草业学报 ›› 2024, Vol. 33 ›› Issue (9): 227-241.DOI: 10.11686/cyxb2023384
• 研究论文 • 上一篇
收稿日期:
2023-10-17
修回日期:
2024-01-15
出版日期:
2024-09-20
发布日期:
2024-06-20
通讯作者:
陈强强
作者简介:
E-mail: jjglxy666@126.com基金资助:
Xiao-rong LI1(), Qiang-qiang CHEN1,2()
Received:
2023-10-17
Revised:
2024-01-15
Online:
2024-09-20
Published:
2024-06-20
Contact:
Qiang-qiang CHEN
摘要:
客观认知畜牧业碳动态及其时空格局是夯实区域畜牧业低碳和生态化发展的科学基础。本研究基于2000-2020年甘南黄河水源补给区县域尺度的畜牧业生产投入数据,运用全生命周期法估算畜牧业碳足迹,揭示其时空变化和结构特征,应用空间自相关分析探讨畜牧业碳足迹的空间格局。结果表明:1)甘南黄河水源补给区畜牧业碳足迹整体呈上升态势,年均增长率为1.80%,且历经快速增长-缓慢下降后回升-波动下降3个时序变化阶段。2)产中环节的牲畜肠胃发酵和粪便管理环节产生的大量CH4、N2O是温室气体“俱乐部”,羊、牛的CH4、N2O排放量不断增加且远高于其他牲畜。3)玛曲县一直是畜牧业碳足迹的超重型区,重型区演化表现出波动态势,但主要集中于碌曲县和夏河县,临夏县、积石山县、和政县畜牧业碳足迹处于轻型,合作市、卓尼县、临潭县则处于中型排放;畜牧业碳足迹总量由大到小依次为牧区>农区>半农半牧区。4)补给区畜牧业碳足迹总体空间格局呈现“北冷南热”“西热东冷”的特征;县域尺度下,玛曲县、碌曲县是高碳集聚区,合作市、和政县、康乐县呈“低碳锁定”效应。因地制宜制订差异化的区域畜牧业发展策略,有助于推动减少畜牧业碳足迹数量以实现畜牧业低碳转型。
李晓榕, 陈强强. 全生命周期视角下甘南黄河水源补给区畜牧业碳足迹估算及时空格局分析[J]. 草业学报, 2024, 33(9): 227-241.
Xiao-rong LI, Qiang-qiang CHEN. A full life cycle carbon footprint calculation and analysis of spatial-temporal pattern for livestock industries in the Yellow River water supply area of Gannan[J]. Acta Prataculturae Sinica, 2024, 33(9): 227-241.
占比Proportion | 猪Pig | 羊Sheep | 牛Cattle | 肉鸡Roaster | 蛋鸡Laying hen | 奶牛Cow |
---|---|---|---|---|---|---|
精饲料中玉米占比Proportion of corn in concentrate feed | 56.6 | 62.61 | 37 | 57 | 63.28 | 46.79 |
精饲料中豆饼占比Proportion of bean cake in concentrate feed | 10.2 | 12.89 | 26 | 5 | 13.98 | 28.56 |
精饲料中小麦占比Proportion of wheat in concentrate feed | - | - | - | 17 | - | - |
表1 各类牲畜精饲料中玉米(Zea mays)、豆饼、小麦(Triticum aestivum)占比
Table 1 The proportion of corn, soybean cake and wheat in various livestock concentrate feeds (%)
占比Proportion | 猪Pig | 羊Sheep | 牛Cattle | 肉鸡Roaster | 蛋鸡Laying hen | 奶牛Cow |
---|---|---|---|---|---|---|
精饲料中玉米占比Proportion of corn in concentrate feed | 56.6 | 62.61 | 37 | 57 | 63.28 | 46.79 |
精饲料中豆饼占比Proportion of bean cake in concentrate feed | 10.2 | 12.89 | 26 | 5 | 13.98 | 28.56 |
精饲料中小麦占比Proportion of wheat in concentrate feed | - | - | - | 17 | - | - |
环节Segment | 符号Sign | 相关系数Correlation coefficient | 数值Value | 单位Unit |
---|---|---|---|---|
饲粮种植 Feed grain cultivation | f1 | 玉米CO2当量排放系数Carbon dioxide equivalent emission coefficient of maize | 1.5000 | t·t-1 |
小麦CO2当量排放系数Carbon dioxide equivalent emission coefficient of wheat | 1.2200 | t·t-1 | ||
饲粮加工运输 Feed gain transport | f2 | 玉米CO2当量排放系数Carbon dioxide equivalent emission coefficient of maize | 0.0102 | t·t-1 |
大豆CO2当量排放系数Carbon dioxide equivalent emission coefficient of soybean | 0.1013 | t·t-1 | ||
小麦CO2当量排放系数Carbon dioxide equivalent emission coefficient of wheat | 0.0319 | t·t-1 | ||
牲畜饲养耗能 Livestock feeding energy consumption | fe | 电能消耗CO2排放系数Power consumption carbon dioxide emission coefficient | 0.9734 | t CO2·MW-1·h-1 |
fc | 煤炭消耗CO2排放系数Coal consumption carbon dioxide emission coefficient | 1.9800 | t·t-1 | |
pe | 牲畜养殖电费单价Livestock breeding electricity unit price | 0.4275 | yuan·kW-1·h-1 | |
pc | 牲畜养殖煤炭单价Livestock breeding coal unit price | 800 | yuan·t-1 | |
畜产品加工 Livestock products processing | MJ | 猪肉加工耗能系数Energy consumption coefficient of pork processing | 3.76 | MJ·kg-1 |
牛肉加工耗能系数Beef processing energy consumption coefficient | 4.37 | MJ·kg-1 | ||
羊肉加工耗能系数Energy consumption coefficient of mutton processing | 10.40 | MJ·kg-1 | ||
禽肉加工耗能系数Energy consumption coefficient of poultry processing | 2.59 | MJ·kg-1 | ||
禽蛋加工耗能系数Energy consumption coefficient of egg processing | 8.16 | MJ·kg-1 | ||
