | P | F | P | F | P | F | |
H2O2 | <0.001 | 25.421 | <0.001 | 11.389 | <0.001 | 23.291 | <0.001 | 17.765 |
NaCl | <0.001 | 197.384 | <0.001 | 577.641 | <0.001 | 1265.855 | <0.001 | 912.672 |
H2O2×NaCl | 0.204 | 1.469 | <0.001 | 5.670 | <0.001 | 13.137 | <0.001 | 102.107 |
表1 H2O2、NaCl及其交互作用对紫花苜蓿种子萌发的影响
Table 1 Effect of H2O2, NaCl and their interaction on seed germination of alfalfa
指标 Index | 发芽率 Germination rate | 发芽势 Germination potential | 发芽指数 Germination index | 活力指数 Vigor index | ||||
---|---|---|---|---|---|---|---|---|
P | F | P | F | P | F | P | F | |
H2O2 | <0.001 | 25.421 | <0.001 | 11.389 | <0.001 | 23.291 | <0.001 | 17.765 |
NaCl | <0.001 | 197.384 | <0.001 | 577.641 | <0.001 | 1265.855 | <0.001 | 912.672 |
H2O2×NaCl | 0.204 | 1.469 | <0.001 | 5.670 | <0.001 | 13.137 | <0.001 | 102.107 |
图1 外源H2O2对NaCl胁迫下紫花苜蓿种子萌发的影响0、5、100表示H2O2浸种浓度分别为0、5、100 μmol·L-1。不同小写字母表示同一H2O2浸种浓度下不同NaCl浓度之间差异显著(P<0.05),不同大写字母表示同一NaCl浓度下不同H2O2浸种浓度间差异显著(P<0.05)。下同。0, 5, 100 indicated that the concentration of H2O2 immersed seed was 0, 5, 100 μmol·L-1, respectively. Different lowercase letters indicate significant differences among different NaCl concentrations at the same H2O2 immersion concentration (P<0.05), different capital letters indicate significant differences among different H2O2 immersion concentrations at the same NaCl concentration (P<0.05). The same below.
Fig.1 Effect of H2O2 immersion on seed germination of alfalfa under salt stress
指标Index | 部位Part | 项目Item | H2O2 | NaCl | H2O2×NaCl |
---|---|---|---|---|---|
鲜重 Fresh weight | 苗Shoot | P | 0.005 | <0.001 | <0.001 |
F | 6.626 | 41.865 | 23.540 | ||
根Root | P | <0.001 | 0.001 | <0.001 | |
F | 38.621 | 8.004 | 66.134 | ||
全株Whole plant | P | <0.001 | <0.001 | <0.001 | |
F | 11.582 | 36.424 | 24.135 | ||
干重 Dry weight | 苗Shoot | P | 0.001 | <0.001 | <0.001 |
F | 10.404 | 19.398 | 7.119 | ||
根Root | P | <0.001 | <0.001 | 0.007 | |
F | 15.772 | 18.389 | 3.991 | ||
全株Whole plant | P | <0.001 | <0.001 | 0.005 | |
F | 15.081 | 17.706 | 4.187 | ||
绝对含水量 Absolute moisture | 苗Shoot | P | 0.002 | <0.001 | <0.001 |
F | 7.904 | 15.955 | 10.616 | ||
根Root | P | <0.001 | 0.225 | <0.001 | |
F | 24.958 | 1.562 | 44.838 | ||
全株Whole plant | P | 0.009 | <0.001 | <0.001 | |
F | 5.851 | 20.297 | 10.351 | ||
根冠比 Root-shoot ratio | P | 0.003 | <0.001 | <0.001 | |
F | 7.680 | 18.331 | 7.145 |
