草业学报 ›› 2021, Vol. 30 ›› Issue (10): 159-168.DOI: 10.11686/cyxb2021075
• 研究论文 • 上一篇
张磊(), 韩雪林, 张娟, 李苏涛, 史文娇, 阳伏林()
收稿日期:
2021-03-01
修回日期:
2021-05-08
出版日期:
2021-09-16
发布日期:
2021-09-16
通讯作者:
阳伏林
作者简介:
Corresponding author. E-mail: fulin.yang@fafu.edu.cn基金资助:
Lei ZHANG(), Xue-lin HAN, Juan ZHANG, Su-tao LI, Wen-jiao SHI, Fu-lin YANG()
Received:
2021-03-01
Revised:
2021-05-08
Online:
2021-09-16
Published:
2021-09-16
Contact:
Fu-lin YANG
摘要:
本试验旨在研究日粮中添加不同水平岩藻多糖对肉兔生长性能、屠宰性能、内脏器官指数、血清生化指标和养分表观消化率的影响,为岩藻多糖作为抗生素替代物在肉兔日粮中的应用提供理论依据。从200只35日龄健康断奶福建黄兔中选取36只体重相近的试验兔,采用单因素试验设计,随机分为4组,每组3个重复,每个重复3只。对照组饲喂基础日粮,试验Ⅰ、Ⅱ、Ⅲ组分别饲喂添加100、200和300 mg·kg-1岩藻多糖的日粮,预试期5 d,正试期22 d。结果表明:1)试验Ⅲ组末重、平均日采食量(ADFI)、平均日增重(ADG)显著高于对照组(P<0.05),料重比(F/G)显著低于对照组(P<0.05)。2)试验Ⅲ组宰前活重显著高于对照组(P<0.05)。其他各项指标均无显著差异(P>0.05)。3)各试验组胸腺指数均显著高于对照组(P<0.05)。各组间脾脏指数和圆小囊指数均无显著差异(P>0.05)。试验Ⅱ和Ⅲ组蚓突指数显著高于对照组(P<0.05)。其他各项指标均无显著差异(P>0.05)。4)试验Ⅲ组丙氨酸氨基转移酶(ALT)含量显著低于其他组(P<0.05)。试验Ⅰ和Ⅱ组低密度脂蛋白胆固醇(LDL)、胆固醇(CHO)含量显著低于对照组(P<0.05)。试验Ⅲ组超氧化物歧化酶(SOD)活性显著高于对照组(P<0.05)。各试验组丙二醛(MDA)含量均显著低于对照组(P<0.05),谷胱甘肽过氧化物酶(GSH-Px)活性均显著高于对照组(P<0.05),其中试验Ⅲ组显著高于Ⅰ组(P<0.05)。其他各项指标均无显著差异(P>0.05)。5)各试验组干物质(DM)、中性洗涤纤维(NDF)、粗灰分(Ash)表观消化率均显著高于对照组(P<0.05)。试验Ⅲ组酸性洗涤纤维(ADF)表观消化率显著高于对照组(P<0.05)。各组粗蛋白(CP)表观消化率均无显著差异(P>0.05)。综上所述,日粮中添加岩藻多糖可显著提高肉兔ADFI和ADG,显著降低F/G,提高内脏器官指数和抗氧化能力,同时显著提高日粮中DM、ADF、NDF和Ash表观消化率,在本试验条件下,添加水平为300 mg·kg-1时,效果最佳。
张磊, 韩雪林, 张娟, 李苏涛, 史文娇, 阳伏林. 岩藻多糖对肉兔生长性能、血清生化指标及养分表观消化率的影响[J]. 草业学报, 2021, 30(10): 159-168.
Lei ZHANG, Xue-lin HAN, Juan ZHANG, Su-tao LI, Wen-jiao SHI, Fu-lin YANG. Effects of fucoidan on the growth performance, serum biochemical indexes, and nutrient apparent digestibility of meat rabbits[J]. Acta Prataculturae Sinica, 2021, 30(10): 159-168.
