草业学报 ›› 2023, Vol. 32 ›› Issue (10): 58-70.DOI: 10.11686/cyxb2022476
金欣悦1,2,3(), 龚莉1, 王梦亭1,2,3, 陶冶2,3, 周多奇1()
收稿日期:
2022-12-07
修回日期:
2023-02-10
出版日期:
2023-10-20
发布日期:
2023-07-26
通讯作者:
周多奇
作者简介:
E-mail: duoqizhou@163.com基金资助:
Xin-yue JIN1,2,3(), Li GONG1, Meng-ting WANG1,2,3, Ye TAO2,3, Duo-qi ZHOU1()
Received:
2022-12-07
Revised:
2023-02-10
Online:
2023-10-20
Published:
2023-07-26
Contact:
Duo-qi ZHOU
摘要:
短命植物是为逃避夏季干旱而演化成的一类特殊植物类群,但不同种的短命植物功能性状是否具有相同或相似的协变特征尚不明晰。以新疆古尔班通古特沙漠广布的紫草科不同属短命植物硬萼软紫草和假狼紫草为研究对象,通过野外采样及室内测定,使用降主轴回归、主成分分析及植物性状网络分析对比探究不同物种功能性状特征、性状间异速生长关系及性状协变关系的差异性。结果表明,假狼紫草地上生物量(2.217 g·株?1)、全株生物量(2.407 g·株?1)、冠幅直径(14.26 cm)及冠幅株高比(1.550)显著高于硬萼软紫草(1.010 g·株?1、1.145 g·株?1、10.95 cm和1.138),但后者根冠比(0.147)高于前者(0.091)。硬萼软紫草和假狼紫草功能性状间大多具有显著的异速生长关系(a≠1),如地上生物量分配速率高于地下(a=0.888和0.909),但生物量分配具有个体大小依赖。二者株型呈现出不同的发育模式,其中硬萼软紫草株高与冠幅直径呈等速生长(a=1.095),而假狼紫草冠幅生长速率远高于株高(a=1.516),导致其个体越大越发育为“矮胖型”植株。主成分分析和性状网络分析表明,2种植物性状间的协变关系存在差异,性状网络中的中心性状和网络结构参数不相同。研究表明,即使为同科不同属的短命植物,其功能性状及性状关联特征也不完全一致,体现出一定的种间特异性。
金欣悦, 龚莉, 王梦亭, 陶冶, 周多奇. 紫草科2种短命植物功能性状的差异化协变特征[J]. 草业学报, 2023, 32(10): 58-70.
Xin-yue JIN, Li GONG, Meng-ting WANG, Ye TAO, Duo-qi ZHOU. Differential covariation characteristics in functional traits of two ephemerals of Boraginaceae in the Gurbantunggut Desert, China[J]. Acta Prataculturae Sinica, 2023, 32(10): 58-70.
物种 Species | 参数 Parameter | FN | H (cm) | RL (cm) | D (cm) | D/H | H/RL | AGB (g) | BGB (g) | TB (g) | R/S |
---|---|---|---|---|---|---|---|---|---|---|---|
硬萼软紫草 A. decumbens | 最大值Max | 37 | 17.6 | 62.1 | 22.85 | 1.596 | 0.446 | 5.793 | 0.701 | 6.494 | 0.192 |
最小值Min | 1 | 3.4 | 18.3 | 3.95 | 0.842 | 0.148 | 0.066 | 0.013 | 0.079 | 0.096 | |
平均值Mean | 8.967a | 10.327a | 39.010a | 10.945B | 1.138B | 0.268a | 1.010B | 0.135a | 1.145B | 0.147A | |
标准差S.D. | 6.473 | 3.104 | 10.746 | 4.085 | 0.171 | 0.064 | 1.083 | 0.128 | 1.208 | 0.026 | |
变异系数CV | 0.722 | 0.301 | 0.275 | 0.373 | 0.150 | 0.237 | 1.072 | 0.947 | 1.055 | 0.178 | |
假狼紫草 N.caspica | 最大值Max | 21 | 14.4 | 58.4 | 24.10 | 2.104 | 0.617 | 6.895 | 0.525 | 7.420 | 0.126 |
最小值Min | 3 | 6.4 | 6.5 | 6.00 | 1.088 | 0.188 | 0.504 | 0.042 | 0.546 | 0.068 | |
平均值Mean | 10.367a | 9.377a | 31.497b | 14.260A | 1.550A | 0.314a | 2.217A | 0.190a | 2.407A | 0.091B | |
标准差S.D. | 4.560 | 1.957 | 10.845 | 4.356 | 0.243 | 0.112 | 1.705 | 0.134 | 1.836 | 0.017 | |
变异系数CV | 0.440 | 0.209 | 0.344 | 0.306 | 0.157 | 0.356 | 0.769 | 0.704 | 0.763 | 0.183 |
表1 硬萼软紫草和假狼紫草的功能性状对比
Table 1 Comparison of functional traits of A. decumbens and N. caspica
物种 Species | 参数 Parameter | FN | H (cm) | RL (cm) | D (cm) | D/H | H/RL | AGB (g) | BGB (g) | TB (g) | R/S |
---|---|---|---|---|---|---|---|---|---|---|---|
硬萼软紫草 A. decumbens | 最大值Max | 37 | 17.6 | 62.1 | 22.85 | 1.596 | 0.446 | 5.793 | 0.701 | 6.494 | 0.192 |
最小值Min | 1 | 3.4 | 18.3 | 3.95 | 0.842 | 0.148 | 0.066 | 0.013 | 0.079 | 0.096 | |
平均值Mean | 8.967a | 10.327a | 39.010a | 10.945B | 1.138B | 0.268a | 1.010B | 0.135a | 1.145B | 0.147A | |
标准差S.D. | 6.473 | 3.104 | 10.746 | 4.085 | 0.171 | 0.064 | 1.083 | 0.128 | 1.208 | 0.026 | |
变异系数CV | 0.722 | 0.301 | 0.275 | 0.373 | 0.150 | 0.237 | 1.072 | 0.947 | 1.055 | 0.178 | |
