草业学报 ›› 2024, Vol. 33 ›› Issue (6): 105-115.DOI: 10.11686/cyxb2023260
• 研究论文 • 上一篇
祁兆奔1(), 任晓艳1, 李怡彤1, 马金云2, 刘权1()
收稿日期:
2023-07-25
修回日期:
2023-09-11
出版日期:
2024-06-20
发布日期:
2024-03-20
通讯作者:
刘权
作者简介:
E-mail: liuquan@lzu.edu.cn基金资助:
Zhao-ben QI1(), Xiao-yan REN1, Yi-tong LI1, Jin-yun MA2, Quan LIU1()
Received:
2023-07-25
Revised:
2023-09-11
Online:
2024-06-20
Published:
2024-03-20
Contact:
Quan LIU
摘要:
红三叶是全世界种植范围较广的多年生豆科牧草,资源丰富,其多糖成分具有良好的降血糖和抗氧化活性,具有高附加值开发与利用的前景。酶提取条件相对温和,有利于提高多糖活性。本研究考察了酶解时间、酶用量、酶比例、酶解温度4个因素对红三叶多糖提取的影响。利用正交试验对提取条件进行优化筛选,确定酶提取方法为:酶解时间90 min,酶用量1.0%,酶解温度60 ℃,酶比例为木瓜蛋白酶∶纤维素酶∶果胶酶7∶2∶2,红三叶粗多糖含量为8.85%。本研究比较了酶提取以及文献中超声和热水提取,3种方法所制备红三叶多糖的理化性质和抗氧化活性。3个多糖提取样品均具有抗氧化活性,对O2·-自由基的清除活性明显高于阳性对照抗坏血酸。不同多糖提取样品的分子量范围差异明显,以酶提取和热水提取较为集中。3种多糖样品均由8种单糖组成,其中葡萄糖(Glu)、半乳糖(Gal)和阿拉伯糖(Ara)摩尔占比相对较高,约占到单糖组分的3/4。但单糖比例差异较大,酶提取多糖中Glu摩尔百分比最高,是热水提取多糖的1.6倍,超声提取的1.4倍。
祁兆奔, 任晓艳, 李怡彤, 马金云, 刘权. 红三叶多糖的酶提取方法及抗氧化活性研究[J]. 草业学报, 2024, 33(6): 105-115.
Zhao-ben QI, Xiao-yan REN, Yi-tong LI, Jin-yun MA, Quan LIU. Enzyme extraction method and antioxidant activity of polysaccharides from red clover[J]. Acta Prataculturae Sinica, 2024, 33(6): 105-115.
水平 Levels | A | B | C | D |
---|---|---|---|---|
酶解时间 Enzymatic hydrolysis time (min) | 酶用量 Enzyme dosage (%) | 酶解温度 Enzymatic hydrolysis temperature (℃) | 酶比例 Enzyme ratio | |
1 | 80 | 0.7 | 50 | 3∶1∶1 |
2 | 90 | 0.9 | 60 | 7∶2∶2 |
3 | 100 | 1.0 | 65 | 4∶1∶1 |
表1 正交试验因素水平设计
Table 1 Orthogonal test factor level design
水平 Levels | A | B | C | D |
---|---|---|---|---|
酶解时间 Enzymatic hydrolysis time (min) | 酶用量 Enzyme dosage (%) | 酶解温度 Enzymatic hydrolysis temperature (℃) | 酶比例 Enzyme ratio | |
1 | 80 | 0.7 | 50 | 3∶1∶1 |
2 | 90 | 0.9 | 60 | 7∶2∶2 |
3 | 100 | 1.0 | 65 | 4∶1∶1 |
图1 不同提取因素对多糖含量的影响小写字母代表同一因素下的差异水平(P<0.05)。Lower letters represent the levels of difference under the same factor (P<0.05).