项目 Items | 含量 Content |
---|---|
原料 Ingredients | |
苜蓿草粉 Alfalfa meal (%) | 35.00 |
玉米 Corn (%) | 23.00 |
麸皮 Wheat bran (%) | 19.50 |
豆粕 Soybean meal (%) | 10.00 |
米糠粕 Rice bran meal (%) | 10.00 |
石粉 Stone powder (%) | 1.00 |
食盐 Sodium chloride (%) | 0.50 |
预混料 Premix1) (%) | 1.00 |
合计 Total (%) | 100.00 |
营养水平 Nutrient levels2) | |
消化能 Digestible energy (MJ·kg-1) | 10.82 |
粗纤维 Crude fiber (%) | 13.22 |
粗蛋白质 Crude protein (%) | 16.37 |
粗脂肪 Ether extract (%) | 2.62 |
钙 Calcium (%) | 0.90 |
总磷 Total phosphorus (%) | 0.56 |
表1 日粮组成及营养水平(风干基础)
Table 1 Composition and nutrient levels of the basal diet (air-dry basis)
项目 Items | 含量 Content |
---|---|
原料 Ingredients | |
苜蓿草粉 Alfalfa meal (%) | 35.00 |
玉米 Corn (%) | 23.00 |
麸皮 Wheat bran (%) | 19.50 |
豆粕 Soybean meal (%) | 10.00 |
米糠粕 Rice bran meal (%) | 10.00 |
石粉 Stone powder (%) | 1.00 |
食盐 Sodium chloride (%) | 0.50 |
预混料 Premix1) (%) | 1.00 |
合计 Total (%) | 100.00 |
营养水平 Nutrient levels2) | |
消化能 Digestible energy (MJ·kg-1) | 10.82 |
粗纤维 Crude fiber (%) | 13.22 |
粗蛋白质 Crude protein (%) | 16.37 |
粗脂肪 Ether extract (%) | 2.62 |
钙 Calcium (%) | 0.90 |
总磷 Total phosphorus (%) | 0.56 |
项目 Items | 分组Groups | |||
---|---|---|---|---|
对照组Control | Ⅰ | Ⅱ | Ⅲ | |
初始体重Initial weight (g) | 744.77±35.46 | 753.91±21.03 | 743.85±15.47 | 753.77±2.98 |
最终末重Final weight (g) | 1356.67±88.38b | 1487.67±104.33ab | 1523.00±123.66ab | 1626.67±177.19a |
平均日采食量 Average daily feed intake (g) | 103.23±2.12b | 103.79±1.96b | 105.28±2.65ab | 108.97±1.49a |
平均日增重 Average daily gain (g) | 27.81±2.71b | 33.35±5.30ab | 35.42±5.46ab | 39.68±7.95a |
料重比Feed/gain | 3.76±0.44a | 3.15±0.54ab | 3.02±0.43ab | 2.82±0.56b |
表2 岩藻多糖对肉兔生长性能的影响
Table 2 Effects of fucoidan on growth performance of meat rabbits
项目 Items | 分组Groups | |||
---|---|---|---|---|
对照组Control | Ⅰ | Ⅱ | Ⅲ | |
初始体重Initial weight (g) | 744.77±35.46 | 753.91±21.03 | 743.85±15.47 | 753.77±2.98 |
最终末重Final weight (g) | 1356.67±88.38b | 1487.67±104.33ab | 1523.00±123.66ab | 1626.67±177.19a |
平均日采食量 Average daily feed intake (g) | 103.23±2.12b | 103.79±1.96b | 105.28±2.65ab | 108.97±1.49a |
平均日增重 Average daily gain (g) | 27.81±2.71b | 33.35±5.30ab | 35.42±5.46ab | 39.68±7.95a |
料重比Feed/gain | 3.76±0.44a | 3.15±0.54ab | 3.02±0.43ab | 2.82±0.56b |
项目 Items | 分组Groups | |||
---|---|---|---|---|
对照组Control | Ⅰ | Ⅱ | Ⅲ | |
宰前活重 Live weight before slaughter (g) | 1326.67±88.38b | 1457.67±104.33ab | 1493.00±123.66ab | 1596.67±177.19a |
全净膛重 Full bore weight (g) | 684.22±2.08 | 719.37±79.33 | 754.55±63.12 | 778.35±52.05 |
全净膛率Full bore rate (%) | 51.74±3.66 | 49.78±9.15 | 50.79±6.12 | 49.16±6.35 |
半净膛重 Semi clean chamber weight (g) | 760.52±1.96 | 795.19±81.51 | 832.81±59.09 | 876.83±66.11 |
半净膛率Semi clean chamber rate (%) | 57.51±4.05 | 55.01±9.60 | 56.03±5.90 | 55.22±5.48 |
表3 岩藻多糖对肉兔屠宰性能的影响
Table 3 Effects of fucoidan on slaughter performance of meat rabbits
项目 Items | 分组Groups | |||
---|---|---|---|---|
对照组Control | Ⅰ | Ⅱ | Ⅲ | |