牛奶加工耗能系数Milk processing energy consumption coefficient | 1.12 | MJ·kg-1 |
表2 各系统边界的排放系数
Table 2 Emission coefficients of each system boundary
环节Segment | 符号Sign | 相关系数Correlation coefficient | 数值Value | 单位Unit |
---|---|---|---|---|
饲粮种植 Feed grain cultivation | f1 | 玉米CO2当量排放系数Carbon dioxide equivalent emission coefficient of maize | 1.5000 | t·t-1 |
小麦CO2当量排放系数Carbon dioxide equivalent emission coefficient of wheat | 1.2200 | t·t-1 | ||
饲粮加工运输 Feed gain transport | f2 | 玉米CO2当量排放系数Carbon dioxide equivalent emission coefficient of maize | 0.0102 | t·t-1 |
大豆CO2当量排放系数Carbon dioxide equivalent emission coefficient of soybean | 0.1013 | t·t-1 | ||
小麦CO2当量排放系数Carbon dioxide equivalent emission coefficient of wheat | 0.0319 | t·t-1 | ||
牲畜饲养耗能 Livestock feeding energy consumption | fe | 电能消耗CO2排放系数Power consumption carbon dioxide emission coefficient | 0.9734 | t CO2·MW-1·h-1 |
fc | 煤炭消耗CO2排放系数Coal consumption carbon dioxide emission coefficient | 1.9800 | t·t-1 | |
pe | 牲畜养殖电费单价Livestock breeding electricity unit price | 0.4275 | yuan·kW-1·h-1 | |
pc | 牲畜养殖煤炭单价Livestock breeding coal unit price | 800 | yuan·t-1 | |
畜产品加工 Livestock products processing | MJ | 猪肉加工耗能系数Energy consumption coefficient of pork processing | 3.76 | MJ·kg-1 |
牛肉加工耗能系数Beef processing energy consumption coefficient | 4.37 | MJ·kg-1 | ||
羊肉加工耗能系数Energy consumption coefficient of mutton processing | 10.40 | MJ·kg-1 | ||
禽肉加工耗能系数Energy consumption coefficient of poultry processing | 2.59 | MJ·kg-1 | ||
禽蛋加工耗能系数Energy consumption coefficient of egg processing | 8.16 | MJ·kg-1 | ||
牛奶加工耗能系数Milk processing energy consumption coefficient | 1.12 | MJ·kg-1 |
牲畜品种 Livestock breeds | CH4排放系数 CH4 emission coefficient | N2O排放系数N2O emission coefficient | |
---|---|---|---|
肠胃发酵Gastrointestinal fermentation | 粪便管理Fecal discharge | 粪便管理 Fecal discharge | |
猪Pig | 1.00 | 3.50 | 0.53 |
牛Cow | 47.00 | 1.00 | 1.39 |
羊Sheep | 5.00 | 0.16 | 0.33 |
马Horse | 18.00 | 1.64 | 1.39 |
驴Donkey | 10.00 | 0.90 | 1.39 |
骡Mule | 10.00 | 0.90 | 1.39 |
表3 主要牲畜品种的CH4和N2O排放系数
Table 3 CH4 and N2O emission coefficients of major livestock breeds (kg·head-1·a-1)
牲畜品种 Livestock breeds | CH4排放系数 CH4 emission coefficient | N2O排放系数N2O emission coefficient | |
---|---|---|---|
肠胃发酵Gastrointestinal fermentation | 粪便管理Fecal discharge | 粪便管理 Fecal discharge | |
猪Pig | 1.00 | 3.50 | 0.53 |
牛Cow | 47.00 | 1.00 | 1.39 |
羊Sheep | 5.00 | 0.16 | 0.33 |
马Horse | 18.00 | 1.64 | 1.39 |
驴Donkey | 10.00 | 0.90 | 1.39 |
骡Mule | 10.00 | 0.90 | 1.39 |
年份 Year | 产前环节Prenatal link | 产中环节Production link | 产后环节Postpartum link | 总碳足迹 Total carbon footprint | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
饲料输入(种植及加工)Feed input (planting and processing) | 肠胃发酵Gastrointestinal fermentation of livestock | 粪便管理Livestock manure management | 饲养耗能Energy consumption link of livestock breeding | 畜产品加工 Livestock products processing | ||||||||
碳足迹 Carbon footprint (×104 t) | 占比Rate (%) | 碳足迹Carbon footprint (×104 t) | 占比Rate (%) | 碳足迹Carbon footprint (×104 t) | 占比Rate (%) | 碳足迹Carbon footprint (×104 t) | 占比Rate (%) | 碳足迹 Carbon footprint (×104 t) | 占比Rate (%) | 碳足迹Carbon footprint (×104 t) | 变化率Rate of change (%) | |
2000-2002 | 5.256 | 4.406 | 66.608 | 55.833 | 41.936 | 35.152 | 0.059 | 0.049 | 5.432 | 4.553 | 119.299 | - |
2002-2004 | 5.857 | 5.091 | 67.624 | 58.783 | 31.375 | 27.273 | 0.096 | 0.083 | 6.087 | 5.291 | 115.040 | -3.570 |
2004-2006 | 8.103 | 5.570 | 73.951 | 50.831 | 54.399 | 37.392 | 0.095 | 0.065 | 8.936 | 6.142 | 145.483 | 26.463 |
