草业学报 ›› 2025, Vol. 34 ›› Issue (1): 203-214.DOI: 10.11686/cyxb2024074
• 研究论文 • 上一篇
马永霞1(), 代程程1(), 吴建平2, 张康林2, 史海涛1, 黄艳玲1()
收稿日期:
2024-03-06
修回日期:
2024-05-08
出版日期:
2025-01-20
发布日期:
2024-11-04
通讯作者:
黄艳玲
作者简介:
E-mail: swunylh@163.com基金资助:
Yong-xia MA1(), Cheng-cheng DAI1(), Jian-ping WU2, Kang-lin ZHANG2, Hai-tao SHI1, Yan-ling HUANG1()
Received:
2024-03-06
Revised:
2024-05-08
Online:
2025-01-20
Published:
2024-11-04
Contact:
Yan-ling HUANG
About author:
First author contact:These authors contributed equally to this work.
摘要:
本试验旨在探究植物乳酸杆菌和布氏乳酸杆菌对油菜秸秆的常规营养成分、康奈尔净碳水化合物蛋白质体系组分(CNCPS)和牦牛体外瘤胃发酵参数的影响。以油菜秸秆为发酵底物,共设置4个处理组,分别为对照组(CON组,不添加任何菌制剂)、LP组(添加1.0 g·kg-1植物乳酸杆菌)、LB组(添加1.0 g·kg-1布氏乳酸杆菌)和LPB组(1.0 g·kg-1植物乳酸杆菌+1.0 g·kg-1布氏乳酸杆菌),每个处理5个重复。油菜秸秆切短至2 cm并与菌制剂混合均匀后,室温厌氧发酵45 d后取样。测定油菜秸秆营养成分、CNCPS和牦牛体外瘤胃发酵参数。结果表明:1)与CON组相比,LP、LB和LPB组pH值均降低(P<0.05),乳酸含量升高(P<0.05)且LPB组含量最高。2)与CON组相比, LP、LB和LPB组的中性洗涤纤维(NDF)、酸性洗涤纤维(ADF)及纤维素(cellulose)含量降低(P<0.05),粗脂肪含量升高(P<0.05),且LPB组NDF、ADF及酸性洗涤木质素(ADL)含量低于其他两个处理组(P<0.05)。3)与CON组相比,各处理组的快速降解蛋白(PB1)和中速降解蛋白(PB2)无显著变化(P>0.05),LPB组的非蛋白氮(PA1)含量升高(P<0.05),不可降解蛋白质(PC)含量显著降低(P<0.05)。各处理组不可利用纤维(CC)含量均降低(P<0.05),可利用纤维(CB2)和非结构性碳水化合物(NSC)含量显著升高(P<0.05),LPB组的CC含量低于CON、LP和LB组(P<0.05)。4)油菜秸秆经72 h体外产气后,各组瘤胃液pH无显著差异(P>0.05),各组NH3-N含量均低于CON组(P<0.05),LPB组的干物质降解率(DMD)和挥发性脂肪酸(VFA)含量高于CON组(P<0.05)。综上,菌制剂厌氧发酵油菜秸秆后,提高了油菜秸秆的营养价值,且不同种类菌制剂对油菜秸秆营养价值的改善作用不同,经综合比较,植物乳杆菌+布氏乳杆菌>植物乳杆菌>布氏乳杆菌。
马永霞, 代程程, 吴建平, 张康林, 史海涛, 黄艳玲. 不同乳酸菌制剂组合对油菜秸秆发酵品质和体外瘤胃发酵特性的影响[J]. 草业学报, 2025, 34(1): 203-214.
Yong-xia MA, Cheng-cheng DAI, Jian-ping WU, Kang-lin ZHANG, Hai-tao SHI, Yan-ling HUANG. Effects of different Lactobacillus combinations on fermentation quality and in vitro rumen fermentation characteristics of rape straw[J]. Acta Prataculturae Sinica, 2025, 34(1): 203-214.