Fig.1 Effects of different extraction factors on the content of polysaccharides
序号 Serial number | A | B | C | D | 多糖含量 Polysaccharides content (%) |
---|---|---|---|---|---|
酶解时间 Enzymatic hydrolysis time (min) | 酶用量 Enzyme dosage (%) | 酶解温度 Enzymatic hydrolysis temperature (℃) | 酶比例 Enzyme ratio | ||
1 | 1 | 1 | 1 | 1 | 6.79 |
2 | 1 | 2 | 2 | 3 | 8.83 |
3 | 1 | 3 | 3 | 2 | 6.25 |
4 | 2 | 1 | 2 | 2 | 8.33 |
5 | 2 | 2 | 3 | 1 | 5.84 |
6 | 2 | 3 | 1 | 3 | 8.42 |
7 | 3 | 1 | 3 | 3 | 3.96 |
8 | 3 | 2 | 1 | 2 | 7.24 |
9 | 3 | 3 | 2 | 1 | 8.22 |
K1 | 21.87 | 19.08 | 22.45 | 20.85 | — |
K2 | 22.59 | 21.91 | 25.38 | 21.82 | — |
K3 | 19.42 | 22.89 | 16.05 | 21.21 | — |
R | 3.17 | 3.81 | 9.33 | 0.97 | — |
表2 酶提取方法正交试验结果
Table 2 Results of orthogonal experiment on enzyme extraction method
序号 Serial number | A | B | C | D | 多糖含量 Polysaccharides content (%) |
---|---|---|---|---|---|
酶解时间 Enzymatic hydrolysis time (min) | 酶用量 Enzyme dosage (%) | 酶解温度 Enzymatic hydrolysis temperature (℃) | 酶比例 Enzyme ratio | ||
1 | 1 | 1 | 1 | 1 | 6.79 |
2 | 1 | 2 | 2 | 3 | 8.83 |
3 | 1 | 3 | 3 | 2 | 6.25 |
4 | 2 | 1 | 2 | 2 | 8.33 |
5 | 2 | 2 | 3 | 1 | 5.84 |
6 | 2 | 3 | 1 | 3 | 8.42 |
7 | 3 | 1 | 3 | 3 | 3.96 |
8 | 3 | 2 | 1 | 2 | 7.24 |
9 | 3 | 3 | 2 | 1 | 8.22 |
K1 | 21.87 | 19.08 | 22.45 | 20.85 | — |
K2 | 22.59 | 21.91 | 25.38 | 21.82 | — |
K3 | 19.42 | 22.89 | 16.05 | 21.21 | — |
R | 3.17 | 3.81 | 9.33 | 0.97 | — |
因素 Factors | 离差平方和 Sum of squares of deviations | 自由度 Degree of freedom | 均方 Mean square | F值 F value | 显著性 Significance |
---|---|---|---|---|---|
A | 5.553 | 2 | 2.777 | 29.500 | P<0.01 |
B | 7.819 | 2 | 3.910 | 41.540 | P<0.01 |
C | 45.545 | 2 | 22.773 | 241.940 | P<0.01 |
D | 0.474 | 2 | 0.237 | 2.520 | P>0.05 |
表3 酶提取方法正交试验方差分析结果
Table 3 Results of variance analysis of orthogonal test for enzyme extraction method
因素 Factors | 离差平方和 Sum of squares of deviations | 自由度 Degree of freedom | 均方 Mean square | F值 F value | 显著性 Significance |
---|---|---|---|---|---|
A | 5.553 | 2 | 2.777 | 29.500 | P<0.01 |
B | 7.819 | 2 | 3.910 | 41.540 | P<0.01 |
C | 45.545 | 2 | 22.773 | 241.940 | P<0.01 |
D | 0.474 | 2 | 0.237 | 2.520 | P>0.05 |
图3 不同提取方法的多糖抗氧化活性DPPH自由基清除能力(A); O2·- 自由基清除能力(B)。Scavenging ability of DPPH free radical (A); Scavenging ability of O2·- free radical (B).