假狼紫草 N.caspica | 最大值Max | 21 | 14.4 | 58.4 | 24.10 | 2.104 | 0.617 | 6.895 | 0.525 | 7.420 | 0.126 |
最小值Min | 3 | 6.4 | 6.5 | 6.00 | 1.088 | 0.188 | 0.504 | 0.042 | 0.546 | 0.068 | |
平均值Mean | 10.367a | 9.377a | 31.497b | 14.260A | 1.550A | 0.314a | 2.217A | 0.190a | 2.407A | 0.091B | |
标准差S.D. | 4.560 | 1.957 | 10.845 | 4.356 | 0.243 | 0.112 | 1.705 | 0.134 | 1.836 | 0.017 | |
变异系数CV | 0.440 | 0.209 | 0.344 | 0.306 | 0.157 | 0.356 | 0.769 | 0.704 | 0.763 | 0.183 |
图1 硬萼软紫草和假狼紫草比值性状随个体大小的变化趋势AD为硬萼软紫草,NC为假狼紫草。*: P<0.05, **: P<0.01, ns: P>0.05。AD and NC indicated A. decumbens and N. capsica, respectively. *: P<0.05, **: P<0.01, ns: P>0.05.
Fig. 1 Change trends of ratio traits along with plant size of A. decumbens and N. caspica
X | Y | 物种 Species | 异速生长指数Allometric scaling exponent (a) | 等速检验Isometric test | ||||
---|---|---|---|---|---|---|---|---|
R2 | P | a | 95%置信区间95% CI | F | P | |||
H | D | AD | 0.538 | 0.000 | 1.095 | 0.844~1.420 | 0.496 | 0.487 |
NC | 0.469 | 0.000 | 1.516 | 1.148~2.003 | 9.677 | 0.004 | ||
RL | AD | 0.564 | 0.000 | 0.842 | 0.654~1.084 | 1.924 | 0.176 | |
NC | 0.090 | 0.108 | - | - | - | - | ||
FN | AD | 0.894 | 0.000 | 1.950 | 1.720~2.212 | 136.211 | 0.000 | |
NC | 0.573 | 0.000 | 2.363 | 1.840~3.036 | 61.698 | 0.000 | ||
AGB | AD | 0.563 | 0.000 | 2.566b | 1.992~3.305 | 75.949 | 0.000 | |
NC | 0.715 | 0.000 | 3.499a | 2.849~4.296 | 253.384 | 0.000 | ||
BGB | AD | 0.560 | 0.000 | 2.279b | 1.768~2.938 | 53.906 | 0.000 | |
NC | 0.729 | 0.000 | 3.181a | 2.604~3.886 | 212.255 | 0.000 | ||
TB | AD | 0.565 | 0.000 | 2.526b | 1.963~3.252 | 73.104 | 0.000 | |
NC | 0.719 | 0.000 | 3.464a | 2.825~4.247 | 251.111 | 0.000 | ||
D | RL | AD | 0.570 | 0.000 | 0.769 | 0.598~0.989 | 4.592 | 0.041 |
NC | 0.080 | 0.130 | - | - | - | - | ||
FN | AD | 0.668 | 0.000 | 1.782 | 1.428~2.223 | 31.368 | 0.000 | |
NC | 0.551 | 0.000 | 1.559 | 1.206~2.014 | 13.113 | 0.001 | ||
AGB | AD | 0.914 | 0.000 | 2.345 | 2.093~2.626 | 298.335 | 0.000 | |
NC | 0.537 | 0.000 | 2.307 | 1.778~2.993 | 53.142 | 0.000 | ||
BGB | AD | 0.918 | 0.000 | 2.082 | 1.864~2.326 | 218.161 | 0.000 | |
NC | 0.594 | 0.000 | 2.098 | 1.643~2.678 | 45.283 | 0.000 | ||
TB | AD | 0.917 | 0.000 | 2.308 | 2.065~2.580 | 297.231 | 0.000 | |
NC | 0.544 | 0.000 | 2.284 | 1.764~2.959 | 52.338 | 0.000 | ||
RL | FN | AD | 0.530 | 0.000 | 2.317a | 1.782~3.012 | 52.946 | 0.000 |
NC | 0.164 | 0.026 | 1.191b | 0.842~1.684 | 1.032 | 0.318 | ||
AGB | AD | 0.550 | 0.000 | 3.049a | 2.358~3.942 | 115.029 | 0.000 | |
NC | 0.141 | 0.041 | 1.763b | 1.240~2.505 | 11.639 | 0.002 | ||
BGB | AD | 0.590 | 0.000 | 2.707a | 2.118~3.460 | 93.354 | 0.000 | |
NC | 0.107 | 0.078 | 1.603b | 1.120~2.293 | 7.508 | 0.011 | ||
TB | AD | 0.556 | 0.000 | 3.001a | 2.325~3.874 | 112.217 | 0.000 | |
NC | 0.138 | 0.043 | 1.745b | 1.227~2.482 | 11.161 | 0.002 | ||
FN | AGB | AD | 0.681 | 0.000 | 1.316 | 1.059~1.635 | 6.780 | 0.015 |
NC | 0.874 | 0.000 | 1.480 | 1.291~1.698 | 36.004 | 0.000 | ||
BGB | AD | 0.681 | 0.000 | 1.169 | 0.941~1.452 | 2.146 | 0.154 | |
NC | 0.825 | 0.000 | 1.346 | 1.146~1.581 | 14.554 | 0.001 | ||