表2 H2O2、NaCl及其交互作用对紫花苜蓿幼苗生物量、含水量和根冠比的影响
Table 2 Effect of H2O2, NaCl and their interaction on seedling biomass, moisture and root-shoot ratio of alfalfa
指标Index | 部位Part | 项目Item | H2O2 | NaCl | H2O2×NaCl |
---|---|---|---|---|---|
鲜重 Fresh weight | 苗Shoot | P | 0.005 | <0.001 | <0.001 |
F | 6.626 | 41.865 | 23.540 | ||
根Root | P | <0.001 | 0.001 | <0.001 | |
F | 38.621 | 8.004 | 66.134 | ||
全株Whole plant | P | <0.001 | <0.001 | <0.001 | |
F | 11.582 | 36.424 | 24.135 | ||
干重 Dry weight | 苗Shoot | P | 0.001 | <0.001 | <0.001 |
F | 10.404 | 19.398 | 7.119 | ||
根Root | P | <0.001 | <0.001 | 0.007 | |
F | 15.772 | 18.389 | 3.991 | ||
全株Whole plant | P | <0.001 | <0.001 | 0.005 | |
F | 15.081 | 17.706 | 4.187 | ||
绝对含水量 Absolute moisture | 苗Shoot | P | 0.002 | <0.001 | <0.001 |
F | 7.904 | 15.955 | 10.616 | ||
根Root | P | <0.001 | 0.225 | <0.001 | |
F | 24.958 | 1.562 | 44.838 | ||
全株Whole plant | P | 0.009 | <0.001 | <0.001 | |
F | 5.851 | 20.297 | 10.351 | ||
根冠比 Root-shoot ratio | P | 0.003 | <0.001 | <0.001 | |
F | 7.680 | 18.331 | 7.145 |
H2O2浓度 H2O2 concentration (μmol·L-1) | NaCl浓度NaCl concentration (%) | 鲜重 Fresh weight (g·×103 plant-1) | 干重 Dry weight (g·×103 plant-1) | 绝对含水量 Absolute moisture (%) | 根冠比Root- shoot ratio | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
苗 Shoot | 根 Root | 全株 Whole plant | 苗 Shoot | 根 Root | 全株 Whole plant | 苗 Shoot | 根 Root | 全株 Whole plant | |||
0 | 0 | 8.13±0.67bB | 1.82±0.07aA | 9.95±0.68bB | 1.49±0.10bA | 0.36±0.08abB | 1.85±0.16abB | 81.64±1.11cA | 80.07±3.96aA | 81.34±1.56bA | 0.24±0.05abB |
0.6 | 14.06±1.45aB | 0.83±0.14bA | 14.89±1.48aB | 1.75±0.14aA | 0.31±0.04bcB | 2.06±0.16aA | 87.51±0.99bB | 62.53±6.14bA | 86.15±0.96aB | 0.18±0.02bB | |
1.2 | 15.94±1.07aA | 0.65±0.10cB | 16.59±1.14aA | 1.37±0.06bC | 0.42±0.06aA | 1.79±0.03abC | 91.39±0.89aA | 34.32±3.23cC | 89.17±0.85aA | 0.31±0.05aA | |
1.8 | 8.86±1.06bB | 0.29±0.04dC | 9.15±1.03bC | 1.45±0.14bA | 0.25±0.04cB | 1.70±0.16bAB | 83.47±2.70cB | 14.06±3.87dC | 81.26±3.17bB | 0.17±0.02bB | |
5 | 0 | 10.70±1.04bA | 1.47±0.32bA | 12.17±1.29cA | 1.65±0.03aA | 0.59±0.04aA | 2.24±0.07aA | 84.49±1.33cA | 58.38±8.92bB | 81.44±1.76cA | 0.36±0.02aAB |
0.6 | 10.78±0.22bC | 1.20±0.26bcA | 11.98±0.21cB | 1.65±0.01aA | 0.46±0.01bA | 2.11±0.02aA | 84.69±0.26cC | 60.72±9.41bA | 82.41±0.21cC | 0.28±0.00bA | |