2006-2008 | 12.891 | 7.573 | 87.388 | 51.338 | 54.194 | 31.837 | 0.131 | 0.077 | 15.618 | 9.175 | 170.222 | 17.005 |
2008-2010 | 8.750 | 6.372 | 60.654 | 44.167 | 57.979 | 42.219 | 0.103 | 0.075 | 9.844 | 7.168 | 137.329 | -19.324 |
2010-2012 | 8.034 | 5.731 | 58.164 | 41.487 | 65.301 | 46.578 | 0.108 | 0.077 | 8.591 | 6.128 | 140.197 | 2.088 |
2012-2014 | 8.616 | 4.249 | 110.715 | 54.603 | 74.282 | 36.635 | 0.191 | 0.094 | 8.959 | 4.418 | 202.764 | 44.628 |
2014-2016 | 8.333 | 3.980 | 114.527 | 54.694 | 76.772 | 36.664 | 0.194 | 0.093 | 9.352 | 4.466 | 209.394 | 3.270 |
2016-2018 | 9.535 | 4.942 | 105.683 | 54.775 | 66.928 | 34.689 | 0.151 | 0.078 | 10.641 | 5.515 | 192.939 | -7.858 |
2018-2020 | 10.885 | 5.947 | 88.762 | 48.497 | 71.054 | 38.822 | 0.163 | 0.089 | 12.162 | 6.645 | 183.024 | -5.139 |
表4 2000-2020年全生命周期内甘南黄河水源补给区畜牧业碳足迹情况
Table 4 The carbon footprint of animal husbandry in the Yellow River water supply area of Gannan in the whole life cycle from 2000 to 2020
年份 Year | 产前环节Prenatal link | 产中环节Production link | 产后环节Postpartum link | 总碳足迹 Total carbon footprint | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
饲料输入(种植及加工)Feed input (planting and processing) | 肠胃发酵Gastrointestinal fermentation of livestock | 粪便管理Livestock manure management | 饲养耗能Energy consumption link of livestock breeding | 畜产品加工 Livestock products processing | ||||||||
碳足迹 Carbon footprint (×104 t) | 占比Rate (%) | 碳足迹Carbon footprint (×104 t) | 占比Rate (%) | 碳足迹Carbon footprint (×104 t) | 占比Rate (%) | 碳足迹Carbon footprint (×104 t) | 占比Rate (%) | 碳足迹 Carbon footprint (×104 t) | 占比Rate (%) | 碳足迹Carbon footprint (×104 t) | 变化率Rate of change (%) | |
2000-2002 | 5.256 | 4.406 | 66.608 | 55.833 | 41.936 | 35.152 | 0.059 | 0.049 | 5.432 | 4.553 | 119.299 | - |
2002-2004 | 5.857 | 5.091 | 67.624 | 58.783 | 31.375 | 27.273 | 0.096 | 0.083 | 6.087 | 5.291 | 115.040 | -3.570 |
2004-2006 | 8.103 | 5.570 | 73.951 | 50.831 | 54.399 | 37.392 | 0.095 | 0.065 | 8.936 | 6.142 | 145.483 | 26.463 |
2006-2008 | 12.891 | 7.573 | 87.388 | 51.338 | 54.194 | 31.837 | 0.131 | 0.077 | 15.618 | 9.175 | 170.222 | 17.005 |
2008-2010 | 8.750 | 6.372 | 60.654 | 44.167 | 57.979 | 42.219 | 0.103 | 0.075 | 9.844 | 7.168 | 137.329 | -19.324 |
2010-2012 | 8.034 | 5.731 | 58.164 | 41.487 | 65.301 | 46.578 | 0.108 | 0.077 | 8.591 | 6.128 | 140.197 | 2.088 |
2012-2014 | 8.616 | 4.249 | 110.715 | 54.603 | 74.282 | 36.635 | 0.191 | 0.094 | 8.959 | 4.418 | 202.764 | 44.628 |
2014-2016 | 8.333 | 3.980 | 114.527 | 54.694 | 76.772 | 36.664 | 0.194 | 0.093 | 9.352 | 4.466 | 209.394 | 3.270 |
2016-2018 | 9.535 | 4.942 | 105.683 | 54.775 | 66.928 | 34.689 | 0.151 | 0.078 | 10.641 | 5.515 | 192.939 | -7.858 |
2018-2020 | 10.885 | 5.947 | 88.762 | 48.497 | 71.054 | 38.822 | 0.163 | 0.089 | 12.162 | 6.645 | 183.024 | -5.139 |
年份 Year | CH4 | N2O | CO2 | |||
---|---|---|---|---|---|---|
sc | mc | md | st | sh | cg | |
2000 | 33.9498 | 1.1122 | 20.0720 | 1.5716 | 0.0269 | 2.5522 |
2001 | 33.2268 | 1.1004 | 19.8092 | 2.5665 | 0.0302 | 2.6395 |
2002 | 33.3809 | 1.1075 | 19.9279 | 2.6889 | 0.0286 | 2.7924 |
2003 | 33.5685 | 1.1283 | 16.2329 | 2.8654 | 0.0352 | 2.9695 |
2004 | 34.0551 | 1.1429 | 16.8712 | 2.9922 | 0.0613 | 3.1170 |
2005 | 35.6299 | 1.4667 | 25.8755 | 3.1907 | 0.0438 | 3.3085 |
2006 | 38.3205 | 1.4120 | 25.6448 | 4.9122 | 0.0513 | 5.6269 |
2007 | 41.0112 | 1.3574 | 24.3677 | 6.6337 | 0.0588 | 7.9452 |
2008 | 46.3772 | 1.3865 | 27.0824 | 6.2570 | 0.0718 | 7.6730 |