TB | AD | 0.683 | 0.000 | 1.296 | 1.044~1.608 | 6.060 | 0.020 | |
NC | 0.874 | 0.000 | 1.466 | 1.278~1.681 | 34.033 | 0.000 | ||
AGB | BGB | AD | 0.967 | 0.000 | 0.888 | 0.828~0.953 | 11.975 | 0.002 |
NC | 0.945 | 0.000 | 0.909 | 0.830~0.995 | 4.635 | 0.040 |
表2 硬萼软紫草和假狼紫草性状间的异速生长指数及等速生长检验
Table 2 Allometric scaling exponent and isocratic test among traits of A. decumbens and N. caspica
X | Y | 物种 Species | 异速生长指数Allometric scaling exponent (a) | 等速检验Isometric test | ||||
---|---|---|---|---|---|---|---|---|
R2 | P | a | 95%置信区间95% CI | F | P | |||
H | D | AD | 0.538 | 0.000 | 1.095 | 0.844~1.420 | 0.496 | 0.487 |
NC | 0.469 | 0.000 | 1.516 | 1.148~2.003 | 9.677 | 0.004 | ||
RL | AD | 0.564 | 0.000 | 0.842 | 0.654~1.084 | 1.924 | 0.176 | |
NC | 0.090 | 0.108 | - | - | - | - | ||
FN | AD | 0.894 | 0.000 | 1.950 | 1.720~2.212 | 136.211 | 0.000 | |
NC | 0.573 | 0.000 | 2.363 | 1.840~3.036 | 61.698 | 0.000 | ||
AGB | AD | 0.563 | 0.000 | 2.566b | 1.992~3.305 | 75.949 | 0.000 | |
NC | 0.715 | 0.000 | 3.499a | 2.849~4.296 | 253.384 | 0.000 | ||
BGB | AD | 0.560 | 0.000 | 2.279b | 1.768~2.938 | 53.906 | 0.000 | |
NC | 0.729 | 0.000 | 3.181a | 2.604~3.886 | 212.255 | 0.000 | ||
TB | AD | 0.565 | 0.000 | 2.526b | 1.963~3.252 | 73.104 | 0.000 | |
NC | 0.719 | 0.000 | 3.464a | 2.825~4.247 | 251.111 | 0.000 | ||
D | RL | AD | 0.570 | 0.000 | 0.769 | 0.598~0.989 | 4.592 | 0.041 |
NC | 0.080 | 0.130 | - | - | - | - | ||
FN | AD | 0.668 | 0.000 | 1.782 | 1.428~2.223 | 31.368 | 0.000 | |
NC | 0.551 | 0.000 | 1.559 | 1.206~2.014 | 13.113 | 0.001 | ||
AGB | AD | 0.914 | 0.000 | 2.345 | 2.093~2.626 | 298.335 | 0.000 | |
NC | 0.537 | 0.000 | 2.307 | 1.778~2.993 | 53.142 | 0.000 | ||
BGB | AD | 0.918 | 0.000 | 2.082 | 1.864~2.326 | 218.161 | 0.000 | |
NC | 0.594 | 0.000 | 2.098 | 1.643~2.678 | 45.283 | 0.000 | ||
TB | AD | 0.917 | 0.000 | 2.308 | 2.065~2.580 | 297.231 | 0.000 | |
NC | 0.544 | 0.000 | 2.284 | 1.764~2.959 | 52.338 | 0.000 | ||
RL | FN | AD | 0.530 | 0.000 | 2.317a | 1.782~3.012 | 52.946 | 0.000 |
NC | 0.164 | 0.026 | 1.191b | 0.842~1.684 | 1.032 | 0.318 | ||
AGB | AD | 0.550 | 0.000 | 3.049a | 2.358~3.942 | 115.029 | 0.000 | |
NC | 0.141 | 0.041 | 1.763b | 1.240~2.505 | 11.639 | 0.002 | ||
BGB | AD | 0.590 | 0.000 | 2.707a | 2.118~3.460 | 93.354 | 0.000 | |
NC | 0.107 | 0.078 | 1.603b | 1.120~2.293 | 7.508 | 0.011 | ||
TB | AD | 0.556 | 0.000 | 3.001a | 2.325~3.874 | 112.217 | 0.000 | |
NC | 0.138 | 0.043 | 1.745b | 1.227~2.482 | 11.161 | 0.002 | ||
FN | AGB | AD | 0.681 | 0.000 | 1.316 | 1.059~1.635 | 6.780 | 0.015 |
NC | 0.874 | 0.000 | 1.480 | 1.291~1.698 | 36.004 | 0.000 | ||
BGB | AD | 0.681 | 0.000 | 1.169 | 0.941~1.452 | 2.146 | 0.154 | |
NC | 0.825 | 0.000 | 1.346 | 1.146~1.581 | 14.554 | 0.001 | ||
TB | AD | 0.683 | 0.000 | 1.296 | 1.044~1.608 | 6.060 | 0.020 | |
NC | 0.874 | 0.000 | 1.466 | 1.278~1.681 | 34.033 | 0.000 | ||
AGB | BGB | AD | 0.967 | 0.000 | 0.888 | 0.828~0.953 | 11.975 | 0.002 |
NC | 0.945 | 0.000 | 0.909 | 0.830~0.995 | 4.635 | 0.040 |