1.2 | 15.47±1.17aA | 0.77±0.06cB | 16.24±1.14bA | 1.76±0.12aA | 0.38±0.06bA | 2.14±0.07aA | 88.57±1.47bB | 50.13±11.70bB | 86.79±1.11bB | 0.22±0.05bA | |
1.8 | 15.58±0.95aA | 2.79±0.25aA | 18.37±0.72aA | 1.44±0.05bA | 0.38±0.06bA | 1.82±0.12bA | 90.74±0.65aA | 86.20±2.61aA | 90.07±0.66aA | 0.27±0.04bA | |
100 | 0 | 8.35±0.91dB | 0.82±0.16bB | 9.17±1.02cB | 1.15±0.24bB | 0.49±0.06aAB | 1.64±0.24bB | 85.87±4.28cA | 39.84±9.23cC | 81.78±4.52bA | 0.43±0.10aA |
0.6 | 18.72±2.11aA | 1.03±0.22bA | 19.75±2.16aA | 1.79±0.04aA | 0.35±0.04bcB | 2.14±0.08aA | 90.37±0.97abA | 65.05±8.50bA | 89.10±0.99aA | 0.20±0.02bB | |
1.2 | 11.85±1.32cB | 2.45±0.17aA | 14.30±1.20bA | 1.55±0.06aB | 0.42±0.06abA | 1.97±0.12aB | 86.87±1.10bcB | 82.69±3.70aA | 86.22±0.71aB | 0.27±0.03bA | |
1.8 | 14.63±1.28bA | 1.22±0.26bB | 15.86±1.53bB | 1.18±0.14bB | 0.28±0.03cB | 1.46±0.17bB | 91.97±0.34aA | 76.61±3.81abB | 90.82±0.39aA | 0.24±0.01bA |
表3 外源H2O2对NaCl胁迫下紫花苜蓿幼苗生物量、含水量和根冠比的影响
Table 3 Effect of H2O2 immersion on seedling biomass, moisture and root-shoot ratio of alfalfa under salt stress
H2O2浓度 H2O2 concentration (μmol·L-1) | NaCl浓度NaCl concentration (%) | 鲜重 Fresh weight (g·×103 plant-1) | 干重 Dry weight (g·×103 plant-1) | 绝对含水量 Absolute moisture (%) | 根冠比Root- shoot ratio | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
苗 Shoot | 根 Root | 全株 Whole plant | 苗 Shoot | 根 Root | 全株 Whole plant | 苗 Shoot | 根 Root | 全株 Whole plant | |||
0 | 0 | 8.13±0.67bB | 1.82±0.07aA | 9.95±0.68bB | 1.49±0.10bA | 0.36±0.08abB | 1.85±0.16abB | 81.64±1.11cA | 80.07±3.96aA | 81.34±1.56bA | 0.24±0.05abB |
0.6 | 14.06±1.45aB | 0.83±0.14bA | 14.89±1.48aB | 1.75±0.14aA | 0.31±0.04bcB | 2.06±0.16aA | 87.51±0.99bB | 62.53±6.14bA | 86.15±0.96aB | 0.18±0.02bB | |
1.2 | 15.94±1.07aA | 0.65±0.10cB | 16.59±1.14aA | 1.37±0.06bC | 0.42±0.06aA | 1.79±0.03abC | 91.39±0.89aA | 34.32±3.23cC | 89.17±0.85aA | 0.31±0.05aA | |
1.8 | 8.86±1.06bB | 0.29±0.04dC | 9.15±1.03bC | 1.45±0.14bA | 0.25±0.04cB | 1.70±0.16bAB | 83.47±2.70cB | 14.06±3.87dC | 81.26±3.17bB | 0.17±0.02bB | |
5 | 0 | 10.70±1.04bA | 1.47±0.32bA | 12.17±1.29cA | 1.65±0.03aA | 0.59±0.04aA | 2.24±0.07aA | 84.49±1.33cA | 58.38±8.92bB | 81.44±1.76cA | 0.36±0.02aAB |
0.6 | 10.78±0.22bC | 1.20±0.26bcA | 11.98±0.21cB | 1.65±0.01aA | 0.46±0.01bA | 2.11±0.02aA | 84.69±0.26cC | 60.72±9.41bA | 82.41±0.21cC | 0.28±0.00bA | |