Fig.3 Antioxidant activity of polysaccharides with different extraction methods
样品 Samples | 半抑制浓度Semi-inhibitory concentration (mg·mL-1) | |
---|---|---|
清除DPPH自由基 Scavenging DPPH free radical | 清除O2·-自由基 Scavenging superoxide anion free radical | |
酶提取多糖Enzyme extraction polysaccharides | 0.65±0.00a | 1.16±0.05b |
超声提取多糖Ultrasonic extraction polysaccharides | 0.48±0.01b | 0.92±0.01c |
热水提取多糖Hot water extraction polysaccharides | 0.46±0.01b | 0.95±0.01c |
抗坏血酸Vc | 0.02±0.00c | 2.01±0.02a |
表4 不同提取多糖样品的自由基清除活性的IC50值
Table 4 IC50 value of free radical scavenging activity of different extracted polysaccharide samples
样品 Samples | 半抑制浓度Semi-inhibitory concentration (mg·mL-1) | |
---|---|---|
清除DPPH自由基 Scavenging DPPH free radical | 清除O2·-自由基 Scavenging superoxide anion free radical | |
酶提取多糖Enzyme extraction polysaccharides | 0.65±0.00a | 1.16±0.05b |
超声提取多糖Ultrasonic extraction polysaccharides | 0.48±0.01b | 0.92±0.01c |
热水提取多糖Hot water extraction polysaccharides | 0.46±0.01b | 0.95±0.01c |
抗坏血酸Vc | 0.02±0.00c | 2.01±0.02a |
样品 Samples | 组分 Components | 重均分子量 Weight-average molecular weight (g·mol-1) | 数均分子量 Number-average molecular weight (g·mol-1) | 多分散系数 Polydispersity |
---|---|---|---|---|
酶提取多糖 Enzyme extraction polysaccharides | 1 | 1.66×105 | 1.23×105 | 1.35 |
2 | 7.21×104 | 7.19×104 | 1.00 | |
3 | 6.00×104 | 5.97×104 | 1.00 | |
4 | 1.57×104 | 1.50×104 | 1.05 | |
超声提取多糖 Ultrasonic extraction polysaccharides | 1 | 2.40×105 | 1.56×105 | 1.54 |
2 | 6.48×104 | 6.28×104 | 1.03 | |
3 | 8.89×103 | 8.64×103 | 1.03 | |
热水提取多糖 Hot water extraction polysaccharides | 1 | 1.82×105 | 1.49×105 | 1.22 |
2 | 9.06×104 | 9.03×104 | 1.00 | |
3 | 7.38×104 | 7.34×104 | 1.00 | |
4 | 1.87×104 | 1.79×104 | 1.04 |
表5 不同提取方法红三叶多糖分子量
Table 5 Molecular weight of red clover polysaccharide with different extraction methods
样品 Samples | 组分 Components | 重均分子量 Weight-average molecular weight (g·mol-1) | 数均分子量 Number-average molecular weight (g·mol-1) | 多分散系数 Polydispersity |
---|---|---|---|---|
酶提取多糖 Enzyme extraction polysaccharides | 1 | 1.66×105 | 1.23×105 | 1.35 |
2 | 7.21×104 | 7.19×104 | 1.00 | |
3 | 6.00×104 | 5.97×104 | 1.00 | |
4 | 1.57×104 | 1.50×104 | 1.05 | |
超声提取多糖 Ultrasonic extraction polysaccharides | 1 | 2.40×105 | 1.56×105 | 1.54 |
2 | 6.48×104 | 6.28×104 | 1.03 | |
3 | 8.89×103 | 8.64×103 | 1.03 | |
热水提取多糖 Hot water extraction polysaccharides | 1 | 1.82×105 | 1.49×105 | 1.22 |
2 | 9.06×104 | 9.03×104 | 1.00 | |
3 | 7.38×104 | 7.34×104 | 1.00 | |
4 | 1.87×104 | 1.79×104 | 1.04 |
图4 不同提取多糖样品单糖组成HPLC 色谱图混合标准品(A)、酶提取多糖(B)、超声提取多糖(C)和热水提取多糖(D)。1、2、3、4、5、6、7和8分别为甘露糖(Man)、鼠李糖(Rha)、葡萄糖醛酸(GluA)、半乳糖醛酸(GalA)、葡萄糖(Glu)、半乳糖(Gal)、木糖(Xyl)和阿拉伯糖(Ara)。Mixed standard (A), enzyme extracted polysaccharides (B), ultrasonic extracted polysaccharides (C), and hot water extracted polysaccharides (D). 1, 2, 3, 4, 5, 6, 7, and 8 are mannose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, xylose, and arabinose, respectively.