项目Items | 含量Content |
---|---|
干物质Dry matter (DM) | 94.80 |
粗灰分Crude ash (ash) | 6.57 |
粗脂肪Ether extract (EE) | 2.01 |
粗蛋白质Crude protein (CP) | 3.91 |
中性洗涤纤维Neutral detergent fiber (NDF) | 74.70 |
酸性洗涤纤维Acid detergent fiber (ADF) | 54.80 |
酸性洗涤木质素Acid detergent lignin (ADL) | 11.20 |
表1 油菜秸秆营养成分(风干基础)
Table 1 Nutritional composition of rape straw (air-dry basis, %)
项目Items | 含量Content |
---|---|
干物质Dry matter (DM) | 94.80 |
粗灰分Crude ash (ash) | 6.57 |
粗脂肪Ether extract (EE) | 2.01 |
粗蛋白质Crude protein (CP) | 3.91 |
中性洗涤纤维Neutral detergent fiber (NDF) | 74.70 |
酸性洗涤纤维Acid detergent fiber (ADF) | 54.80 |
酸性洗涤木质素Acid detergent lignin (ADL) | 11.20 |
原料Raw material | 处理组Treatment | 菌制剂Bacterial preparation | 添加量Additive amount |
---|---|---|---|
油菜秸秆 Rape straw | CON | 无添加No additives | 0 |
LP | 植物乳杆菌L. plantarum | 1 | |
LB | 布氏乳杆菌L. brucei | 1 | |
LPB | 植物乳杆菌+布氏乳杆菌L. plantarum+L. brucei | 1+1 |
表2 试验设计
Table 2 The design of experiment (g·kg-1)
原料Raw material | 处理组Treatment | 菌制剂Bacterial preparation | 添加量Additive amount |
---|---|---|---|
油菜秸秆 Rape straw | CON | 无添加No additives | 0 |
LP | 植物乳杆菌L. plantarum | 1 | |
LB | 布氏乳杆菌L. brucei | 1 | |
LPB | 植物乳杆菌+布氏乳杆菌L. plantarum+L. brucei | 1+1 |
项目Items | 计算公式Formula |
---|---|
总碳水化合物Carbohydrate (CHO,%DM) | |
不可利用纤维Unavailable fiber (CC,%CHO) | |
可利用纤维Available fiber (CB2,%CHO) | |
非结构性碳水化合物Non-structural carbohydrates (NSC,%CHO) | |
非蛋白氮Non-protein nitrogen (PA1,%CP) | |
快速降解蛋白质Rapidly degraded protein (PB1,%CP) | |
中速降解蛋白质Moderately degraded protein (PB2,%CP) | |
可溶性真蛋白质Soluble true protein (PA2,%CP) | |
不可降解蛋白质Unavailable protein (PC, %CP) |
表3 康奈尔净碳水化合物蛋白质体系组分计算公式
Table 3 Calculation formula of Cornell net carbohydrate and protein system component
项目Items | 计算公式Formula |
---|---|
总碳水化合物Carbohydrate (CHO,%DM) | |
不可利用纤维Unavailable fiber (CC,%CHO) | |
可利用纤维Available fiber (CB2,%CHO) | |
非结构性碳水化合物Non-structural carbohydrates (NSC,%CHO) | |
非蛋白氮Non-protein nitrogen (PA1,%CP) | |
快速降解蛋白质Rapidly degraded protein (PB1,%CP) | |
中速降解蛋白质Moderately degraded protein (PB2,%CP) | |
可溶性真蛋白质Soluble true protein (PA2,%CP) | |
不可降解蛋白质Unavailable protein (PC, %CP) |
项目 Items | 处理Treatment | 标准误 Standard error | P 值 P-value | |||
---|---|---|---|---|---|---|
CON | LP | LB | LPB | |||
pH | 5.56a | 4.76c | 4.73c | 5.09b | 0.11 | 0.001 |
乳酸Lactic acid (mmol·L-1) | 4.13c | 4.61c | 5.02b | 5.56a | 0.07 | 0.001 |
乙酸Acetic acid (mmol·L-1) | 3.93 | 3.86 | 4.11 | 4.51 | 0.35 | 0.564 |
氨态氮NH3-N (mmol·L-1) | 3.78 | 3.77 | 3.10 | 2.95 | 0.15 | 0.176 |