1.2 | 15.47±1.17aA | 0.77±0.06cB | 16.24±1.14bA | 1.76±0.12aA | 0.38±0.06bA | 2.14±0.07aA | 88.57±1.47bB | 50.13±11.70bB | 86.79±1.11bB | 0.22±0.05bA | |
1.8 | 15.58±0.95aA | 2.79±0.25aA | 18.37±0.72aA | 1.44±0.05bA | 0.38±0.06bA | 1.82±0.12bA | 90.74±0.65aA | 86.20±2.61aA | 90.07±0.66aA | 0.27±0.04bA | |
100 | 0 | 8.35±0.91dB | 0.82±0.16bB | 9.17±1.02cB | 1.15±0.24bB | 0.49±0.06aAB | 1.64±0.24bB | 85.87±4.28cA | 39.84±9.23cC | 81.78±4.52bA | 0.43±0.10aA |
0.6 | 18.72±2.11aA | 1.03±0.22bA | 19.75±2.16aA | 1.79±0.04aA | 0.35±0.04bcB | 2.14±0.08aA | 90.37±0.97abA | 65.05±8.50bA | 89.10±0.99aA | 0.20±0.02bB | |
1.2 | 11.85±1.32cB | 2.45±0.17aA | 14.30±1.20bA | 1.55±0.06aB | 0.42±0.06abA | 1.97±0.12aB | 86.87±1.10bcB | 82.69±3.70aA | 86.22±0.71aB | 0.27±0.03bA | |
1.8 | 14.63±1.28bA | 1.22±0.26bB | 15.86±1.53bB | 1.18±0.14bB | 0.28±0.03cB | 1.46±0.17bB | 91.97±0.34aA | 76.61±3.81abB | 90.82±0.39aA | 0.24±0.01bA |
处理 Treatment | SOD | CAT | POD | 丙二醛 Malondialdehyde | 脯氨酸 Proline | 可溶性糖 Soluble sugar | 可溶性蛋白 Soluble protein | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P | F | P | F | P | F | P | F | P | F | P | F | P | F | |
H2O2 | <0.001 | 111.417 | <0.001 | 106.515 | <0.001 | 175.905 | <0.001 | 15.791 | <0.001 | 104.913 | <0.001 | 13.149 | <0.001 | 32.308 |
NaCl | <0.001 | 71.272 | <0.001 | 64.030 | <0.001 | 32.149 | <0.001 | 25.842 | 0.093 | 2.399 | <0.001 | 15.516 | <0.001 | 26.838 |
H2O2×NaCl | <0.001 | 59.762 | <0.001 | 19.758 | 0.013 | 3.452 | 0.003 | 4.730 | 0.002 | 4.973 | 0.001 | 5.933 | <0.001 | 6.251 |
表4 H2O2、NaCl及其交互作用对紫花苜蓿幼苗抗氧化酶活性及渗透调节物质的影响
Table 4 Effect of H2O2, NaCl and their interaction on seedling antioxidant enzyme activity and osmotic regulator of alfalfa
处理 Treatment | SOD | CAT | POD | 丙二醛 Malondialdehyde | 脯氨酸 Proline | 可溶性糖 Soluble sugar | 可溶性蛋白 Soluble protein | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P | F | P | F | P | F | P | F | P | F | P | F | P | F | |
H2O2 | <0.001 | 111.417 | <0.001 | 106.515 | <0.001 | 175.905 | <0.001 | 15.791 | <0.001 | 104.913 | <0.001 | 13.149 | <0.001 | 32.308 |
NaCl | <0.001 | 71.272 | <0.001 | 64.030 | <0.001 | 32.149 | <0.001 | 25.842 | 0.093 | 2.399 | <0.001 | 15.516 | <0.001 | 26.838 |
H2O2×NaCl | <0.001 | 59.762 | <0.001 | 19.758 | 0.013 | 3.452 | 0.003 | 4.730 | 0.002 | 4.973 | 0.001 | 5.933 | <0.001 | 6.251 |
图2 H2O2和NaCl处理对紫花苜蓿幼苗抗氧化酶活性的影响SOD:超氧化物歧化酶 Superoxide dismutase;CAT:过氧化氢酶 Catalase;POD:过氧化物酶 Peroxidase.