2009 | 34.7182 | 1.3438 | 26.8414 | 5.0023 | 0.0582 | 5.8389 |
2010 | 25.9356 | 1.3857 | 28.4081 | 3.7477 | 0.0446 | 4.0048 |
2011 | 28.8518 | 1.5133 | 31.0590 | 3.9306 | 0.0501 | 4.2057 |
2012 | 29.3123 | 1.5341 | 31.1953 | 4.1025 | 0.0583 | 4.3847 |
2013 | 45.4194 | 1.6077 | 27.9423 | 4.4744 | 0.0681 | 4.5161 |
2014 | 65.2958 | 1.9466 | 42.7857 | 4.1421 | 0.1227 | 4.4430 |
2015 | 62.2930 | 1.8497 | 39.8600 | 4.2475 | 0.1120 | 4.5954 |
2016 | 52.2337 | 1.9082 | 33.1537 | 4.2244 | 0.0815 | 4.7570 |
2017 | 52.9331 | 1.4584 | 30.6635 | 4.3015 | 0.0754 | 4.8062 |
2018 | 52.7499 | 1.8560 | 32.9504 | 5.2341 | 0.0758 | 5.8346 |
2019 | 52.3571 | 1.8420 | 32.7889 | 5.2938 | 0.0908 | 5.9035 |
2020 | 36.4048 | 1.6417 | 34.7809 | 5.5909 | 0.0724 | 6.2575 |
表5 不同类型温室气体排放状况
Table 5 Different types of greenhouse gas emissions (×104 t)
年份 Year | CH4 | N2O | CO2 | |||
---|---|---|---|---|---|---|
sc | mc | md | st | sh | cg | |
2000 | 33.9498 | 1.1122 | 20.0720 | 1.5716 | 0.0269 | 2.5522 |
2001 | 33.2268 | 1.1004 | 19.8092 | 2.5665 | 0.0302 | 2.6395 |
2002 | 33.3809 | 1.1075 | 19.9279 | 2.6889 | 0.0286 | 2.7924 |
2003 | 33.5685 | 1.1283 | 16.2329 | 2.8654 | 0.0352 | 2.9695 |
2004 | 34.0551 | 1.1429 | 16.8712 | 2.9922 | 0.0613 | 3.1170 |
2005 | 35.6299 | 1.4667 | 25.8755 | 3.1907 | 0.0438 | 3.3085 |
2006 | 38.3205 | 1.4120 | 25.6448 | 4.9122 | 0.0513 | 5.6269 |
2007 | 41.0112 | 1.3574 | 24.3677 | 6.6337 | 0.0588 | 7.9452 |
2008 | 46.3772 | 1.3865 | 27.0824 | 6.2570 | 0.0718 | 7.6730 |
2009 | 34.7182 | 1.3438 | 26.8414 | 5.0023 | 0.0582 | 5.8389 |
2010 | 25.9356 | 1.3857 | 28.4081 | 3.7477 | 0.0446 | 4.0048 |
2011 | 28.8518 | 1.5133 | 31.0590 | 3.9306 | 0.0501 | 4.2057 |
2012 | 29.3123 | 1.5341 | 31.1953 | 4.1025 | 0.0583 | 4.3847 |
2013 | 45.4194 | 1.6077 | 27.9423 | 4.4744 | 0.0681 | 4.5161 |
2014 | 65.2958 | 1.9466 | 42.7857 | 4.1421 | 0.1227 | 4.4430 |
2015 | 62.2930 | 1.8497 | 39.8600 | 4.2475 | 0.1120 | 4.5954 |
2016 | 52.2337 | 1.9082 | 33.1537 | 4.2244 | 0.0815 | 4.7570 |
2017 | 52.9331 | 1.4584 | 30.6635 | 4.3015 | 0.0754 | 4.8062 |
2018 | 52.7499 | 1.8560 | 32.9504 | 5.2341 | 0.0758 | 5.8346 |
2019 | 52.3571 | 1.8420 | 32.7889 | 5.2938 | 0.0908 | 5.9035 |
2020 | 36.4048 | 1.6417 | 34.7809 | 5.5909 | 0.0724 | 6.2575 |
温室气体Greenhouse gas | 项目Item | 牛Cattle | 其他牲畜Other livestocks | 猪Pigs | 羊Sheep |
---|---|---|---|---|---|
CH4 | 肠胃发酵Gastrointestinal fermentation | 17.069 | 7.463 | 0.065 | 11.808 |
粪便管理Manure management | 0.363 | 0.672 | 0.229 | 0.378 | |
N方正汇总行2O | 粪便还田Fecal returning field | 7.452 | 15.313 | 0.512 | 11.504 |
表6 2020年主要牲畜的温室气体排放量
Table 6 Greenhouse gas emissions from major livestock in 2020 (×104 t)
温室气体Greenhouse gas | 项目Item | 牛Cattle | 其他牲畜Other livestocks | 猪Pigs | 羊Sheep |
---|---|---|---|---|---|
CH4 | 肠胃发酵Gastrointestinal fermentation | 17.069 | 7.463 | 0.065 | 11.808 |
粪便管理Manure management | 0.363 | 0.672 | 0.229 | 0.378 | |
N方正汇总行2O | 粪便还田Fecal returning field | 7.452 | 15.313 | 0.512 | 11.504 |
图3 甘南黄河水源补给区畜牧业碳足迹分布基于自然资源部标准地图服务网站(http://bzdt.ch.mnr.gov.cn/)GS(2019)3333号标准地图制作,底图边界无修改。Based on the standard map service website GS(2019)3333 of the Ministry of Natural Resources, the boundary of the base map is not modified.利用ArcGIS软件中的自然间断点法将畜牧业碳足迹总量划分为四类,从小到大依次对应畜牧业碳足迹的轻型、中型、重型、超重型区。By using the natural discontinuity point method in ArcGIS software, the total carbon footprint of animal husbandry is divided into four categories, which correspond to the light, medium, heavy and super heavy areas of animal husbandry carbon footprint from small to large.