表4 不同菌制剂对油菜秸秆发酵品质的影响
Table 4 Effects of different bacterial preparations on the fermentation quality of rape straw (n=5)
项目 Items | 处理Treatment | 标准误 Standard error | P 值 P-value | |||
---|---|---|---|---|---|---|
CON | LP | LB | LPB | |||
pH | 5.56a | 4.76c | 4.73c | 5.09b | 0.11 | 0.001 |
乳酸Lactic acid (mmol·L-1) | 4.13c | 4.61c | 5.02b | 5.56a | 0.07 | 0.001 |
乙酸Acetic acid (mmol·L-1) | 3.93 | 3.86 | 4.11 | 4.51 | 0.35 | 0.564 |
氨态氮NH3-N (mmol·L-1) | 3.78 | 3.77 | 3.10 | 2.95 | 0.15 | 0.176 |
项目 Items | 处理Treatment | 标准误 Standard error | P 值 P-value | |||
---|---|---|---|---|---|---|
CON | LP | LB | LPB | |||
有机物Organic matter (OM) | 86.8 | 87.0 | 87.0 | 86.1 | 0.53 | 0.642 |
粗灰分Crude ash (Ash) | 9.69a | 8.13c | 7.47d | 8.47b | 0.37 | 0.004 |
粗脂肪Ether extract (EE) | 1.84c | 2.77a | 2.53ab | 2.11bc | 0.20 | 0.023 |
粗蛋白质Crude protein (CP) | 4.73 | 4.42 | 4.70 | 4.82 | 0.14 | 0.256 |
中性洗涤纤维Neutral detergent fiber (NDF) | 72.5a | 67.7b | 65.8c | 63.2d | 0.20 | 0.001 |
酸性洗涤纤维Acid detergent fiber (ADF) | 52.9a | 49.0b | 46.9c | 42.6d | 0.31 | 0.003 |
可溶性碳水化合物Soluble carbohydrates (WSC) | 1.44b | 1.48b | 1.60a | 1.67a | 0.04 | 0.021 |
半纤维素Hemicelluloses (HE) | 19.6b | 18.7c | 18.9bc | 20.6a | 0.22 | 0.001 |
纤维素Cellulose (CE) | 43.5a | 42.4b | 40.5c | 36.3d | 0.29 | 0.004 |
表5 不同菌制剂对油菜秸秆营养成分的影响
Table 5 Effects of different bacterial preparations on the nutrient composition of rape straw (n=5, %)
项目 Items | 处理Treatment | 标准误 Standard error | P 值 P-value | |||
---|---|---|---|---|---|---|
CON | LP | LB | LPB | |||
有机物Organic matter (OM) | 86.8 | 87.0 | 87.0 | 86.1 | 0.53 | 0.642 |
粗灰分Crude ash (Ash) | 9.69a | 8.13c | 7.47d | 8.47b | 0.37 | 0.004 |
粗脂肪Ether extract (EE) | 1.84c | 2.77a | 2.53ab | 2.11bc | 0.20 | 0.023 |
粗蛋白质Crude protein (CP) | 4.73 | 4.42 | 4.70 | 4.82 | 0.14 | 0.256 |
中性洗涤纤维Neutral detergent fiber (NDF) | 72.5a | 67.7b | 65.8c | 63.2d | 0.20 | 0.001 |
酸性洗涤纤维Acid detergent fiber (ADF) | 52.9a | 49.0b | 46.9c | 42.6d | 0.31 | 0.003 |
可溶性碳水化合物Soluble carbohydrates (WSC) | 1.44b | 1.48b | 1.60a | 1.67a | 0.04 | 0.021 |
半纤维素Hemicelluloses (HE) | 19.6b | 18.7c | 18.9bc | 20.6a | 0.22 | 0.001 |
纤维素Cellulose (CE) | 43.5a | 42.4b | 40.5c | 36.3d | 0.29 | 0.004 |
项目 Items | 处理Treatment | 标准误 Standard error | P值 P-value | |||
---|---|---|---|---|---|---|
CON | LP | LB | LPB | |||
淀粉Starch (%NSC) | 0.61 | 0.65 | 0.68 | 0.65 | 0.030 | 0.342 |
酸性洗涤木质素Acid detergent lignin (ADL,%NDF) | 9.43ab | 9.87a | 9.57a | 8.94b | 0.190 | 0.025 |
非蛋白氮None-protein nitrogen (PA1,%CP) | 2.19 | 2.00 | 1.80 | 2.01 | 0.002 | 0.653 |