图2 硬萼软紫草(左图)和假狼紫草(右图)的主成分分析FN、H、RL、D、D/H、H/RL、AGB、BGB、TB、R/S分别为花的数量、株高、根长、冠幅直径、冠幅直径株高比、株高根长比、地上生物量、地下生物量、总生物量和根冠比。下同。FN, H, RL, D, D/H, H/RL, AGB, BGB, TB, R/S indicated flower number, height, root length, crown diameter, crown diameter/height, height/root length, aboveground biomass, belowground biomass, total biomass, belowground biomass/aboveground biomass, respectively. The same below.
Fig. 2 Principal component analyses of A. decumbens (left figure) and N. caspica (right figure)
图3 硬萼软紫草(左图)和假狼紫草(右图)的植物性状网络(PTNs)黑色圆圈表示核心性状。Black circles indicated hub traits.
Fig. 3 Plant trait networks (PTNs) of A. decumbens (left figure) and N. caspica (right figure)
物种 Species | 节点参数Node parameter | 整体网络参数 Network parameter | |||
---|---|---|---|---|---|
性状Trait | 度Degree | 介数Betweenness | |||
硬萼软紫草 A. decumbens | D | 8 | 8.333 | 边密度Edge density | 27 |
H | 7 | 6.250 | 平均路径长度Average path length | 1.422 | |
RL | 6 | 0 | 平均聚类系数Average clustering coefficient | 0.808 | |
FN | 6 | 0 | |||
H/RL | 2 | 0.500 | |||
D/H | 2 | 0.750 | |||
AGB | 7 | 1.583 | |||
BGB | 6 | 0 | |||
TB | 7 | 1.583 | |||
R/S | 3 | 0 | |||
假狼紫草 N. caspica | D | 6 | 8.000 | 边密度Edge density | 19 |
H | 5 | 0 | 平均路径长度Average path length | 1.800 | |
RL | 2 | 8.000 | 平均聚类系数Average clustering coefficient | 0.779 | |
FN | 7 | 20.000 | |||
H/RL | 1 | 0 | |||
D/H | 2 | 0 | |||
AGB | 5 | 0 | |||
BGB | 5 | 0 | |||
TB | 5 | 0 | |||
R/S | 1 | 0 |
表3 硬萼软紫草和假狼紫草的植物性状网络参数
Table 3 Parameters of plant trait networks of A. decumbens and N. caspica
物种 Species | 节点参数Node parameter | 整体网络参数 Network parameter | |||
---|---|---|---|---|---|
性状Trait | 度Degree | 介数Betweenness | |||
硬萼软紫草 A. decumbens | D | 8 | 8.333 | 边密度Edge density | 27 |
H | 7 | 6.250 | 平均路径长度Average path length | 1.422 | |
RL | 6 | 0 | 平均聚类系数Average clustering coefficient | 0.808 | |
FN | 6 | 0 | |||
H/RL | 2 | 0.500 | |||
D/H | 2 | 0.750 | |||
AGB | 7 | 1.583 | |||
BGB | 6 | 0 | |||
TB | 7 | 1.583 | |||
R/S | 3 | 0 | |||
假狼紫草 N. caspica | D | 6 | 8.000 | 边密度Edge density | 19 |
H | 5 | 0 | 平均路径长度Average path length | 1.800 | |
RL | 2 | 8.000 | 平均聚类系数Average clustering coefficient | 0.779 | |
FN | 7 | 20.000 | |||
H/RL | 1 | 0 | |||
D/H | 2 | 0 | |||
AGB | 5 | 0 | |||
BGB | 5 | 0 | |||
TB | 5 | 0 | |||
R/S | 1 | 0 |
1 | Violle C, Navas M L, Vile D, et al. Let the concept of trait be functional. Oikos, 2007, 116(5): 882-892. |
2 | Arnold S J. Morphology, performance and fitness. American Zoologist, 1983, 23(2): 347-361. |
3 | Moles A T, Warton D I, Warman L, et al. Global patterns in plant height. Journal of Ecology, 2009, 97(5): 923-932. |
4 | Weiher E, Werf A, Thompson K, et al. Challenging theophrastus: A common core list of plant traits for functional ecology. Journal of Vegetation Science, 1999, 10(5): 609-620. |
5 | Zhang W H, Li H, Li J X, et al. Individual and modular biomass dynamics of Kingdonia uninflora population in Qinling Mountain. Chinese Journal of Applied Ecology, 2003, 14(4): 530-534. |
张文辉, 李红, 李景侠, 等. 秦岭独叶草种群个体和构件生物量动态研究. 应用生态学报, 2003, 14(4): 530-534. | |
6 | Yao J, Li Y, Wei L P, et al. Changes of allometric relationships among leaf traits in different ontogenetic stages of Acer mono from different types of forests in Donglingshan of Beijing. Acta Ecologica Sinica, 2013, 33(13): 3907-3915. |