Fig.4 HPLC chromatogram of monosaccharide composition in different extracted polysaccharides
提取方法 Extraction methods | 单糖组成 Monosaccharide composition (摩尔百分比mol%) | |||||||
---|---|---|---|---|---|---|---|---|
甘露糖Man | 鼠李糖Rha | 葡萄糖醛酸GluA | 半乳糖醛酸GalA | 葡萄糖 Glu | 半乳糖 Gal | 木糖 Xyl | 阿拉伯糖Ara | |
酶提取Enzyme extraction | 5.09 | 6.57 | 3.31 | 5.05 | 28.55 | 27.28 | 5.84 | 18.31 |
超声提取Ultrasonic extraction | 5.44 | 6.62 | 3.45 | 3.69 | 20.92 | 30.81 | 6.12 | 22.95 |
热水提取Hot water extraction | 4.93 | 7.59 | 4.02 | 6.35 | 17.86 | 32.95 | 6.00 | 20.29 |
表6 不同提取方法红三叶多糖的单糖组成
Table 6 Monosaccharide composition of red clover polysaccharides with different extraction methods
提取方法 Extraction methods | 单糖组成 Monosaccharide composition (摩尔百分比mol%) | |||||||
---|---|---|---|---|---|---|---|---|
甘露糖Man | 鼠李糖Rha | 葡萄糖醛酸GluA | 半乳糖醛酸GalA | 葡萄糖 Glu | 半乳糖 Gal | 木糖 Xyl | 阿拉伯糖Ara | |
酶提取Enzyme extraction | 5.09 | 6.57 | 3.31 | 5.05 | 28.55 | 27.28 | 5.84 | 18.31 |
超声提取Ultrasonic extraction | 5.44 | 6.62 | 3.45 | 3.69 | 20.92 | 30.81 | 6.12 | 22.95 |
热水提取Hot water extraction | 4.93 | 7.59 | 4.02 | 6.35 | 17.86 | 32.95 | 6.00 | 20.29 |
1 | Zhong K, Zeng Z H, Lin W J, et al. Study on the preparation of polysaccharides from mung bean seed and anti-oxidant activity. Journal of the Chinese Cereals and Oils Association, 2013, 28(2): 93-98. |
钟葵, 曾志红, 林伟静, 等. 绿豆多糖制备及抗氧化特性研究. 中国粮油学报, 2013, 28(2): 93-98. | |
2 | Chen F J, Li D H, Shen H Q, et al. Polysaccharides from Trichosanthes fructus via ultrasound-assisted enzymatic extraction using response surface methodology. BioMed Research International, 2017(25): 1-13. |
3 | Kagan I A, Anderson M L, Kramer K J, et al. Seasonal and diurnal variation in water-soluble carbohydrate concentrations of repeatedly defoliated red and white clovers in central kentucky. Journal of Equine Veterinary Science, 2020, 84(1): 102858. |
4 | Su C, Chen Y T, Tian S J, et al. Research progress on emerging polysaccharide materials applied in tissue engineering. Polymers, 2022, 14(16): 3268. |
5 | Shang H M, Li R, Wu H X, et al. Polysaccharides from Trifolium repens L. extracted by different methods and extraction condition optimization. Scientific Reports, 2019, 9(1): 6353. |
6 | Yu S, Deng X, Chen S Y, et al. Extraction technology of polysaccharide from Foshou yam by enzymatic hydrolysis of cellulase. The Food Industry, 2020, 41(9): 60-63. |
喻随, 邓霞, 陈思颖, 等. 纤维素酶法提取佛手山药多糖的工艺. 食品工业, 2020, 41(9): 60-63. | |
7 | Wang Y X. Extraction and antioxidant activity of polysaccharides from Notopterygium incisum leaves. Ya’an: Sichuan Agricultural University, 2022. |
王玉霞. 羌活叶多糖的提取及抗氧化活性研究. 雅安: 四川农业大学, 2022. | |
8 | Nadar S S, Rao P, Rathod V K. Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review. Food Research International, 2018, 108(3): 309-330. |
9 | Li Y, Huang D C, Chen G T, et al. Polysaccharides from Laminaria japonica: optimization of different extraction processes and comparison of physicochemical properties and antitumor activity. Food Science, 2019, 40(6): 288-294. |