Fig.3 Carbon footprint distribution of animal husbandry in Gannan Yellow River water supply area
项目Item | 2000 | 2010 | 2015 | 2020 |
---|---|---|---|---|
莫兰指数Moran index | 0.176 | 0.299 | 0.211 | 1.716 |
P值P value | 0.086 | 0.040 | 0.047 | 0.015 |
Z值Z value | 1.716 | 0.048 | 0.015 | 2.445 |
表7 甘南黄河水源补给区全局莫兰指数
Table 7 Global Moran index of the Yellow River water supply area in Gannan
项目Item | 2000 | 2010 | 2015 | 2020 |
---|---|---|---|---|
莫兰指数Moran index | 0.176 | 0.299 | 0.211 | 1.716 |
P值P value | 0.086 | 0.040 | 0.047 | 0.015 |
Z值Z value | 1.716 | 0.048 | 0.015 | 2.445 |
图4 甘南黄河水源补给区LISA聚集分布基于自然资源部标准地图服务网站(http://bzdt.ch.mnr.gov.cn/)GS(2019)3333号标准地图制作,底图边界无修改。Based on the standard map service website GS(2019)3333 of the Ministry of Natural Resources, the boundary of the base map is not modified.
Fig.4 LISA aggregation distribution of the Yellow River water supply area in Gannan
图5 甘南黄河水源补给区畜牧业碳足迹热点分布基于自然资源部标准地图服务网站(http://bzdt.ch.mnr.gov.cn/)GS(2019)3333号标准地图制作,底图边界无修改。Based on the standard map service website GS(2019)3333 of the Ministry of Natural Resources, the boundary of the base map is not modified.
Fig.5 Hot spot distribution of animal husbandry carbon footprint in Gannan Yellow River water supply area
1 | Frank S, Havlik P, Stefest E, et al. Agricultural non-CO2 emission reduction potential in the context of the 1.5 ℃ target. Nature Climate Change, 2019, 9(1): 66-72. |
2 | Tian C S, Chen Y. China’s provincial agricultural carbon emissions measurement and low carbonization level evaluation: Based on the application of derivative indicators and TOPSIS. Journal of Natural Resources, 2021, 36(2): 395-410. |
田成诗, 陈雨. 中国省际农业碳排放测算及低碳化水平评价——基于衍生指标与TOPSIS法的运用. 自然资源学报, 2021, 36(2): 395-410. | |
3 | General Office of the State Council of the People’s Republic of China. Opinions on promoting high-quality development of animal husbandry. (2020-09-20)[2023-10-05]. https://www.gov.cn/. |
国务院办公厅. 关于促进畜牧业高质量发展的意见. (2020-09-20)[2023-10-05]. https://www.gov.cn/. | |
4 | Ministry of Agriculture and Rural Affairs, National Development and Reform Commission. Agricultural and rural emission reduction and carbon sequestration implementation plan. (2022-05-07)[2023-10-05]. http://www.moa.gov.cn/. |
农业农村部, 国家发展改革委. 农业农村减排固碳实施方案. (2022-05-07)[2023-10-05]. http://www.moa.gov.cn/. | |
5 | Rees W. Ecological footprints and appropriated carrying capacity: what urban economics leaves out. Environment and Urbanization, 1992, 4(2): 121-130. |
6 | Bai X B, Hu H, Zhou Y H, et al. Study on space-time evolution and influence factors of carbon emissions in China’s animal husbandry. Journal of China Agricultural University, 2023, 28(9): 260-274. |
白雪冰, 胡浩, 周应恒, 等. 中国畜牧业碳排放的时空演进及其影响因素分析. 中国农业大学学报, 2023, 28(9): 260-274. | |
7 | Geng Y, Dong H J, Xi F M, et al. A review of the research on carbon footprint responding to climate change. China Population, Resources and Environment, 2010, 20(10): 6-12. |
耿涌, 董会娟, 郗凤明, 等. 应对气候变化的碳足迹研究综述. 中国人口·资源与环境, 2010, 20(10): 6-12. | |
8 | Xu L, Qu J S, Wu J J, et al. Spatial-temporal dynamics and prediction of carbon emission from agriculture and animal husbandry in China. Journal of Ecology and Rural Environment, 2019, 35(10): 1232-1241. |
徐丽, 曲建升, 吴金甲, 等. 中国农牧业碳排放时空变化及预测. 生态与农村环境学报, 2019, 35(10): 1232-1241. | |
9 | Li Y L, Wang J L, Yang L. Study on temporal and spatial characteristics of agricultural carbon emissions in Hunan Province at county scale. Chinese Journal of Agricultural Resources and Regional Planning, 2022, 43(4): 75-84. |
李远玲, 王金龙, 杨伶. 基于县域尺度的湖南省农业碳排放时空特征分析. 中国农业资源与区划, 2022, 43(4): 75-84. | |