姚婧, 李颖, 魏丽萍, 等. 东灵山不同林型五角枫叶性状异速生长关系随发育阶段的变化. 生态学报, 2013, 33(13): 3907-3915. | |
7 | Ma M, Li B, Chen J K. Convergent adaptation of desert plants to their arid habitats. Acta Ecologica Sinica, 2006, 26(11): 3861-3869. |
马淼, 李博, 陈家宽. 植物对荒漠生境的趋同适应. 生态学报, 2006, 26(11): 3861-3869. | |
8 | Tao Y, Zhang Y M. Biomass allocation patterns and allometric relationships of six ephemeroid species in Junggar Basin, China. Acta Prataculturae Sinica, 2014, 23(2): 38-48. |
陶冶, 张元明. 准噶尔荒漠6种类短命植物生物量分配与异速生长关系. 草业学报, 2014, 23(2): 38-48. | |
9 | Qiu D, Zhou G L, Liu T Y. Analysis of biomass allocation and allometric growth of three Sterigmostemum species in Junggar Basin. Agricultural Research in the Arid Areas, 2014, 32(6): 215-220. |
邱东, 周桂玲, 刘同业. 3种棒果芥属植物生物量分配及异速生长分析. 干旱地区农业研究, 2014, 32(6): 215-220. | |
10 | DeLong J P. The body-size dependence of mutual interference. Biology Letters, 2014, 10(6): 20140261. |
11 | Brian J E, Karl J N. Global allocation rules for patterns of biomass partitioning in seed plants. Science, 2002, 295(5559): 1517-1520. |
12 | Niklas K J. Plant allometry: is there a grand unifying theory. Biological Reviews of the Cambridge Philosophical Society, 2004, 79(4): 871-889. |
13 | Qiu D, Wu G L, Zhou X B, et al. Characteristics of modular traits and interrelationships of the ephemeral species Plantago minuta. Pratacultural Science, 2017, 34(4): 744-752. |
邱东, 吴甘霖, 周晓兵, 等. 短命植物小车前构件属性特征及其相互关系. 草业科学, 2017, 34(4): 744-752. | |
14 | Han W X, Fang J Y. Review on the mechanism models of allometric scaling laws: 3/4 VS. 2/3 power. Journal of Plant Ecology, 2008, 32(4): 951-960. |
韩文轩, 方精云. 幂指数异速生长机制模型综述. 植物生态学报, 2008, 32(4): 951-960. | |
15 | Cheng D L, Zhong Q L, Lin M Z, et al. The advance of allometric studies on plant metabolic rates and biomass. Acta Ecologica Sinica, 2011, 31(8): 2312-2320. |
程栋梁, 钟全林, 林茂兹, 等. 植物代谢速率与个体生物量关系研究进展. 生态学报, 2011, 31(8): 2312-2320. | |
16 | Qiu T. Biological and ecological characterization of Phragmites australis in Songnen Prairie. Pratacultural Science, 2014, 31(2): 300-305. |
邱天. 松嫩平原芦苇的生物学和生态学特征. 草业科学, 2014, 31(2): 300-305. | |
17 | Bruelheide H, Dengler J, Purschke O, et al. Global trait-environment relationships of plant communities. Nature Ecology & Evolution, 2018, 2(12): 1906-1917. |
18 | de la Riva E G, Olmo M, Poorter H, et al. Leaf mass per area (LMA) and its relationship with leaf structure and anatomy in 34 Mediterranean woody species along a water availability gradient. PLoS One, 2016, 11(2): e0148788. |
19 | Shipley B, Lechowicz M J. The functional co-ordination of leaf morphology, nitrogen concentration, and gas exchange in 40 wetland species. Écoscience, 2016, 7(2): 183-194. |
20 | Díaz S, Kattge J, Cornelissen J H, et al. The global spectrum of plant form and function. Nature, 2016, 529(7585): 167-171. |
21 | Westoby M, Wright I J. Land-plant ecology on the basis of functional traits. Trends in Ecology & Evolution, 2006, 21(5): 261-268. |