宰前活重 Live weight before slaughter (g) | 1326.67±88.38b | 1457.67±104.33ab | 1493.00±123.66ab | 1596.67±177.19a |
全净膛重 Full bore weight (g) | 684.22±2.08 | 719.37±79.33 | 754.55±63.12 | 778.35±52.05 |
全净膛率Full bore rate (%) | 51.74±3.66 | 49.78±9.15 | 50.79±6.12 | 49.16±6.35 |
半净膛重 Semi clean chamber weight (g) | 760.52±1.96 | 795.19±81.51 | 832.81±59.09 | 876.83±66.11 |
半净膛率Semi clean chamber rate (%) | 57.51±4.05 | 55.01±9.60 | 56.03±5.90 | 55.22±5.48 |
项目 Items | 分组Groups | |||
---|---|---|---|---|
对照组Control | Ⅰ | Ⅱ | Ⅲ | |
脾脏指数 Spleen index | 1.00±0.49 | 0.73±0.37 | 0.85±0.17 | 0.79±0.11 |
胸腺指数 Thymus index | 1.77±0.63b | 2.70±0.28a | 3.19±0.28a | 2.69±0.56a |
圆小囊指数 Cysts index | 0.88±0.54 | 1.23±0.34 | 1.65±0.22 | 1.34±0.54 |
蚓突指数 Protrusion index | 3.96±0.72b | 4.46±0.30ab | 5.59±0.27a | 5.32±0.87a |
心脏指数 Heart index | 3.89±0.55 | 4.03±0.55 | 4.29±0.81 | 4.01±0.72 |
肾脏指数 Kidney index | 9.25±1.03 | 9.52±1.05 | 9.48±1.29 | 9.69±1.71 |
肝脏指数 Liver index | 38.36±1.94 | 38.66±5.25 | 41.42±5.58 | 38.93±9.44 |
表4 岩藻多糖对肉兔内脏器官指数的影响 (g·kg-1)
Table 4 Effect of fucoidan on internal organ index of meat rabbits
项目 Items | 分组Groups | |||
---|---|---|---|---|
对照组Control | Ⅰ | Ⅱ | Ⅲ | |
脾脏指数 Spleen index | 1.00±0.49 | 0.73±0.37 | 0.85±0.17 | 0.79±0.11 |
胸腺指数 Thymus index | 1.77±0.63b | 2.70±0.28a | 3.19±0.28a | 2.69±0.56a |
圆小囊指数 Cysts index | 0.88±0.54 | 1.23±0.34 | 1.65±0.22 | 1.34±0.54 |
蚓突指数 Protrusion index | 3.96±0.72b | 4.46±0.30ab | 5.59±0.27a | 5.32±0.87a |
心脏指数 Heart index | 3.89±0.55 | 4.03±0.55 | 4.29±0.81 | 4.01±0.72 |
肾脏指数 Kidney index | 9.25±1.03 | 9.52±1.05 | 9.48±1.29 | 9.69±1.71 |
肝脏指数 Liver index | 38.36±1.94 | 38.66±5.25 | 41.42±5.58 | 38.93±9.44 |
项目 Items | 分组Groups | |||
---|---|---|---|---|
对照组Control | Ⅰ | Ⅱ | Ⅲ | |
总蛋白 Total protein (TP, g·L-1) | 60.90±0.42 | 59.72±6.71 | 60.87±0.47 | 59.19±3.22 |
白蛋白 Albumin (ALB, g·L-1) | 40.08±2.21 | 37.51±3.46 | 38.93±1.54 | 37.88±0.34 |
丙氨酸氨基转移酶 Alanine aminotransferase (ALT, U·L-1) | 49.75±3.01a | 47.46±3.86a | 48.71±3.92a | 40.35±2.87b |
天门冬氨酸氨基转移酶 Aspartate aminotransferase (AST, U·L-1) | 44.67±9.27 | 45.60±4.88 | 43.21±6.59 | 42.34±8.86 |
低密度脂蛋白胆固醇 Low density lipoprotein (LDL, mmol·L-1) | 2.81±1.18a | 1.09±0.13b | 1.19±0.28b | 1.66±0.52ab |
高密度脂蛋白胆固醇 High density lipoprotein (HDL, mmol·L-1) | 1.00±0.10 | 0.93±0.22 | 0.99±0.09 | 0.89±0.10 |
胆固醇 Cholesterin (CHO, mmol·L-1) | 4.07±1.42a | 2.16±0.06b | 2.35±0.38b | 2.72±0.55ab |
葡萄糖 Glucose (GLU, mmol·L-1) | 6.44±1.79 | 5.96±0.31 | 7.01±0.35 | 5.72±0.35 |
尿素氮 Urea nitrogen (UN, mg·dL-1) | 17.92±0.12 | 19.88±1.00 | 18.66±1.73 | 18.52±0.35 |
尿素 Urea (mmol·L-1) | 6.40±0.04 | 7.10±0.36 | 6.67±0.62 | 6.61±0.13 |
甘油三酯 Triglyceride (TG, mmol·L-1) | 2.00±0.51 | 1.40±0.30 | 1.44±0.23 | 1.82±0.68 |
白球比 Albunin/globulin (A/G) | 1.94±0.26 | 1.73±0.34 | 1.78±0.19 | 1.81±0.29 |
超氧化物歧化酶Superoxide dismutase (SOD, U·mL-1) | 174.08±11.65b | 176.62±8.89b | 201.61±11.39ab | 221.51±28.82a |
丙二醛 Malondialdehyde (MDA, nmol·mL-1) | 3.24±0.30a | 2.48±0.23b | 2.51±0.16b | 2.42±0.12b |