Fig.2 Effect of H2O2 immersion on seedling autioxidant enzyme activities of alfalfa under salt stress
1 | Wang Q Z, Liu Q, Gao Y N, et al. Review on the mechanisms of the response to salinity-alkalinity stress in plants. Acta Ecologica Sinica, 2017, 37(16): 5565-5577. |
王佺珍, 刘倩, 高娅妮, 等. 植物对盐碱胁迫的响应机制研究进展. 生态学报, 2017, 37(16): 5565-5577. | |
2 | Lu F K, Song X F, Hu Y, et al. Effects of drought stress and salt stress on Medicago sativa seed germination. Heilongjiang Animal Science and Veterinary Medicine, 2022, 652(16): 102-107. |
鲁富宽, 宋雪峰, 胡云, 等. 干旱胁迫和盐胁迫对紫花苜蓿种子萌发的影响. 黑龙江畜牧兽医, 2022, 652(16): 102-107. | |
3 | Cui X W, Guo Z P, Mao Y, et al. Evaluation on salt tolerance of 33 alfalfa cultivars during germination. Acta Ecologiae Animalis Domasrici, 2022, 43(2): 55-65. |
崔雪雯, 郭志鹏, 毛月, 等. 33个紫花苜蓿品种萌发期的耐盐性评价. 家畜生态学报, 2022, 43(2): 55-65. | |
4 | Wang N, Li Y X, Zhang Y M, et al. Research progress of soybean salt tolerance in China based on bibliometrics. Soybean Science, 2013, 32(5): 708-710. |
王宁, 李云霞, 张以民, 等. 基于文献计量分析我国大豆耐盐研究现状. 大豆科学, 2013, 32(5): 708-710. | |
5 | Fu M, He L W, Li X H, et al. Effect of H2O2 treatment on alfalfa seed germination under salt stress. Shaanxi Journal of Agricultural Sciences, 2021, 67(11): 67-70. |
付咪, 何林卫, 李鲜花, 等. H2O2处理对盐胁迫下苜蓿种子萌发的影响. 陕西农业科学, 2021, 67(11): 67-70. | |
6 | Li Z P, Zhang W H, Cui Y C. Effects of NaCl and Na2CO3 stress on seed germination and seedling growth of Quercus variabilis. Acta Ecologica Sinica, 2015, 35(3): 742-751. |
李志萍, 张文辉, 崔豫川. NaCl和Na2CO3胁迫对栓皮栎种子萌发及幼苗生长的影响. 生态学报, 2015, 35(3): 742-751. | |
7 | Jiao D Z, Zhao Z L. The research progress of saline-alkali stress effect plant morphology, physiology and biochemistry, and plant response. Jiangsu Agricultural Sciences, 2019, 47(20): 1-4. |
焦德志, 沼泽龙. 盐碱胁迫对植物形态和生理生化影响及植物响应的研究进展. 江苏农业科学, 2019, 47(20): 1-4. | |
8 | Uchida A, Jagendorf A T, Hibino T, et al. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science, 2002, 163(3): 515-523. |
9 | Zhu Z B, Lai C Y, Zou K X, et al. Research progress of brassinolide and its physiological effects during seed germination. Chinese Journal of Tropical Agriculture, 2015, 35(5): 13-18. |
朱早兵, 赖彩余, 邹凯茜, 等. 油菜素内酯及其在种子萌发过程中的生理效应研究进展. 热带农业科学, 2015, 35(5): 13-18. | |
10 | Liao W B, Huang G B, Yu J H, et al. Nitric oxide and hydrogen peroxide are involved in indole-3-butyricacid-induced adventitious roots development in marigold. Journal of Horticultural Science & Biotechnology, 2011, 86(2): 159-165. |
11 | Bai X J, Liu L J, Zhang C H, et al. Effect of H2O2 pretreatment on Cd tolerance of different rice cultivars. Chinese Journal of Rice Science, 2010, 24(4): 391-397. |
白晓娟, 刘丽娟, 张春华, 等. H2O2预处理对不同水稻品种Cd耐性的影响. 中国水稻科学, 2010, 24(4): 391-397. | |
12 | Liu J X, Ou X B, Wang J C. Effects of exogenous hydrogen peroxide on growth and resistance physiology of naked oat seedling under saline-alkali mixed stress. Bulletin of Botanical Research, 2019, 39(2): 181-191. |