22 | Qiu D, Wang M, Zhang S H, et al. Variations in functional traits of twigs between wild and cultivated Pinus dabeshanensis. Resources and Environment in the Yangtze Basin, 2020, 29(11): 2470-2478. |
邱东, 汪漫, 张世航, 等. 野生与栽培大别山五针松小枝功能性状变异特征. 长江流域资源与环境, 2020, 29(11): 2470-2478. | |
23 | He N, Li Y, Liu C, et al. Plant trait networks: Improved resolution of the dimensionality of adaptation. Trends in Ecology & Evolution, 2020, 35(10): 908-918. |
24 | Li Y. Variation of leaf trait network among different vegetation types and its influencing factors. Beijing: Beijing Forestry University, 2020. |
李颖. 叶片性状网络在不同植被类型间的变异规律及其影响因素. 北京: 北京林业大学, 2020. | |
25 | Mao Z M, Zhang D M. The conspectus of ephemeral flora in northern Xinjiang. Arid Zone Research, 1994, 11(3): 1-26. |
毛祖美, 张佃民. 新疆北部早春短命植物区系纲要. 干旱区研究, 1994, 11(3): 1-26. | |
26 | Qiu J, Tan D Y, Fan D Y. Characteristics of photosynthesis and biomass allocation of spring ephemerals in the Junggar desert. Journal of Plant Ecology, 2007, 31(5): 883-891. |
邱娟, 谭敦炎, 樊大勇. 准噶尔荒漠早春短命植物的光合特性及生物量分配特点. 植物生态学报, 2007, 31(5): 883-891. | |
27 | Tao Y, Qiu D, Gong Y M, et al. Leaf-root-soil N∶P stoichiometry of ephemeral plants in a temperate desert in Central Asia. Journal of Plant Research, 2022, 135(1): 55-67. |
28 | Wang X Q, Jiang J, Lei J Q, et al. The distribution of ephemeral vegetation on the longitudinal dune surface and its stabilization significance in the Gurbantunggut Desert. Acta Geographica Sinica, 2003, 58(4): 598-605. |
王雪芹, 蒋进, 雷加强, 等. 古尔班通古特沙漠短命植物分布及其沙面稳定意义. 地理学报, 2003, 58(4): 598-605. | |
29 | Yuan S F, Tang H P. Research advances in the eco-physiological characteristics of ephemerals adaptation to habitats. Acta Prataculturae Sinica, 2010, 19(1): 240-247. |
袁素芬, 唐海萍. 短命植物生理生态特性对生境的适应性研究进展. 草业学报, 2010, 19(1): 240-247. | |
30 | Zhang C X, Zhao W Q, Dang H L, et al. Effects of different slope aspect on biomass allocation and stoichiometry of ephemeral plants in the southern margin of Junggar Basin. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(1): 151-158. |
张彩霞, 赵文勤, 党寒利, 等. 准噶尔盆地南缘不同坡向对短命植物生物量分配和化学计量特征的影响. 西北植物学报, 2021, 41(1): 151-158. | |
31 | Jannathan M, Cheng X J, Tan D Y. Heteromorphism of florets and reproductive characteristics in Heteracia szovitsii (Asteraceae), a desert ephemeral annual herb. Biodiversity Science, 2018, 26(5): 498-509. |
吉乃提汗·马木提, 成小军, 谭敦炎. 荒漠短命植物异喙菊的小花异形性及繁殖特性. 生物多样性, 2018, 26(5): 498-509. | |
32 | Zhang Y L, Yin B F, Tao Y, et al. Effects of freezing and thawing cycle on seed germination of desert ephemeral plants. Chinese Journal of Ecology, 2021, 40(2): 301-312. |
张玉林, 尹本丰, 陶冶, 等. 冻融过程对荒漠短命植物种子萌发的影响. 生态学杂志, 2021, 40(2): 301-312. | |
33 | Lan H Y, Zhang F C. Reviews on special mechanisms of adaptability of early-spring ephemeral plants to desert habitats in Xinjiang. Acta Botanica Boreali-Occidentalia Sinica, 2008 (7): 1478-1485. |
兰海燕, 张富春. 新疆早春短命植物适应荒漠环境的机理研究进展. 西北植物学报, 2008(7): 1478-1485. | |
34 | Zhang L Y, Chen C D. On the general characteristics of plant diversity of Gurbantunggut sandy desert. Acta Ecologica Sinica, 2002, 22(11): 1923-1932. |
张立运, 陈昌笃. 论古尔班通古特沙漠植物多样性的一般特点. 生态学报, 2002, 22(11): 1923-1932. | |