可溶性蛋白Soluble protein (SP,%CP) | 2.71a | 2.16ab | 1.96b | 1.88b | 0.001 | 0.041 |
中性洗涤不溶蛋白Neutral detergent insoluble protein (NDIP,%CP) | 1.99a | 1.52bc | 1.61ab | 1.19c | 0.001 | 0.001 |
酸性洗涤不溶蛋白Acid detergent insoluble protein (ADIP,%CP) | 1.32a | 0.86b | 0.97b | 0.84b | 0.050 | 0.001 |
表6 不同菌制剂下油菜秸秆的康奈尔净碳水化合物蛋白质体系组分
Table 6 Effects of different bacterial preparations on the Cornell net carbohydrate and protein system components of rape straw (n=5)
项目 Items | 处理Treatment | 标准误 Standard error | P值 P-value | |||
---|---|---|---|---|---|---|
CON | LP | LB | LPB | |||
淀粉Starch (%NSC) | 0.61 | 0.65 | 0.68 | 0.65 | 0.030 | 0.342 |
酸性洗涤木质素Acid detergent lignin (ADL,%NDF) | 9.43ab | 9.87a | 9.57a | 8.94b | 0.190 | 0.025 |
非蛋白氮None-protein nitrogen (PA1,%CP) | 2.19 | 2.00 | 1.80 | 2.01 | 0.002 | 0.653 |
可溶性蛋白Soluble protein (SP,%CP) | 2.71a | 2.16ab | 1.96b | 1.88b | 0.001 | 0.041 |
中性洗涤不溶蛋白Neutral detergent insoluble protein (NDIP,%CP) | 1.99a | 1.52bc | 1.61ab | 1.19c | 0.001 | 0.001 |
酸性洗涤不溶蛋白Acid detergent insoluble protein (ADIP,%CP) | 1.32a | 0.86b | 0.97b | 0.84b | 0.050 | 0.001 |
项目 Items | 处理Treatment | 标准误 Standard error | P值 P-value | |||
---|---|---|---|---|---|---|
CON | LP | LB | LPB | |||
可利用纤维Available fiber (CB2,%CHO) | 2.24d | 11.9c | 14.0b | 16.2a | 0.68 | 0.013 |
可消化纤维Digestible fiber (CB3,%CHO) | 57.5a | 53.5b | 52.7b | 51.6c | 0.28 | 0.001 |
不可利用纤维Unavailable fiber (CC,%CHO) | 23.5a | 17.7b | 17.0b | 15.2c | 0.41 | 0.001 |
非结构性碳水化合物Non-structural carbohydrates (NSC,%CHO) | 11.0c | 12.7c | 14.8b | 17.0a | 0.67 | 0.001 |
总碳水化合物Carbohydrates (CHO,%DM) | 83.4 | 83.9 | 84.4 | 83.7 | 0.50 | 0.562 |
表7 根据康奈尔净碳水化合物蛋白质体系组分计算的碳水化合物组分含量
Table 7 Carbohydrate content calculated based on Cornell net carbohydrate and protein system components (n=5)
项目 Items | 处理Treatment | 标准误 Standard error | P值 P-value | |||
---|---|---|---|---|---|---|
CON | LP | LB | LPB | |||
可利用纤维Available fiber (CB2,%CHO) | 2.24d | 11.9c | 14.0b | 16.2a | 0.68 | 0.013 |
可消化纤维Digestible fiber (CB3,%CHO) | 57.5a | 53.5b | 52.7b | 51.6c | 0.28 | 0.001 |
不可利用纤维Unavailable fiber (CC,%CHO) | 23.5a | 17.7b | 17.0b | 15.2c | 0.41 | 0.001 |
非结构性碳水化合物Non-structural carbohydrates (NSC,%CHO) | 11.0c | 12.7c | 14.8b | 17.0a | 0.67 | 0.001 |
总碳水化合物Carbohydrates (CHO,%DM) | 83.4 | 83.9 | 84.4 | 83.7 | 0.50 | 0.562 |
项目 Items | 处理Treatment | 标准误 Standard error | P值 P-value | |||
---|---|---|---|---|---|---|
CON | LP | LB | LPB | |||
非蛋白氮Non-protein nitrogen (PA1) | 27.0b | 27.5b | 28.8b | 30.9a | 1.35 | 0.003 |