刘建新, 欧晓彬, 王金成. 外源H2O2对盐碱混合胁迫下裸燕麦幼苗生长和抗性生理的影响. 植物研究, 2019, 39(2): 181-191. | |
13 | Ren Y F, He J Y, Yang J, et al. Effects of exogenous hydrogen peroxide on seed germination and physiological characteristics of pakchoi seedlings (Brassica chinensis L.) under salt stress. Acta Ecologica Sinica, 2019, 39(20): 7745-7756. |
任艳芳, 何俊瑜, 杨军, 等. 外源H2O2对盐胁迫下小白菜种子萌发和幼苗生理特性的影响. 生态学报, 2019, 39(20): 7745-7756. | |
14 | Sathiyaraj G, Srinivasan S, Kim Y J, et al. Acclimation of hydrogen peroxide enhances salts tolerance by activating defense-related proteins in Panax ginseng C.A. Meyer. Molecular Biology Reports, 2014, 41(6): 3761-3771. |
15 | Sun C, Liu L, Lu L, et al. Nitric oxide acts downstream of hydrogen peroxide in regulating aluminum induced antioxidant defense that enhances aluminum resistance in wheat seedlings. Environmental and Experimental Botany, 2018, 145: 95-103. |
16 | Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651-681. |
17 | Liu J X, Wang J C, Wang R J, et al. Response of Avena nuda L. seedlings to salt stress and the modulation of hydrogen peroxide. Chinese Journal of Ecology, 2015, 34(9): 2506-2511. |
刘建新, 王金成, 王瑞娟, 等. 燕麦幼苗对盐胁迫的响应及过氧化氢对响应的调节. 生态学杂志, 2015, 34(9): 2506-2511. | |
18 | Li J T, Qiu Z B, Zhang X W, et al. Exogenous hydrogen peroxide can enhance tolerance of wheat seedlings to stress. Acta Physiologiae Plantarum, 2011, 33(3): 835-842. |
19 | Shan C J, Liu R Q. Exogenous hydrogen peroxide up-regulates the contents of ascorbate and glutathione in the leaves of Vigna radiata (Linn.) Wilczek. exposed to salt stress. Brazilian Journal of Botany, 2017, 40(2): 583-589. |
20 | Zhang M S, Xie B, Tan F, et al. Relationship among soluble protein, chlorophyll and ATP in sweet potato under water stress with drought resistance. Scientia Agricultura Sinica, 2006, 36(1): 13-16. |
张明生, 谢波, 谈锋, 等. 甘薯可溶性蛋白、叶绿素及ATP含量变化与品种抗旱性关系的研究. 中国农业科学, 2006, 36(1): 13-16. | |
21 | Sui N, Yang Z, Liu M, et al. Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves. BMC Genomics, 2015, 16(1): 1-18. |
22 | Chen J X, Wang X F. Experimental supervision of plant physiology. Guangzhou: South China University of Technology Press, 2002. |
陈建勋, 王晓峰. 植物生理学实验指导. 广州: 华南理工大学出版社, 2002. | |
23 | Li H S. Principle and technology of plant physiological and biochemical experiments. Beijing: Higher Education Press, 2001: 134-170. |
李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2001: 134-170. | |
24 | Song L L, Zhang X, Ren Y, et al. Effects of salt stress on seed germination and seedling growth of alfalfa. Modern Agricultural Science and Technology, 2008, 486(16): 21-24. |
宋莉璐, 张侠, 任艳, 等. 盐胁迫对苜蓿种子萌发和幼苗生长的影响. 现代农业科技, 2008, 486(16): 21-24. | |
25 | Parvin S, Lee O R, Sathiyaraj R, et al. Spermidine alleviates the growth of saline-stressed ginseng seedlings through antioxidative defense system. Gene, 2014, 537(1): 70-78. |