35 | Xie R, Tao Y, Chang S L. Allometric relationship between modular morphology and biomass of four annuals in the Gurbantunggut Desert, China. Chinese Journal of Ecology, 2015, 34(3): 648-655. |
谢然, 陶冶, 常顺利. 四种一年生荒漠植物构件形态与生物量间的异速生长关系. 生态学杂志, 2015, 34(3): 648-655. | |
36 | Niklas K J, Enquist B J. Invariant scaling relationships for interspecific plant biomass production rates and body size. Proceedings of the National Academy of Sciences, 2001, 98(5): 2922-2927. |
37 | West G B, Brown J H, Enquist B J. A general model for the origin of allometric scaling laws in biology. Science, 1997, 276(5309): 122-126. |
38 | Yan J M, Li Y G, Maisupova B, et al. Effects of growth decline on twig functional traits of wild apple trees in two long-term monitoring plots in Yili Valley: Implication for their conservation. Global Ecology and Conservation, 2022, 33: e01998. |
39 | Tao Y, Zhou X B, Li Y G, et al. Short-term N and P additions differentially alter the multiple functional traits and trait associations of a desert ephemeral plant in China. Environmental and Experimental Botany, 2022, 200: 104932. |
40 | Li Y, Liu C, Xu L, et al. Leaf trait networks based on global data: Representing variation and adaptation in plants. Frontiers in Plant Science, 2021, 12: 710530. |
41 | Heilmeier H. Functional traits explaining plant responses to past and future climate changes. Flora, 2019, 254: 1-11. |
42 | Zhou X B, Zhang Y M, Wang S S, et al. Combined effects of simulated nitrogen deposition and drought stress on growth and photosynthetic physiological responses of two annual desert plants in Junggar Basin, China. Acta Phytoecologica Sinica, 2010, 34(12): 1394-1403. |
周晓兵, 张元明, 王莎莎, 等. 模拟氮沉降和干旱对准噶尔盆地两种一年生荒漠植物生长和光合生理的影响. 植物生态学报, 2010, 34(12): 1394-1403. | |
43 | Li X H, Li X L, Jiang D M, et al. A comparative study of the individual biomass and modular biomass of 70 herbaceous species found in the Horqin sandy land. Arid Zone Research, 2009, 26(2): 200-205. |
李雪华, 李晓兰, 蒋德明, 等. 科尔沁沙地70种草本植物个体和构件生物量比较研究. 干旱区研究, 2009, 26(2): 200-205. | |
44 | Gill R A, Kelly R H, Parton W J, et al. Using simple environmental variables to estimate below-ground productivity in grasslands. Global Ecology and Biogeography, 2002, 11(1): 79-86. |
45 | Sheng J H, Qiao Y X, Liu H Y, et al. A study on the root system of Haloxylon aammodendron (C.A.Mey.) Bunge. Acta Agrestia Sinica, 2004, 12(2): 91-94. |
盛晋华, 乔永祥, 刘宏义, 等. 梭梭根系的研究. 草地学报, 2004, 12(2): 91-94. | |
46 | Zeng F J, Guo H F, Liu B, et al. Characteristics of biomass allocation and root distribution of Tamarix ramosissima Ledeb. and Alhagi sparsifolia Shap. seedlings. Arid Land Geography, 2010, 33(1): 59-64. |
曾凡江, 郭海峰, 刘波, 等. 多枝柽柳和疏叶骆驼刺幼苗生物量分配及根系分布特征. 干旱区地理, 2010, 33(1): 59-64. | |
47 | Guo H, Zhuang W W, Li J. Biomass and stoichiometric characteristics of four species of ephemeral plant in the Guerbantongut desert. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(12): 2263-2270. |
郭浩, 庄伟伟, 李进. 古尔班通古特沙漠4种短命植物生物量与化学计量特征. 西北植物学报, 2019, 39(12): 2263-2270. | |
48 | Xie J, Tang L, Wang Z, et al. Distinguishing the biomass allocation variance resulting from ontogenetic drift or acclimation to soil texture. PLoS One, 2012, 7(7): e41502. |