可溶性真蛋白Souble true protein (PA2) | 11.0b | 25.8a | 26.3a | 25.9a | 1.45 | 0.001 |
快速降解蛋白质Rapidly degraded protein (PB1) | 11.20 | 7.41 | 7.41 | 12.24 | 2.68 | 0.321 |
中速降解蛋白质Moderately degraded protein (PB2) | 15.5 | 11.2 | 13.6 | 14.9 | 2.46 | 0.614 |
不可降解蛋白质Unavailable protein (PC) | 26.4a | 19.5b | 20.7b | 17.9b | 1.14 | 0.004 |
表8 根据康奈尔净碳水化合物蛋白质体系组分计算的蛋白质组分含量
Table 8 Protein component content calculated based on Cornell net carbohydrate and protein system components (n=5, %)
项目 Items | 处理Treatment | 标准误 Standard error | P值 P-value | |||
---|---|---|---|---|---|---|
CON | LP | LB | LPB | |||
非蛋白氮Non-protein nitrogen (PA1) | 27.0b | 27.5b | 28.8b | 30.9a | 1.35 | 0.003 |
可溶性真蛋白Souble true protein (PA2) | 11.0b | 25.8a | 26.3a | 25.9a | 1.45 | 0.001 |
快速降解蛋白质Rapidly degraded protein (PB1) | 11.20 | 7.41 | 7.41 | 12.24 | 2.68 | 0.321 |
中速降解蛋白质Moderately degraded protein (PB2) | 15.5 | 11.2 | 13.6 | 14.9 | 2.46 | 0.614 |
不可降解蛋白质Unavailable protein (PC) | 26.4a | 19.5b | 20.7b | 17.9b | 1.14 | 0.004 |
项目 Items | 处理Treatment | 标准误 Standard error | P值 P-value | |||
---|---|---|---|---|---|---|
CON | LP | LB | LPB | |||
产气量Gas production (mL) | ||||||
8 h | 7.4 | 7.5 | 7.6 | 8.1 | 0.61 | 0.852 |
16 h | 12.1 | 13.5 | 13.6 | 15.7 | 1.09 | 0.184 |
24 h | 41.8b | 59.4a | 48.7b | 62.4a | 3.49 | 0.002 |
36 h | 57.3c | 77.4ab | 70.9b | 85.8a | 3.99 | 0.001 |
48 h | 72.9c | 88.3ab | 85.9bc | 102.5a | 4.74 | 0.004 |
72 h | 86.5b | 99.1ab | 102.3ab | 115.1a | 5.54 | 0.024 |
干物质降解率和发酵指标Dry matter degradation rate and fermentation index | ||||||
pH | 6.48 | 6.46 | 6.47 | 6.55 | 0.02 | 0.072 |
干物质降解率Dry matter degradation rate (DMD, %) | 37.9c | 41.5ab | 40.5b | 42.7a | 0.01 | 0.001 |
氨态氮NH3-N (mmol·L-1) | 16.2a | 14.0b | 12.0c | 13.1bc | 0.62 | 0.001 |
微生物蛋白Microprotein (MCP,mmol·L-1) | 4.45 | 5.14 | 4.89 | 4.69 | 0.17 | 0.063 |
乙酸Acetate (mmol·L-1) | 36.1c | 50.2ab | 42.6bc | 56.5a | 3.33 | 0.002 |
丙酸Propionate (mmol·L-1) | 21.4c | 28.1ab | 25.2bc | 33.1a | 1.66 | 0.011 |
丁酸Butyrate (mmol·L-1) | 2.56b | 3.72ab | 3.51b | 5.19a | 0.55 | 0.034 |
表9 不同菌制剂对油菜秸秆体外发酵参数的影响
Table 9 Effects of different bacterial preparations on in vitro fermentation parameters of rape straw (n=5)
项目 Items | 处理Treatment | 标准误 Standard error | P值 P-value | |||
---|---|---|---|---|---|---|
CON | LP | LB | LPB | |||
产气量Gas production (mL) | ||||||
8 h | 7.4 | 7.5 | 7.6 | 8.1 | 0.61 | 0.852 |
16 h | 12.1 | 13.5 | 13.6 | 15.7 | 1.09 | 0.184 |
24 h | 41.8b | 59.4a | 48.7b | 62.4a | 3.49 | 0.002 |