谷胱甘肽过氧化物酶Glutathione peroxidase (GSH-Px, U·mL-1) | 384.10±14.07c | 464.02±48.23b | 492.77±44.05ab | 541.69±18.63a |
表5 岩藻多糖对肉兔血清生化指标的影响
Table 5 Effects of fucoidan on blood biochemical indexes of meat rabbits
项目 Items | 分组Groups | |||
---|---|---|---|---|
对照组Control | Ⅰ | Ⅱ | Ⅲ | |
总蛋白 Total protein (TP, g·L-1) | 60.90±0.42 | 59.72±6.71 | 60.87±0.47 | 59.19±3.22 |
白蛋白 Albumin (ALB, g·L-1) | 40.08±2.21 | 37.51±3.46 | 38.93±1.54 | 37.88±0.34 |
丙氨酸氨基转移酶 Alanine aminotransferase (ALT, U·L-1) | 49.75±3.01a | 47.46±3.86a | 48.71±3.92a | 40.35±2.87b |
天门冬氨酸氨基转移酶 Aspartate aminotransferase (AST, U·L-1) | 44.67±9.27 | 45.60±4.88 | 43.21±6.59 | 42.34±8.86 |
低密度脂蛋白胆固醇 Low density lipoprotein (LDL, mmol·L-1) | 2.81±1.18a | 1.09±0.13b | 1.19±0.28b | 1.66±0.52ab |
高密度脂蛋白胆固醇 High density lipoprotein (HDL, mmol·L-1) | 1.00±0.10 | 0.93±0.22 | 0.99±0.09 | 0.89±0.10 |
胆固醇 Cholesterin (CHO, mmol·L-1) | 4.07±1.42a | 2.16±0.06b | 2.35±0.38b | 2.72±0.55ab |
葡萄糖 Glucose (GLU, mmol·L-1) | 6.44±1.79 | 5.96±0.31 | 7.01±0.35 | 5.72±0.35 |
尿素氮 Urea nitrogen (UN, mg·dL-1) | 17.92±0.12 | 19.88±1.00 | 18.66±1.73 | 18.52±0.35 |
尿素 Urea (mmol·L-1) | 6.40±0.04 | 7.10±0.36 | 6.67±0.62 | 6.61±0.13 |
甘油三酯 Triglyceride (TG, mmol·L-1) | 2.00±0.51 | 1.40±0.30 | 1.44±0.23 | 1.82±0.68 |
白球比 Albunin/globulin (A/G) | 1.94±0.26 | 1.73±0.34 | 1.78±0.19 | 1.81±0.29 |
超氧化物歧化酶Superoxide dismutase (SOD, U·mL-1) | 174.08±11.65b | 176.62±8.89b | 201.61±11.39ab | 221.51±28.82a |
丙二醛 Malondialdehyde (MDA, nmol·mL-1) | 3.24±0.30a | 2.48±0.23b | 2.51±0.16b | 2.42±0.12b |
谷胱甘肽过氧化物酶Glutathione peroxidase (GSH-Px, U·mL-1) | 384.10±14.07c | 464.02±48.23b | 492.77±44.05ab | 541.69±18.63a |
项目 Items | 分组Groups | |||
---|---|---|---|---|
对照组Control | Ⅰ | Ⅱ | Ⅲ | |
干物质Dry matter (DM) | 57.11±0.01d | 57.27±0.04b | 57.18±0.02c | 57.35±0.05a |
粗蛋白Crude protein (CP) | 81.05±1.84 | 78.31±5.06 | 80.30±1.30 | 82.35±2.47 |
中性洗涤纤维Neutral detergent fiber (NDF) | 32.46±0.41b | 36.08±1.80a | 35.87±0.86a | 36.01±1.60a |
酸性洗涤纤维Acid detergent fiber (ADF) | 22.89±2.28b | 23.69±1.48b | 25.10±2.62ab | 28.02±2.13a |
粗灰分Crude ash (Ash) | 47.02±0.41c | 49.47±0.43b | 49.23±0.54b | 50.26±0.07a |
表6 岩藻多糖对肉兔养分表观消化率的影响
Table 6 Effect of fucoidan on apparent nutrient digestibility of meat rabbits (%)
项目 Items | 分组Groups | |||
---|---|---|---|---|
对照组Control | Ⅰ | Ⅱ | Ⅲ | |
干物质Dry matter (DM) | 57.11±0.01d | 57.27±0.04b | 57.18±0.02c | 57.35±0.05a |
粗蛋白Crude protein (CP) | 81.05±1.84 | 78.31±5.06 | 80.30±1.30 | 82.35±2.47 |
中性洗涤纤维Neutral detergent fiber (NDF) | 32.46±0.41b | 36.08±1.80a | 35.87±0.86a | 36.01±1.60a |
酸性洗涤纤维Acid detergent fiber (ADF) | 22.89±2.28b | 23.69±1.48b | 25.10±2.62ab | 28.02±2.13a |
粗灰分Crude ash (Ash) | 47.02±0.41c | 49.47±0.43b | 49.23±0.54b | 50.26±0.07a |
1 | Yao M M, Li Z X, Wang X B, et al. Advances in the research of commonly used antibiotic substitutes as feed additive. Feed Industry, 2019, 40(8): 61-64. |