李莹, 黄德春, 陈贵堂, 等. 昆布多糖不同提取工艺优化及其理化性质和抗肿瘤活性比较. 食品科学, 2019, 40(6): 288-294. | |
10 | Deng G L. Effect of extraction methods on the yield and antioxidant activity of polysaccharide from pumpkin. Cereals & Oils, 2017, 30(9): 98-100. |
邓桂兰. 不同提取方法对南瓜多糖提取率及抗氧化活性的影响. 粮食与油脂, 2017, 30(9): 98-100. | |
11 | Wang Q, Li D D, Pan Y Y, et al. Effect of different extraction methods on the extraction ratio and antioxidant activity of polysaccharides from Gastrodia elata Bi. Food & Machinery, 2017, 33(9): 146-150. |
王庆, 李丹丹, 潘芸芸, 等. 提取方法对天麻多糖提取率及其抗氧化活性的影响. 食品与机械, 2017, 33(9): 146-150. | |
12 | Duan Z W, He A, Xie H, et al. Optimization of different extraction process and antioxidant activity of polysaccharides from Morinda officinalis How. Food Science and Technology, 2019, 44(6): 207-214. |
段宙位, 何艾, 谢辉, 等. 巴戟天多糖不同提取工艺优化及抗氧化性比较. 食品科技, 2019, 44(6): 207-214. | |
13 | Liu S S, Liu Y Q, Zhang Q, et al. Optimization of synergistic enzymatic hydrolysis of polysaccharide extraction from dandelion root and study on its antioxidant activity. Journal of Food Science and Technology, 2019, 37(6): 108-115. |
刘珊珊, 刘亚琼, 张琦, 等. 双酶提取蒲公英根多糖工艺优化及其抗氧化性研究. 食品科学技术学报, 2019, 37(6): 108-115. | |
14 | Chen H, Shi X Q, Cen L Y, et al. Effect of yeast fermentation on the physicochemical properties and bioactivities of polysaccharides of Dendrobium officinale. Foods, 2022, 12(1): 150. |
15 | Li B H, Huang G L. Preparation, structure-function relationship and application of Grifola umbellate polysaccharides. Industrial Crops and Products, 2022, 186(1): 115282. |
16 | He L, Yan X T, Liang J, et al. Comparison of different extraction methods for polysaccharides from Dendrobium officinale stem. Carbohydrate Polymers, 2018, 198(20): 101-108. |
17 | Li S J, Xiong Q P, Lai X P, et al. Molecular modification of polysaccharides and resulting bioactivities. Comprehensive Reviews in Food Science and Food Safety, 2016, 15(2): 237-250. |
18 | Zhang N, Chen H X, Ma L S, et al. Physical modifications of polysaccharide from Inonotus obliquus and the antioxidant properties. International Journal of Biological Macromolecules, 2013, 54(1): 209-215. |
19 | Zhang H S, Gao Q, Zhang T T, et al. Comprehensive evaluation of copper tolerance of 30 germplasm resources of red clover (Trifolium pratense). Acta Prataculturae Sinica, 2021, 30(12): 117-128. |
张鹤山, 高秋, 张婷婷, 等. 30份红三叶种质资源耐铜性综合评价. 草业学报, 2021, 30(12): 117-128. | |
20 | Zhang H X, Zhao J C, Shang H M, et al. Extraction, purification, hypoglycemic and antioxidant activities of red clover (Trifolium pratense L.) polysaccharides. International Journal of Biological Macromolecules, 2020, 148(1): 750-760. |
21 | Li Z Y, Zhang R, Zhang J, et al. Effect of compound microbial fertilizer on the root growth of Trifolium pratense L.cv. Minshan by partly replacing chemical fertilizer. China Herbivore Science, 2018, 38(1): 38-42. |
李智燕, 张榕, 张洁, 等. 微生物专用菌肥与化肥配施对红三叶根系生长的影响.中国草食动物科学, 2018, 38(1): 38-42. | |
22 | Shi W J. The study on antioxidant activities of polysaccharide and flavonoid in Apocynum venetum L. and Trifolium pratense L. Lanzhou: Lanzhou University, 2020. |