49 | Li T. Response mechanism of desert plant allometric exponents and spatial patterns to a precipitation gradient. Lanzhou: Lanzhou University, 2010. |
李涛. 荒漠植物异速生长指数及其空间格局适应降雨梯度变化的规律与机制研究. 兰州: 兰州大学, 2010. | |
50 | Makarieva A M J E C. Body size, energy consumption and allometric scaling: a new dimension in the diversity-stability debate. Ecological Complexity, 2004, 1(2): 139-175. |
51 | Cheng D L. Plant allometric study of biomass allocation pattern and biomass production rates. Lanzhou: Lanzhou University, 2007. |
程栋梁. 植物生物量分配模式与生长速率的相关规律研究. 兰州: 兰州大学, 2007. | |
52 | Zhang Y Y, Meng H H, Zhou X B, et al. Biomass allocation patterns of an ephemeral species (Erodium oxyrhinchum) in different habitats and germination types in the Gurbantunggut Desert. Arid Zone Research, 2022, 39(2): 541-550. |
张媛媛, 孟欢欢, 周晓兵, 等. 不同生境/萌发类型尖喙牻牛儿苗生物量分配特征. 干旱区研究, 2022, 39(2): 541-550. | |
53 | Gao Q. Adaptability research of morphological structure to the desert plants and environment. Hohhot: Inner Mongolia Agricultural University, 2008. |
高强. 17种荒漠植物形态结构与环境的适应性研究. 呼和浩特: 内蒙古农业大学, 2008. | |
54 | Ma K P, Gao X M, Yu S L. On the characteristics of the flora of Dongling mountain area and its relationship with a number of other mountainous floras in China. Bulletin of Botanical Research, 1995, 15(4): 501-515. |
马克平, 高贤明, 于顺利. 东灵山地区植物区系的基本特征与若干山区植物区系的关系. 植物研究, 1995,15(4): 501-515. | |
55 | Zhang Z, Yang M C, He D J. Plant leaves classification based on PCA and SVM. Journal of Agricultural Mechanization Research, 2013, 35(11): 34-37, 41. |
张昭, 杨民仓, 何东健. 基于PCA和SVM的植物叶片分类方法研究. 农机化研究, 2013, 35(11): 34-37, 41. |
[1] | 凤紫棋, 孙文义, 穆兴民, 高鹏, 赵广举, 陈帅. 南方山区杉木人工林林下草本植物多样性的影响因素[J]. 草业学报, 2023, 32(9): 17-26. |
[2] | 杨欣怡, 杨富强, 周旭姣, 王明军, 黄海霞, 鲁松松, 张晓玮, 杜伟波, 王旭虎, 田青, 赵安, 贺万鹏, 周晓雷. 青藏高原东北边缘云杉-巴山冷杉林火烧迹地草本植物群落构建机理[J]. 草业学报, 2023, 32(8): 40-47. |
[3] | 周晓雷, 杨富强, 王明军, 黄海霞, 田青, 周旭姣, 赵安, 贺万鹏, 赵艳丽, 姜礼红. 青藏高原东北边缘云杉-巴山冷杉林火烧迹地草本植物群落主要种生态位特征[J]. 草业学报, 2023, 32(7): 23-37. |
[4] | 高瑞, 艾宁, 刘广全, 刘长海, 强方方. 煤矿复垦区不同修复年限林下草本群落特征及其与土壤耦合关系[J]. 草业学报, 2022, 31(6): 61-68. |
[5] | 郭文婷, 王国华, 缑倩倩, 刘婧. 河西走廊荒漠绿洲过渡带3种典型一年生藜科植物构件生长及生物量分配特征[J]. 草业学报, 2022, 31(2): 25-38. |
[6] | 任军, 石遥, 刘方, 田蓉, 刘兴. 贵州锰矿废渣堆场重金属污染风险评价及草本植物重金属吸收特征[J]. 草业学报, 2021, 30(8): 86-97. |
[7] | 许爱云, 曹兵, 谢云. 干旱风沙区煤炭基地12种草本植物对干旱胁迫的生理生态响应及抗旱性评价[J]. 草业学报, 2020, 29(10): 22-34. |
[8] | 夏璎凡, 介冬梅, 李德晖, 周沛芳, 宋丽娜, 蒙萌, 蒋雪纯. 东北森林区与草原区草本植物群落植硅体组合特征的对比研究[J]. 草业学报, 2018, 27(3): 44-56. |
[9] | 李思诗, 司晓静, 蒋芳市, 林金石, 蔡学智, 吴俣, 黄炎和. 长汀县崩岗区8种禾本科植物根系构型特征[J]. 草业学报, 2018, 27(10): 215-222. |
[10] | 高建花, 和玉吉, 郭娜, 郭彦军. 重庆地区野生草本植物叶表皮蜡质的季节性变化[J]. 草业学报, 2016, 25(1): 134-143. |
[11] | 郝婧,张婕,张沛沛,郭东罡,王丽媛,上官铁梁,黄汉富,宋向阳. 煤矸石场植被自然恢复初期草本植物生物量研究[J]. 草业学报, 2013, 22(4): 51-60. |
[12] | 张佳平,丁彦芬. 连云港云台山野生草本植物资源调查、应用及保护研究[J]. 草业学报, 2012, 21(4): 215-223. |
[13] | 张树金,李廷轩,邹同静,熊剑 . 铅锌尾矿区优势草本植物体内铅及氮、磷、钾含量变化特征[J]. 草业学报, 2012, 21(1): 162-169. |
[14] | 陶冶,张元明. 3种荒漠植物群落物种组成与丰富度的季节变化及地上生物量特征[J]. 草业学报, 2011, 20(6): 1-11. |
[15] | 李素清,武冬梅,王涛,上官铁梁. 山西长治湿地草本植物优势种群和群落的空间格局分析[J]. 草业学报, 2011, 20(3): 43-50. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||