10 | Dai X W, Li J H, He Y Q, et al. Regional equity and efficiency of carbon emissions of China’s livestock industry in 2000-2020. Resources Science, 2023, 45(1): 62-76. |
戴小文, 李金花, 何艳秋, 等. 2000-2020年中国畜牧业区域碳排放公平性与排放效率. 资源科学, 2023, 45(1): 62-76. | |
11 | Wu Q, Zhang Y Y, Zhang M Y. Quantitative assessment, temporal and spatial characteristics and dynamic evolution of China’s animal husbandry carbon emissions. Journal of Arid Land Resources and Environment, 2022, 36(6): 65-71. |
吴强, 张园园, 张明月. 中国畜牧业碳排放的量化评估、时空特征及动态演化: 2001-2020. 干旱区资源与环境, 2022, 36(6): 65-71. | |
12 | Xie T, Zhang H, He J J, et al. Characteristics and prediction of greenhouse gas emission from livestock industry in Central China. China Environmental Science, 2020, 40(2): 564-572. |
谢婷, 张慧, 何家军, 等. 华中地区畜牧业温室气体排放特征分析与预测. 中国环境科学, 2020, 40(2): 564-572. | |
13 | Li N, Shi J. Estimation and dynamic evolution analysis of animal husbandry carbon emissions in Xinjiang. Environmental Pollution & Control, 2023, 45(2): 268-271, 278. |
李娜, 石晶. 新疆畜牧业碳排放测算及动态演变分析. 环境污染与防治, 2023, 45(2): 268-271, 278. | |
14 | Yao C S, Qian S S, Mao Y H, et al. Decomposition of impacting factors of animal husbandry carbon emissions change and its spatial differences in China. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(12): 10-19. |
姚成胜, 钱双双, 毛跃华, 等.中国畜牧业碳排放量变化的影响因素分解及空间分异. 农业工程学报, 2017, 33(12): 10-19. | |
15 | Guo J, Qi D S, Zhang N Y, et al. Chinese greenhouse gas emissions from livestock: trend and predicted peak value. Journal of Agro-Environment Science, 2017, 36(10): 2106-2113. |
郭娇, 齐德生, 张妮娅, 等. 中国畜牧业温室气体排放现状及峰值预测. 农业环境科学学报, 2017, 36(10): 2106-2113. | |
16 | Gu S Y, Qiu Z J, Zhan Y B, et al. Spatial-temporal characteristics and trend prediction of carbon emissions from animal husbandry in China. Journal of Agricultural Environmental Sciences, 2023, 42(3): 705-714. |
顾沈怡, 邱子健, 詹永冰, 等. 我国畜牧业碳排放时空特征与趋势预测. 农业环境科学学报, 2023, 42(3): 705-714. | |
17 | Tang H S, Su Y, Ma H L, et al. Spatial and temporal distribution and equity of carbon emissions from livestock in Xinjiang. Arid Land Geography, 2017, 40(6): 1338-1345. |
唐洪松, 苏洋, 马惠兰, 等. 新疆畜牧业碳排放格局与公平性研究. 干旱区地理, 2017, 40(6): 1338-1345. | |
18 | Zhang X L, Ma D, Wang T R. Study on carbon emission efficiency and influencing factors of animal husbandry in Heilongjiang Province. Heilongjiang Animal Science and Veterinary Medicine, 2020(4): 7-12, 147. |
张晓雷, 马丁, 王天日. 黑龙江省畜牧业碳排放效率及影响因素研究. 黑龙江畜牧兽医, 2020(4): 7-12, 147. | |
19 | Zhang Y P, Zhang L K, Wang J. Research on green total factor productivity of animal husbandry in Northeast China under carbon emission constraint. Heilongjiang Animal Science and Veterinary Medicine, 2023(6): 13-22. |
张亚萍, 张丽琨, 王军. 碳排放约束下东北地区畜牧业绿色全要素生产率研究. 黑龙江畜牧兽医, 2023(6): 13-22. | |
20 | Zhang Z L, Sun H, Su Y. The spatial distribution and evolution trends of agricultural and animal husbandry carbon emissions in the Northwest arid region of China. Acta Ecologica Sinica, 2017, 37(16): 5263-5272. |
张振龙, 孙慧, 苏洋. 中国西北干旱地区农牧业生态系统碳排放的空间分布与演变趋势. 生态学报, 2017, 37(16): 5263-5272. | |
21 | Zhang J X, Wang H L. Regional difference, dynamic evolutionary and convergence analysis on the Chinese animal husbandry based on the animal husbandry data in 31 Provinces from 1997 to 2007. Jianghan Tribune, 2020(9): 41-48. |
张金鑫, 王红玲. 中国畜牧业碳排放地区差异、动态演进与收敛分析——基于全国31个省(市)1997-2017年畜牧业数据. 江汉论坛, 2020(9): 41-48. | |
22 | Li T Y, Wang M L. Research on the realization path of carbon peaking and carbon neutrality goals assisted by animal husbandry——Based on the experience comparison and enlightenment of different countries. World Agriculture, 2023(1): 5-16. |