姚蒙蒙, 李仲玄, 王晓冰, 等. 常用饲用抗生素替代物研究进展. 饲料工业, 2019, 40(8): 61-64. | |
2 | Li Y P, Zhan H J, Zheng J T, et al. Effects of β-glucan on growth performance, immune organ indexes, serum biochemical and immune indexes of meat rabbits. Chinese Journal of Animal Nutrition, 2020, 32(11): 5365-5372. |
李燕平, 詹海杰, 郑建婷, 等. β-葡聚糖对肉兔生长性能、免疫器官指数、血清生化和免疫指标的影响. 动物营养学报, 2020, 32(11): 5365-5372. | |
3 | Yang Y T, Shu X G, Luo F, et al. Biological functions of fucoidan and its application in animal production. Journal of Zhongkai University of Agriculture and Engineering, 2020, 33(2): 66-71. |
杨远廷, 舒绪刚, 罗帆, 等. 岩藻多糖的生物学功能及其在动物生产中的应用. 仲恺农业工程学院学报, 2020, 33(2): 66-71. | |
4 | Kylin H. Zur biochemie der meeresalgen. Hoppe-Seyler,s Zeitschrift für Physiologische Chemie, 1913, 83: 171-197. |
5 | Lunde G, Heen E. Über fucoidin. Biological Chemistry, 1937, 247(4/5): 189-196. |
6 | Ma Y J, Yang L, He R X, et al. Physiological functions of fucoidan and its application in animal production. China Animal Husbandry & Veterinary Medicine, 2020, 47(8): 2404-2412. |
马玉静, 杨玲, 何荣香, 等. 岩藻多糖的生理功能及其在动物生产中的应用. 中国畜牧兽医, 2020, 47(8): 2404-2412. | |
7 | Lin J B, Liang P, Zhu Q G, et al. Effect of laminarin on growth and immunity of pearl gentian grouper. Fujian Journal of Agricultural Sciences, 2017, 32(1): 17-21. |
林建斌, 梁萍, 朱庆国, 等. 海带多糖对珍珠龙胆石斑鱼生长性能和免疫力的影响. 福建农业学报, 2017, 32(1): 17-21. | |
8 | Sa R N. Isolation and purification of fucoidan from Laminaria japonica and its immunomodulatory activities on broiler macrophage. Beijing: Chinese Academy of Agricultural Sciences, 2008. |
萨仁娜. 海带岩藻聚糖分级纯化及对肉仔鸡巨噬细胞免疫调节的研究. 北京: 中国农业科学院, 2008. | |
9 | Liu P, Zhao J B, Geng Z Y, et al. Influence of dietary fucoidan on inflammatory response and intestinal microbial diversity in weaned pigs. Acta Microbiologica Sinica, 2019, 59(4): 700-710. |
刘萍, 赵金标, 耿正颖, 等. 日粮添加褐藻糖胶对断奶仔猪抗炎能力和肠道微生物多样性的影响. 微生物学报, 2019, 59(4): 700-710. | |
10 | Suchy M. Nutrition requirements of rabbits-nutrition of fur animals. Priručnik o proizvodnji iupotrebi stočne hrane-krme, 953-6485-14-1, 2004: 611-622. |
11 | Zheng J T, Ren K L, Feng G L, et al. Effects of apple pomace on growth performance, nutrient apparent digestibility and meat quality of meat rabbits. Chinese Journal of Animal Nutrition, 2019, 31(12): 5772-5778. |
郑建婷, 任克良, 冯国亮, 等. 苹果渣对肉兔生长性能、养分表观消化率及肉品质的影响. 动物营养学报, 2019, 31(12): 5772-5778. | |
12 | Zhang L Y. Feed analysis and feed quality detection technology (3rd Edition). Beijing: China Agricultural University Press, 2007. |
张丽英. 饲料分析及饲料质量检测技术(3版). 北京: 中国农业大学出版社, 2007. | |
13 | Sweeney T, Meredith H, Vigors S, et al. Extracts of laminarinand laminarin/fucoidan from the marine macroalgal species laminaria digitata improved growth rate and intestinal structure in young chicks, but does not influence Campylobacter jejuni colonisation. Animal Feed Science & Technology, 2017, 232: 71-79. |
14 | Mcalpine P, O’Shea C J, Varley P F, et al. The effect of seaweed extract as an alternative to zinc oxide diets on growth performance, nutrient digestibility, and fecal score of weaned piglets. Journal of Animal Science, 2012(Supple 4): 224-226. |