史文娟. 罗布麻和红三叶中多糖与黄酮的抗氧化活性研究. 兰州: 兰州大学, 2020. | |
23 | Mishra K, Ojha H, Chaudhury N K. Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. Food Chemistry, 2012, 130(4): 1036-1043. |
24 | Vlaisavljević S,Kaurinović B,Popović M,et al. Profile of phenolic compounds in Trifolium pratense L. extracts at different growth stages and their biological activities. International Journal of Food Properties, 2017, 20(9/10/11/12): 3090-3101. |
25 | Chen S R, Li H C, Liao S Y, et al. Studies on anti-oxidation of polysaccharides from eight Dendrobium species. Pharmacy Today, 2022, 32(5): 346-352. |
陈舜让, 李海春, 廖思艺, 等. 8种石斛多糖特征及非细胞抗氧化活性比较. 今日药学, 2022, 32(5): 346-352. | |
26 | Huang Y C, Chen X X, He L P, et al. Isolation, purification and molecular weight determination of polysaccharides from Cordyceps militaris. Modern Food Science and Technology, 2012, 28(8): 1054-1057. |
黄奕诚, 陈雪香, 贺丽苹, 等. 蛹虫草多糖的纯化及其分子量的测定. 现代食品科技, 2012, 28(8): 1054-1057. | |
27 | Qiu X. Extraction, isolation, purification and structural identification of polysaccharides from Acorus tatarinowii. Guangzhou: Guangdong Pharmaceutical University, 2021. |
丘娴. 石菖蒲多糖的提取、分离纯化和结构鉴定. 广州: 广东药科大学, 2021. | |
28 | Xu Z, Wang H D, Wang B L, et al. Characterization and antioxidant activities of polysaccharides from the leaves of Lilium lancifolium Thunb. International Journal of Biological Macromolecules, 2016, 92(1): 148-155. |
29 | Ren D Y, Lin D H, Alim A, et al. Chemical characterization of a novel polysaccharide ASKP-1 from Artemisia sphaerocephala Krasch seed and its macrophage activation via MAPK, PI3k/Akt and NF-κB signaling pathways in RAW264.7 cells. Food & Function, 2017, 8(3): 1299-1312. |
30 | Ahmad M M, Chatha S A S, Iqbal Y, et al. Recent trends in extraction, purification, and antioxidant activity evaluation of plant leaf-extract polysaccharides. Biofuels, Bioproducts and Biorefining, 2022, 16(6): 1820-1848. |
31 | Huang G L, Chen F, Yang W J, et al. Preparation, deproteinization and comparison of bioactive polysaccharides. Trends in Food Science and Technology, 2021, 109(7): 564-568. |
32 | Zhao Z Q, Wang M, Zhang Z Q. Research progress of antioxidation efficacy and extraction of plant polysaccharide. Science and Technology of Food Industry, 2018, 39(13): 337-342. |
赵芷芊, 王敏, 张志清. 植物多糖的提取及抗氧化功效的研究进展. 食品工业科技, 2018, 39(13): 337-342. | |
33 | Yin Y, Gao W H, Yu S J. Progress in the research of polysaccharide extraction. Science and Technology of Food Industry, 2007, 190(2): 248-250. |
尹艳, 高文宏, 于淑娟. 多糖提取技术的研究进展. 食品工业科技, 2007, 190(2): 248-250. | |
34 | Guo Y H, Zhang L J, Cao L L, et al. Recent advances in analytical techniques for monosaccharide composition of plant polysaccharides. Food Science, 2018, 39(1): 326-332. |
郭元亨, 张利军, 曹丽丽, 等. 植物多糖中单糖组成分析技术的研究进展. 食品科学, 2018, 39(1): 326-332. | |
35 | Zhu Z Y, Pang W, Li Y Y, et al. Effect of ultrasonic treatment on structure and antitumor activity of mycelial polysaccharides from Cordyceps gunnii. Carbohydrate Polymers, 2014, 114(1): 12-20. |