励汀郁, 王明利. 畜牧业助力“双碳”目标实现路径研究——基于不同国家的经验比较与启示. 世界农业, 2023(1): 5-16. | |
23 | Zhao X Y, Li W. Review of Gannan research in Chinese geography. Geographical Research, 2019, 38(4): 743-759. |
赵雪雁, 李巍. 中国地理学中的甘南研究. 地理研究, 2019, 38(4): 743-759. | |
24 | Calvo Buendia E, Tanabe K, Kranjc A, et al. IPCC 2019, 2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventories. Switzerland: The Intergovernmental Panel on Climate Change, 2019. |
25 | Liang Y W, Wang M L. Deconstructing the experience of China’s pig industry carbon emissions and choosing a dynamic path to peak. Issues in Agricultural Economy, 2023(10): 101-115. |
梁耀文, 王明利. 中国生猪产业碳排放经验解构与动态达峰路径选择. 农业经济问题, 2023(10): 101-115. | |
26 | Xie H Y, Chen X S, Yang M Z, et al. The ecological footprint analysis of 1 kg livestock product of China. Acta Ecologica Sinica, 2009, 29(6): 3264-3270. |
谢鸿宇, 陈贤生, 杨木壮, 等. 中国单位畜牧产品生态足迹分析. 生态学报, 2009, 29(6): 3264-3270. | |
27 | Yao C S, Qian S S, Li Z T, et al. Provincial animal husbandry carbon emissions in China and temporal-spatial evolution mechanism. Resource Science, 2017, 39(4): 698-712. |
姚成胜, 钱双双, 李政通, 等. 中国省际畜牧业碳排放测度及时空演化机制. 资源科学, 2017, 39(4): 698-712. | |
28 | Zheng C W, Deng X H, Li Z X, et al. Analysis of the spatial and temporal evolution of water resources conservation and human activity intensity in the Hexi region of Gansu Province. Journal of Desert Research, 2024, 44(1): 189-200. |
郑诚蔚, 邓晓红, 李宗省, 等. 甘肃省河西地区水源涵养功能与人类活动强度演变. 中国沙漠, 2024, 44(1): 189-200. | |
29 | Eggleston H S, Buendia L, Miwa K, et al. IPCC guidelines for national greenhouse gas inventories (Volume 4): Agriculture, forestry and other land use. Geneva: IPCC, 2006. |
30 | Gao B X. Discussion on the estimate method about carbon emission of energy carbon source. Coal Chemical Industry, 2016, 44(6): 32-35. |
高碧霞. 能源类碳源排碳量的估算方法探讨. 煤化工, 2016, 44(6): 32-35. | |
31 | Liao R J. Carbon footprint and water footprint of scale pig farms based on life cycle theory. Chongqing: Southwest University, 2018. |
廖仁郡. 基于生命周期理论的规模化养猪场碳足迹与水足迹研究. 重庆: 西南大学, 2018. | |
32 | Tan Q C. Greenhouse gas emission in China’s agriculture: Situation and challenge. China Population, Resources and Environment, 2011, 21(10): 69-75. |
谭秋成. 中国农业温室气体排放: 现状及挑战. 中国人口·资源与环境, 2011, 21(10): 69-75. | |
33 | Wang X Q, Liang D L, Wang X D, et al. Estimation of greenhouse gas emissions from dairy farming systems based on LCA. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(13): 179-184. |
王效琴, 梁东丽, 王旭东, 等. 运用生命周期评价方法评估奶牛养殖系统温室气体排放量. 农业工程学报, 2012, 28(13): 179-184. | |
34 | The Editorial Board of Gansu Rural Yearbook. Gansu rural yearbook. Beijing: China Statistics Press, 2001-2021. |
甘肃农村年鉴编委会. 甘肃农村年鉴. 北京: 中国统计出版社, 2001-2021. | |
35 | Office of Local Historiography Compilation Committee of Gannan Tibetan Autonomous Prefecture. Annals of Gannan Prefecture. Lanzhou: Gansu Ethnic Publishing House, 2001-2021. |
甘南藏族自治州地方史志编纂委员会办公室. 甘南州年鉴. 兰州: 甘肃民族出版社, 2001-2021. | |
36 | Linxia Hui Autonomous Prefecture Local History Office. Linxia yearbook. Lanzhou: Gansu Ethnic Publishing House, 2001-2021. |
临夏回族自治州地方史志办公室. 临夏年鉴. 兰州: 甘肃民族出版社, 2001-2021. | |
37 | National Development and Reform Commission Price Division. National agricultural product cost-benefit data compilation. Beijing: China Statistics Press, 2001-2021. |
国家发展和改革委员会价格司. 全国农产品成本收益资料汇编. 北京: 中国统计出版社, 2001-2021. | |
38 | Du K R, Ouyang X L, Zheng Y W. Does environmental regulation promote the green economic growth of Chinese cities? Statistical Research, 2023, 40(12): 39-49. |