26 | Zhu L J, Yan Q J, Chen G S, et al. Exogenous H2O2 promotes seed germination under high salinity by regulating antioxidant enzymes, ABA and GA interaction in cucumber (Cucumis sativus). Plant Physiology Journal, 2019, 55(3): 342-348. |
朱利君, 闫秋洁, 陈光升, 等. 外源H2O2通过介导抗氧化酶、ABA和GA促进高盐胁迫下黄瓜种子的萌发. 植物生理学报, 2019, 55(3): 342-348. | |
27 | Cai F X, Chen D D, Yang F, et al. Regulation of growth and physiology of rice seedlings by H2O2. Jiangsu Agricultural Sciences, 2016, 44(3): 74-77. |
蔡凤香, 陈豆豆, 杨飞, 等. H2O2对水稻幼苗生长和生理的调节. 江苏农业科学, 2016, 44(3): 74-77. | |
28 | Hu M L. Physiological response of Brassica napus L. to continued NaCl stress with different concentrations. Yangzhou: Yangzhou University, 2014. |
胡慕兰. 不同NaCl浓度持续胁迫下油菜幼苗的生理响应. 扬州: 扬州大学, 2014. | |
29 | Yin L J, Zhu L. Study on saline-alkali resistance of wild barley at seedling stage. Acta Agristia Sinica, 1991, 1(1): 142-148. |
殷丽娟, 祝玲. 野大麦苗期抗盐碱性的研究. 草地学报, 1991, 1(1): 142-148. | |
30 | Li Y. Effect of exogenous nitric oxide and hydrogen peroxide to woad seedling growth and oxidative stress reaction under salt stress. Lanzhou: Gansu Agricultural University, 2009. |
李源. 外源NO与H2O2对盐胁迫下板蓝根幼苗生长及其氧化应激反应的影响. 兰州: 甘肃农业大学, 2009. | |
31 | Liu J X, Wang J C, Wang R J, et al. The physiological mechanisms through which exogenous H2O2 increases the resistance of Avena nuda to salt stress. Acta Prataculturae Sinica, 2016, 25(2): 216-222. |
刘建新, 王金成, 王瑞娟, 等. 外源过氧化氢提高燕麦耐盐性的生理机制. 草业学报, 2016, 25(2): 216-222. | |
32 | Feng Y L. Study on H2O2 regulates tomato seedling growth under salt stress. Shihezi: Shihezi University, 2019. |
冯玉龙. H2O2调控盐胁迫下番茄幼苗生长的研究. 石河子: 石河子大学, 2019. | |
33 | Liu A R. Effect of salt stress on the growth and the antioxidant enzyme activity of Thellungiella halophila. Bulletin of Botanical Research, 2006, 26(2): 216-221. |
34 | Li W, Guo J J, Li H Y. Effects of H2O2 on growth of kale seedlings under salt stress. Jiangsu Agricultural Sciences, 2017, 45(22): 149-152. |
李伟, 郭君洁, 李鸿雁. H2O2对盐胁迫下羽衣甘蓝幼苗生长的影响. 江苏农业科学, 2017, 45(22): 149-152. | |
35 | Andrade C A, de Souza K B, de Oliveira S M, et al. Hydrogen peroxide promotes the tolerance of soybeans to waterlogging. Scientia Horticulturae, 2018, 232: 40-45. |
36 | Wen J F, Gong M, Liu Y, et al. Effect of hydrogen peroxide on growth and activity of some enzymes involved in proline metabolism of sweet corn seedlings under copper stress. Scientia Horticulturae, 2013, 164: 366-371. |
37 | Sun Y, Wang H, Liu S, et al. Exogenous application of hydrogen peroxide alleviates drought stress in cucumber seedlings. South African Journal of Botany, 2016, 106: 23-28. |
38 | Guo J M, Chen Y Y, Lu P Z, et al. Roles of endophytic bacteria in Suaeda salsa grown in coastal wetlands: Plant growth characteristics and salt tolerance mechanisms. Environmental Pollution, 2021, 287: 1-10. |