15 | Cui H, Wang Z, Liu J, et al. Effects of a highly purified fucoidan from Undaria pinnatifida on growth performance and intestine health status of gibel carp Carassius auratus gibelio. Aquaculture Nutrition, 2019, 26(Supple 4): 47-59. |
16 | Draper J, Walsh A M, Mcdonnell M, et al. Maternally offered seaweed extracts improves the performance and health status of the postweaned pig1. Journal of Animal Science, 2016, 94(Supple3): 391-394. |
17 | Chen H J, Yang W Y, Wang C Y. The review on structure of intestinal flora at different growth stages of rabbits. International Conference on Medicine Sciences and Bioengineering, 2017: 245-253. |
18 | Cho Y S, Jung W K, Kim J A, et al. Beneficial effects of fucoidan on osteoblastic MG-63 cell differentiation. Food Chemistry, 2009, 116(4): 990-994. |
19 | Weelden G V, Okla K, Weelden W V, et al. Fucoidan structure and activity in relation to anti-cancer mechanisms. Marine Drugs, 2019, 17(1): 32. |
20 | Hou P X, Li Y H, Wang J D, et al. Effects of adding amino acid zinc in diets on slaughter performance, meat quality and trace element contents in blood and tissue of fattening sheep. Chinese Journal of Animal Nutrition, 2021, 33(1): 563-571. |
侯鹏霞, 李毓华, 王建东, 等. 饲粮添加氨基酸锌对育肥羊屠宰性能、肉品质及血液和组织中微量元素含量的影响. 动物营养学报, 2021, 33(1): 563-571. | |
21 | Jiang B W, Wang T, Zhou Y X, et al. Effects of buckwheat straw and alfalfa hay treated by enzyme and bacteria on growth performance, rumen bacterial diversity and carbohydrate-active enzymes of tan sheep. Chinese Journal of Animal Nutrition, 2021, 33(4): 2335-2346. |
22 | Shang Guan M J, Wang F, Zhang B Y, et al. Effects of millet straw content on growth performance, visceral organ index and meat quality of meat rabbits. Heilongjiang Animal Science and Veterinary Medicine, 2020(15): 147-151. |
上官明军, 王芳, 张变英, 等. 日粮中糜子秸秆含量对肉兔生长性能、内脏器官指数和肉品质的影响. 黑龙江畜牧兽医, 2020(15): 147-151. | |
23 | Thapa P, Farber D L. The role of the thymus in the immune response. Thoracic Surgery Clinics, 2019, 29(2): 123-131. |
24 | Wang C, Huang L, Wang P, et al. The effects of deoxynivalenol on the ultrastructure of the sacculus rotundus and vermiform appendix, as well as the intestinal microbiota of weaned rabbits. Toxins (Basel), 2020, 12(9): 569. |
25 | Lv C Y, Wu J, He H B. Effect of Liuhedan on the expression of interleukin-1 β and tumor necrosis factor-α during wound healing of skin infection in New Zealand white rabbits. West China Medical Journal, 2017, 32(10): 1544-1550. |
吕长遥, 伍静, 何洪波. 六合丹对新西兰大白兔皮肤感染创面愈合过程中白细胞介素-1β、肿瘤坏死因子-α表达的影响. 华西医学, 2017, 32(10): 1544-1550. | |
26 | Kang C F. Purification and immunological activities of fucoidans from Sargassum fusiforme. Changchun: Northeast Normal University, 2015. |
康彩峰. 羊栖菜褐藻糖胶的分离纯化及其免疫活性的研究. 长春: 东北师范大学, 2015. | |