杜克锐, 欧阳晓灵, 郑泳薇. 环境规制是否促进我国城市的绿色经济增长? 统计研究, 2023, 40(12): 39-49. | |
39 | Ren H J, Li H S, Feng Y Y. Dynamic evolution characteristics and development trend of agricultural carbon emissions in Guangdong Province based on spatial and temporal perspective. Chinese Journal of Eco-Agriculture, 2023, 31(8): 1287-1300. |
任洪杰, 李辉尚, 冯祎宇. 基于时空视角的广东省农业碳排放动态演化特征及发展趋势研究. 中国生态农业学报, 2023, 31(8): 1287-1300. | |
40 | Ministry of Agriculture and Rural Affairs, the People’s Republic of China. NY/T3647-2020, Sheep unit conversion of grass-fed livestock. Beijing: China Standard Press, 2020. |
中华人民共和国农业农村部. NY/T3647-2020. 草食家畜羊单位换算. 北京: 中国标准出版社, 2020. | |
41 | Gansu Provincial Animal Husbandry and Veterinary Bureau. The implementation plan of grain to feed work. (2022-12-19)[2023-10-05]. https://www.tianshui.gov.cn/xmj/info/1372/89842.htm. |
甘肃省畜牧兽医局. 粮改饲工作实施方案. (2022-12-19)[2023-10-05]. https://www.tianshui.gov.cn/xmj/info/1372/89842.htm. | |
42 | Chen H, Fu G H, Liu Y Z. Spatial and temporal variation and trend evolution of county-based agricultural greenhouse gas emissions in Jiangsu Province. Resources Science, 2018, 40(5): 1084-1094. |
陈慧, 付光辉, 刘友兆. 江苏省县域农业温室气体排放: 时空差异与趋势演进. 资源科学, 2018, 40(5): 1084-1094. | |
43 | Yao B, Zheng Y M, Hu D, et al. Spatial and temporal variations of county based agricultural carbon emissions and associated effect factors in Jiangxi Province. Resources and Environment in the Yangtze Basin, 2014, 23(3): 311-318. |
尧波, 郑艳明, 胡丹, 等. 江西省县域农业碳排放的时空动态及影响因素分析. 长江流域资源与环境, 2014, 23(3): 311-318. | |
44 | Cao Y X, Xu B C. Research on the development of ecological animal husbandry based on low-carbon economy. Heilongjiang Animal Science and Veterinary Medicine, 2011, 384(12): 16-17. |
曹玉香, 徐丙臣. 基于低碳经济生态畜牧业发展的研究. 黑龙江畜牧兽医, 2011, 384(12): 16-17. | |
45 | Tian Y, Zhang J B, Yin C J, et al. Distributional dynamics and trend evolution of China’s agricultural carbon emissions-An analysis on panel data of 31 Provinces from 2002 to 2011. China Population, Resources and Environment, 2014, 24(7): 91-98. |
田云, 张俊飚, 尹朝静, 等. 中国农业碳排放分布动态与趋势演进——基于31个省(市、区)2002-2011年的面板数据分析. 中国人口·资源与环境, 2014, 24(7): 91-98. | |
46 | Wang K Y, Li X, Lu J D, et al. Low-carbon development strategies of livestock industry to achieve goal of carbon neutrality in China. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(1): 230-238. |
汪开英, 李鑫, 陆建定, 等. 碳中和目标下畜牧业低碳发展路径. 农业工程学报, 2022, 38(1): 230-238. |
[1] | 石贵, 王娅, 杨国靖, 李军豪, 周立华, 裴孝东. 基于竞争态模型的甘肃省草食畜牧业发展格局演化与提升路径研究[J]. 草业学报, 2024, 33(2): 39-56. |
[2] | 曲艳, 赵坤, 韩子晨, 吕世海, 沃强, 戎郁萍. 短期氮磷添加对呼伦贝尔辉河流域草地土壤温室气体排放的影响[J]. 草业学报, 2024, 33(2): 68-79. |
[3] | 张学良, 张宇亭, 刘瑞, 谢军, 张建伟, 徐文静, 石孝均. 绿肥不同还田方式对土壤温室气体排放的影响[J]. 草业学报, 2021, 30(5): 25-33. |
[4] | 邓长芳, 罗珠珠, 李玲玲, 牛伊宁, 蔡立群, 张仁陟, 谢军红. 黄土高原雨养农业区不同种植模式土壤温室气体排放特征[J]. 草业学报, 2018, 27(9): 1-13. |
[5] | 戈小荣, 王俊, 张祺, 付鑫, 李志鹏. 不同降水格局下填闲种植对旱作冬小麦农田夏闲期土壤温室气体排放的影响[J]. 草业学报, 2018, 27(5): 27-38. |
[6] | 常单娜, 刘春增, 李本银, 吕玉虎, 潘兹亮, 高嵩涓, 曹卫东. 翻压紫云英对稻田土壤还原物质变化特征及温室气体排放的影响[J]. 草业学报, 2018, 27(12): 133-144. |
[7] | 王冬雪, 高永恒, 安小娟, 王瑞, 谢青琰. 青藏高原高寒湿地温室气体释放对水位变化的响应[J]. 草业学报, 2016, 25(8): 27-35. |
[8] | 贾玉山,都帅,王志军,尤思涵,格根图. 中国牧区饲草储备展望[J]. 草业学报, 2015, 24(9): 189-196. |
[9] | 马钢,王平,王冬雪,徐世权. 高寒灌丛土壤温室气体释放对添加不同形态氮素的响应[J]. 草业学报, 2015, 24(3): 20-29. |
[10] | 徐敏云. 草地载畜量研究进展:中国草畜平衡研究困境与展望[J]. 草业学报, 2014, 23(5): 321-329. |
[11] | 鲁为华,朱进忠, 靳瑰丽 . 小尺度条件下退化绢蒿种群幼苗更新时空格局[J]. 草业学报, 2011, 20(5): 272-277. |
[12] | 高渐飞,苏孝良,熊康宁,周玮. 贵州岩溶地区的草地生态环境与草地畜牧业发展[J]. 草业学报, 2011, 20(4): 279-286. |
[13] | 冯丽肖,杜雄,张立峰. 华北农牧交错带畜牧业外部经济效应解析[J]. 草业学报, 2009, 18(2): 155-162. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||