39 | Zhang B, Zhang H G. Regulation of exogenous hydrogen peroxide on wheat seedling salinity tolerance. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(12): 2491-2495. |
张波, 张怀刚. 外源H2O2对小麦幼苗耐盐性的调节作用. 西北植物学报, 2007, 27(12): 2491-2495. | |
40 | Li R Q, Wang Y X, Sun Y L, et al. Effects of salt stress on the growth, physiology, and biochemistry of five Bromus inermis varieties. Acta Prataculturae Sinica, 2023, 32(1): 99-111. |
李瑞强, 王玉祥, 孙玉兰, 等. 盐胁迫对5份无芒雀麦苗期生长和生理生化的影响及综合性评价. 草业学报, 2023, 32(1): 99-111. | |
41 | Zhao Y. Determination of betaines and proline in plant tissues under salt-stress. Beijing: Chinese Academy of Agricultural Sciences, 2004. |
赵勇. 盐胁迫下植物组织中甜菜碱和脯氨酸变化的研究. 北京: 中国农业科学院, 2004. | |
42 | Cheng T L, Li H Y, Wu H W, et al. Comparison on osmotica accumulation of different salt-tolerant plants under salt stress. Forest Research, 2015, 28(6): 826-832. |
成铁龙, 李焕勇, 武海雯, 等. 盐胁迫下4种耐盐植物渗透调节物质积累的比较. 林业科学研究, 2015, 28(6): 826-832. | |
43 | Hao F, Liu X J, Zhang X L, et al. Effect of complex saline-alkali stress on nitrogen and phosphorus absorption and physiological traits of alfalfa seedlings. Journal of Desert Research, 2015, 35(5): 1268-1274. |
郝凤, 刘晓静, 张晓磊, 等. 混合盐碱胁迫对紫花苜蓿苗期氮磷吸收及生理特性的影响. 中国沙漠, 2015, 35(5): 1268-1274. | |
44 | Sun C C, Zhao H Y, Zheng C X. Effect of NaCl stress on osmolyte and proline metabolism in Ginkgo biloba seedling. Plant Physiology Journal, 2017, 53(3): 470-476. |
孙聪聪, 赵海燕, 郑彩霞. NaCl胁迫对银杏幼树渗透调节物质及脯氨酸代谢的影响. 植物生理学报, 2017, 53(3): 470-476. |
[1] | 刘选帅, 孙延亮, 马春晖, 张前兵. 菌磷耦合下紫花苜蓿的干物质产量及磷素空间分布特征[J]. 草业学报, 2023, 32(9): 104-115. |
[2] | 徐蕊, 王峥, 王仪明, 苏连泰, 高鲤, 周鹏, 安渊. 紫花苜蓿对轮作水稻产量和蔗糖代谢的影响[J]. 草业学报, 2023, 32(8): 129-140. |
[3] | 王宝强, 马文静, 王贤, 朱晓林, 赵颖, 魏小红. 一氧化氮对干旱胁迫下紫花苜蓿幼苗次生代谢产物的影响[J]. 草业学报, 2023, 32(8): 141-151. |
[4] | 凌文卿, 张磊, 李珏, 冯启贤, 李妍, 周燚, 刘一佳, 阳伏林, 周晶. 布氏乳杆菌和不同糖类联用对紫花苜蓿青贮营养成分、发酵品质、瘤胃降解率及有氧稳定性的影响[J]. 草业学报, 2023, 32(7): 122-134. |
[5] | 王少鹏, 刘佳, 洪军, 林积圳, 张义, 史昆, 王赞. 紫花苜蓿MsPPR1基因的克隆及抗旱功能分析[J]. 草业学报, 2023, 32(7): 49-60. |
[6] | 马绍英, 陈桂平, 王娜, 马蕾, 连荣芳, 李胜, 张绪成. 豌豆土壤中潜在自毒物质的鉴定及自毒效应研究[J]. 草业学报, 2023, 32(6): 134-145. |
[7] | 李超男, 王磊, 周继强, 赵长兴, 谢晓蓉, 刘金荣. 微塑料对紫花苜蓿生长及生理特性的影响[J]. 草业学报, 2023, 32(5): 138-146. |
[8] | 张振粉, 黄荣, 姚博, 张旺东, 杨成德, 陈秀蓉. 欧美进口紫花苜蓿可培养种带细菌及其对动植物的致病性[J]. 草业学报, 2023, 32(4): 161-172. |
[9] | 张士敏, 赵娇阳, 朱慧森, 卫凯, 王永新. 硒对不同品种紫花苜蓿发芽阶段物质转化和形态建成的影响[J]. 草业学报, 2023, 32(4): 79-90. |
[10] | 王园, 王晶, 李淑霞. 紫花苜蓿MsBBX24基因的克隆及耐盐性分析[J]. 草业学报, 2023, 32(3): 107-117. |
[11] | 田政, 杨正禹, 陆忠杰, 罗奔, 张茂, 董瑞. 44个紫花苜蓿品种的酸铝适应性与耐受性评价[J]. 草业学报, 2023, 32(3): 142-151. |
[12] | 孙守江, 唐艺涵, 马馼, 李曼莉, 毛培胜. 紫花苜蓿种子吸胀期胚根线粒体AsA-GSH循环对低温胁迫的响应[J]. 草业学报, 2023, 32(3): 152-162. |
[13] | 赵艳兰, 曾鑫奕, 弓晋超, 李香君, 李旭旭, 刘珊, 张新全, 周冀琼. 丛枝菌根真菌接种对白车轴草耐盐性的影响[J]. 草业学报, 2023, 32(3): 179-188. |
[14] | 刘选帅, 孙延亮, 安晓霞, 马春晖, 张前兵. 施磷和接种解磷菌对紫花苜蓿光合特性及生物量的影响[J]. 草业学报, 2023, 32(3): 189-199. |
[15] | 陈博, 牛艺帆, 刘晓宇, 张苏晗, 牛军鹏, 郭志鹏, 刘超齐, 郭永鹏, 郭玉霞. 腐皮镰刀菌病原致病性及苜蓿品种抗病性研究[J]. 草业学报, 2023, 32(10): 115-128. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||