27 | Sun T, Zhang X, Miao Y, et al. Studies on antiviral and immuno-regulation activity of low molecular weight fucoidan from Laminaria japonica. Journal of Ocean University of China, 2018, 17(3): 705-711. |
28 | Peng Y B, Song Y F, Wang Q K, et al. In vitro and in vivo immunomodulatory effects of fucoidan compound agents. International Journal of Biological Macromolecules, 2019, 127: 48-56. |
29 | Miyazakki Y, Lwaihara Y, Bak J, et al. The cooperative induction of macrophage activation by fucoidan derived from Cladosiphonokamuranus and β-glucan derived from Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 2019, 516(1): 245-250. |
30 | Nyblom H. High AST/ALT ratio may indicata advanced alcoholic liver disease rather than heavy drinking. Alcohol & Alcoholism, 2004, 39(4): 336-339. |
31 | Choi J, Raghavendran H R B, Sung N, et al. Effect of fucoidan on aspirin-induced stomach ulceration in rats. Chemico-Biological Interactions, 2010, 183(1): 249-254. |
32 | Ravnskov U, Diamond D M, Hama R, et al. Lack of an association or an inverse association between low-density-lipoprotein cholesterol and mortality in the elderly: A systematic review. British Medical Journal Open, 2016, 6(6): e10401. |
33 | Lin C R, Zuo S Y, Zhang C X. Effect of Spirulina platensis on growth performance, immune function and blood biochemical index of New Zealand rabbit. Feed Industry, 2013, 34(2): 14-18. |
林春榕, 左绍远, 张翠香. 螺旋藻对幼兔生长、免疫功能及血液生化指标的影响. 饲料工业, 2013, 34(2): 14-18. | |
34 | Kim M J, Jeon J, Lee J S. Fucoidan prevents high-fat diet-induced obesity in animals by suppression of fat accumulation. Phytotherapy Research, 2014, 28(1): 137-143. |
35 | Ai Z W, Gui M, Yu P, et al. Research progress on the effect of fucoidin structure on its function. Science and Technology of Food Industry, 2019, 40(9): 346-350. |
艾正文, 桂敏, 于鹏, 等. 岩藻多糖结构对其功能的影响研究进展. 食品工业科技, 2019, 40(9): 346-350. | |
36 | Li Y N, Kong X, Chen J W, et al. Characteristics of the copper, zinc superoxide dismutase of a hadal sea cucumber (Paelopatides sp.) from the Mariana Trench. Marine Drugs, 2018, 16(5): 169. |
37 | Tang D Z, Wu J M, Jiao H C, et al. The development of antioxidant system in the intestinal tract of broiler chickens. Poultry Science, 2019, 98(2): 664-678. |
38 | Chu H P, Li F C. Effects of dietary energy levels on sperm quality,serum biochemical parameters, antioxidant capacity and generative hormones in adult New Zealand breeder male rabbits. Chinese Journal of Veterinary Science, 2015, 35(10): 1678-1683. |
初汉平, 李福昌. 日粮能量水平对种公兔精液品质、血液生化指标、抗氧化能力及生殖激素的影响. 中国兽医学报, 2015, 35(10): 1678-1683. | |
39 | Yang C J, Li L, Li X L, et al. Effect of algal polysaccharide sulfate on the GSH and GR content of aging mouse. Chinese Journal of Laboratory Diagnosis, 2010, 14(10): 1549-1550. |
杨成君, 李俐, 李晓林, 等. 褐藻多糖硫酸酯对老龄小鼠GSH和GR含量的影响. 中国实验诊断学, 2010, 14(10): 1549-1550. | |
40 | Yang Q, Yang R, Li M, et al. Effects of dietary fucoidan on the blood constituents, anti-oxidation and innate immunity of juvenile yellow catfish (Pelteobagrus fulvidraco). Fish & Shellfish Immunology, 2014, 41(2): 264-270. |