36 | Xiong H W, Dai S H, Min H, et al. The monosaccharides components of soybean and wheat bran fiber determined by gas chromatography. Food Research and Development, 2014, 35(2): 84-86. |
熊慧薇, 戴书浩, 闵华, 等. GC分析大豆和麦麸膳食纤维中的单糖成分. 食品研究与开发, 2014, 35(2): 84-86. | |
37 | Ni L J, Wang Y Y, He W Y, et al. Monosaccharide composition, activity and their correlation analysis in eight polysaccharides. Journal of Tianjin University (Science and Technology), 2014, 47(4): 326-330. |
倪力军, 王媛媛, 何婉瑛, 等. 8种多糖的单糖组成、活性及其相关性分析. 天津大学学报 (自然科学与工程技术版), 2014, 47(4): 326-330. | |
38 | Liu D Q, Ren F Z, Hou C Y. Comparative studies on the hypoglycemic activity of several plant polysaccharides. Journal of Chinese Institute of Food Science and Technology, 2021, 21(1): 81-89. |
刘丹奇, 任发政, 侯彩云. 几种植物多糖降血糖活性的对比研究. 中国食品学报, 2021, 21(1): 81-89. | |
39 | Gu D L, Wang Q, Zan K, et al. Comparison of different extraction methods for polysaccharides from Polygoni multiflori Radix. Chinese Journal of New Drugs, 2023, 32(1): 51-56. |
辜冬琳, 汪祺, 昝珂, 等. 何首乌多糖提取方法的比较研究. 中国新药杂志, 2023, 32(1): 51-56. | |
40 | Chen R Z, Li S Z, Liu C M, et al. Ultrasound complex enzymes assisted extraction and biochemical activities of polysaccharides from Epimedium leaves. Process Biochemistry, 2012, 47(12): 2040-2050. |
41 | Kang Q Z, Chen S S, Li S F, et al. Comparison on characterization and antioxidant activity of polysaccharides from Ganoderma lucidum by ultrasound and conventional extraction. International Journal of Biological Macromolecules, 2019, 124(1): 1137-1144. |
[1] | 尚盼盼, 曾兵, 屈明好, 李明阳, 杨兴云, 郑玉倩, 沈秉娜, 毕磊, 杨成, 曾兵. 红三叶响应淹水胁迫的相关通路及差异表达基因分析[J]. 草业学报, 2023, 32(4): 112-128. |
[2] | 周力, 侯生珍, 王志有, 杨葆春, 韩丽娟, 桂林生. 棕榈粕替代部分玉米对藏羊母羊小肠形态发育、消化酶活性及抗氧化功能的影响[J]. 草业学报, 2023, 32(3): 118-127. |
[3] | 陈永岗, 康文娟, 吴芳, 阿芸, 师尚礼, 张翠梅, 李自立. 硼对根瘤菌胞外多糖和吲哚乙酸分泌的调控研究[J]. 草业学报, 2021, 30(5): 42-51. |
[4] | 张鹤山, 高秋, 张婷婷, 陆姣云, 田宏, 熊军波, 刘洋. 30份红三叶种质资源耐铜性综合评价[J]. 草业学报, 2021, 30(12): 117-128. |
[5] | 张磊, 韩雪林, 张娟, 李苏涛, 史文娇, 阳伏林. 岩藻多糖对肉兔生长性能、血清生化指标及养分表观消化率的影响[J]. 草业学报, 2021, 30(10): 159-168. |
[6] | 杨大盛, 汪水平, 韩雪峰, 汤少勋, 谭支良, 尹梦洁, 骆东梅. 乳酸菌和烷基多糖苷对玉米秸秆黄贮品质及其体外发酵特性影响研究[J]. 草业学报, 2019, 28(5): 109-120. |
[7] | 刘南清, 林绍艳, 沈益新. 假俭草叶片渗透调节物质含量对冬前低温的响应及其与低温伤害的关系[J]. 草业学报, 2019, 28(3): 122-130. |
[8] | 李海云, 姚拓, 张榕, 张洁, 李智燕, 荣良燕, 路晓雯, 杨晓蕾, 夏东慧, 罗慧琴. 红三叶根际溶磷菌的筛选与培养基优化[J]. 草业学报, 2019, 28(1): 170-179. |
[9] | 蒲小剑,田久胜,田新会,杜文华. 红三叶遗传图谱构建及抗白粉病基因QTL定位[J]. 草业学报, 2018, 27(4): 79-88. |
[10] | 靳鹏博, 胡佳栋, 毛歌, 张志伟, 马存德, 梁宗锁, 董娟娥. 栽培密度对党参产量和次生代谢物含量的影响[J]. 草业学报, 2018, 27(3): 164-172. |
[11] | 占今舜, 陈小连, 詹康, 苏效双, 赵国琦. 苜蓿黄酮对脂多糖诱导下奶牛乳腺上皮细胞凋亡的影响[J]. 草业学报, 2018, 27(1): 187-194. |
[12] | 孟丽娟,赵桂琴. 国外引进红三叶种质在甘肃中部地区的生长特性及生产性能初步评价[J]. 草业学报, 2015, 24(9): 30-42. |
[13] | 荣良燕,姚拓,马文彬,李德明,李儒仁,张洁,陆飒. 岷山红三叶根际优良促生菌对其宿主生长和品质的影响[J]. 草业学报, 2014, 23(5): 231-240. |
[14] | 罗世琼,石安东,袁玲,黄建国. 黄花蒿抗疟相关成分及抗氧化活性对施肥方式的响应[J]. 草业学报, 2014, 23(1): 339-345. |
[15] | 姜义宝,杨玉荣,冯长松,王成章,崔国文. 红三叶异黄酮对低温诱发肉鸡腹水综合症发生和抗氧化性能的影响[J]. 草业学报, 2013, 22(2): 94-99. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||