41 | Zhang Y, Xu M, Hu C, et al. Sargassum fusiforme fucoidan SP2 extends the lifespan of drosophila melanogaster by upregulating the Nrf2-mediated antioxidant signaling pathway. Oxidative Medicine & Cellular Longevity, 2019, 2019: 1-15. |
42 | Liu X H, Hu S S, Wang C, et al. Effect of fucoidan on intestinal ischemia-reperfusion injury in rats. Chinese Journal of Pathophysiology, 2019, 35(7): 1296-1301. |
刘雪环, 胡沙沙, 王程, 等. 褐藻糖胶对大鼠肠缺血再灌注损伤的作用及潜在机制. 中国病理生理杂志, 2019, 35(7):1296-1301. | |
43 | Johnson J R, Carstens G E, Krueger W K, et al. Associations between residual feed intake and apparent nutrient digestibility, in vitro methane producing activity, and volatile fatty acid concentrations in growing beef cattle. Journal of Animal Science, 2019, 97(3): 3550-3561. |
44 | Kibria S, Kim I H. Impacts of dietary microalgae (schizochytrium JB5) on growth performance, blood profiles, apparent total tract digestibility, and ileal nutrient digestibility in weaning pigs. Journal of the Science of Food and Agriculture, 2019, 99(13): 6084-6088. |
45 | Sony N M, Ishikawa M, Hossain M S, et al. The effect of dietary fucoidan on growth, immune functions, blood characteristics and oxidative stress resistance of juvenile red sea bream, pagrus major. Fish Physiology & Biochemistry, 2019, 45(1): 439-454. |
[1] | 霍俊宏, 詹康, 黄秋生, 钟小军, 占今舜, 严学兵. 不同精粗比日粮对山羊生产性能、血清生化指标和瘤胃发酵的影响[J]. 草业学报, 2021, 30(6): 151-161. |
[2] | 蓝婧婷, 任瑞, 周瑞, 戴洪伟, 舒文秀, 朱凯, 王略宇, 徐红伟, 臧荣鑫. 花椰菜尾菜发酵饲料对保育猪生长性能、血清生化指标、小肠组织形态及经济效益的影响[J]. 草业学报, 2021, 30(6): 180-189. |
[3] | 李晨, Ahmad Anum Ali, 张剑搏, 梁泽毅, 丁学智, 阎萍. 冷季牦牛和黄牛采食行为、血清生化指标与瘤胃发酵参数的比较研究[J]. 草业学报, 2021, 30(6): 162-169. |
[4] | 索效军, 张年, 杨前平, 陶虎, 熊琪, 李晓锋, 张凤, 陈明新. 日粮添加花生秧和苜蓿草粉对波麻杂交羊增重性能、内脏器官发育及血液指标的影响[J]. 草业学报, 2021, 30(5): 146-154. |
[5] | 张生伟, 王小平, 张展海, 马友记, 滚双宝, 杨巧丽, 高小莉, 张保军. 青贮杂交构树对杜湖杂交肉羊生长性能、血清生化指标和肉品质的影响[J]. 草业学报, 2021, 30(3): 89-99. |
[6] | 钱志豪, 韩丙芳, 刘自婷, 蔡伟, 伏兵哲, 马红彬. 渗灌对宁夏引黄灌区苜蓿生长性状及水分利用率的影响[J]. 草业学报, 2020, 29(3): 147-156. |
[7] | 刘永嘉, 王聪, 刘强, 郭刚, 霍文婕, 张静, 裴彩霞, 张延利. 日粮补充异丁酸对犊牛生长性能、瘤胃发酵和纤维分解菌菌群的影响[J]. 草业学报, 2019, 28(7): 151-158. |
[8] | 苗建军, 彭忠利, 高彦华, 郭春华, 王鼎, 付洋洋. 青稞替代玉米对育肥牦牛生产性能和肉品质的影响[J]. 草业学报, 2019, 28(1): 95-107. |
[9] | 康婧鹏, 王文基, 郭亚敏, 景小平, 仲崇亮, 郭伟, 龙瑞军, 周建伟. 不同能量水平低氮饲粮对藏羊表观消化率、氮代谢和生长性能的影响[J]. 草业学报, 2018, 27(9): 166-174. |
[10] | 孙雪丽, 李秋凤, 刘英财, 曹玉凤, 王增林, 李艺, 赵洋洋, 葛瀚聪, 刘桃桃, 赵立新. 全株青贮玉米对西门塔尔杂交牛生产性能、表观消化率及血液生化指标的影响[J]. 草业学报, 2018, 27(9): 201-209. |
[11] | 任春燕, 毕研亮, 杜汉昌, 于博, 屠焰, 郭艳丽, 刁其玉. 开食料中不同NDF水平对犊牛生长性能、瘤胃内环境及血清生化指标的影响[J]. 草业学报, 2018, 27(5): 210-218. |
[12] | 李欢欢, 史莹华, 张晓霞, 刘晓, 贾泽统, 王成章. 不同亚麻酸水平及饲料组成对育肥猪生长性能和肉品质的影响[J]. 草业学报, 2018, 27(3): 98-107. |
[13] | 姜辉, 雷赵民, 焦婷, 刘婷, 王建福, 李冲, 唐德富, 张建强. 日粮中添加牛至油对河西绒山羊育肥性能的影响研究[J]. 草业学报, 2018, 27(11): 142-149. |
[14] | 李雪莉, 王超, 虞徳夫, 丁立人, 朱伟云, 杭苏琴. 微生态制剂对断奶仔猪生长性能、器官重及其胃肠道发育的影响[J]. 草业学报, 2017, 26(8): 192-199. |
[15] | 张昌吉, 张勇, 郭武君, 张利平, 滚双宝. 甘肃高山细毛羊母羊妊娠后期补饲效果研究[J]. 草业学报, 2017, 26(7): 106-115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||