36 h | 57.3c | 77.4ab | 70.9b | 85.8a | 3.99 | 0.001 |
48 h | 72.9c | 88.3ab | 85.9bc | 102.5a | 4.74 | 0.004 |
72 h | 86.5b | 99.1ab | 102.3ab | 115.1a | 5.54 | 0.024 |
干物质降解率和发酵指标Dry matter degradation rate and fermentation index | ||||||
pH | 6.48 | 6.46 | 6.47 | 6.55 | 0.02 | 0.072 |
干物质降解率Dry matter degradation rate (DMD, %) | 37.9c | 41.5ab | 40.5b | 42.7a | 0.01 | 0.001 |
氨态氮NH3-N (mmol·L-1) | 16.2a | 14.0b | 12.0c | 13.1bc | 0.62 | 0.001 |
微生物蛋白Microprotein (MCP,mmol·L-1) | 4.45 | 5.14 | 4.89 | 4.69 | 0.17 | 0.063 |
乙酸Acetate (mmol·L-1) | 36.1c | 50.2ab | 42.6bc | 56.5a | 3.33 | 0.002 |
丙酸Propionate (mmol·L-1) | 21.4c | 28.1ab | 25.2bc | 33.1a | 1.66 | 0.011 |
丁酸Butyrate (mmol·L-1) | 2.56b | 3.72ab | 3.51b | 5.19a | 0.55 | 0.034 |
1 | Xu T W, Zhao X Q, Zhang X L, et al. Sustainable development of ecological grass-based livestock husbandry in Qinghai-Tibet Plateau alpine area: principle, technology and practice. Acta Ecologica Sinica, 2020, 40(18): 6324-6337. |
徐田伟, 赵新全, 张晓玲, 等. 青藏高原高寒地区生态草牧业可持续发展: 原理、技术与实践. 生态学报, 2020, 40(18): 6324-6337. | |
2 | Gan J, Wang W, Fang D H, et al. Analysis of the current situation of development and utilization of cattle roughage resources in agricultural areas of Sichuan. Sichuan Animal and Veterinary Sciences, 2021, 48(3): 43. |
甘佳, 王巍, 方东辉, 等. 四川农区牛粗饲料资源开发利用现状分析. 四川畜牧兽医, 2021, 48(3): 43. | |
3 | Wang L, Wang Y J, Gao C Y, et al. Estimation and utilization of rape straw resources in China//Institute of Agricultural Resources and Regional Planning. Proceedings of the 2015 Annual Conference of the Chinese Society of Agricultural Resources and Regional Planning. Xining: Institute of Agricultural Resources and Regional Planning, 2015: 458-466. |
王磊, 王亚静, 高春雨, 等. 中国油菜秸秆资源量估算及其资源化利用//中国农业资源与区划学会. 2015年中国农业资源与区划学会学术年会论文集. 西宁: 中国农业资源与区划学会, 2015: 458-466. | |
4 | Dong C X, Lv J Y, Zhang Z A, et al. Effects of four different dietary roughages on feed apparent dry matter digestibility, animal body weight gain, and rumen bacterial populations, when finishing Hu lambs. Acta Prataculturae Sinica, 2019, 28(4): 106-115. |
董春晓, 吕佳颖, 张智安, 等. 饲料来源对育肥湖羊生产性能、养分消化及瘤胃微生物组成的影响. 草业学报, 2019, 28(4): 106-115. | |
5 | Ma Y, Chen X, Zahoor K M, et al. The impact of ammoniation treatment on the chemical composition and in vitro digestibility of rice straw in Chinese holsteins. Animals, 2020, 10(10): 1854. |
6 | Zhou C. Optimization of fermentation conditions in rape straw and its effects on growth performances and rumen fermentation in goats. Nanjing: Nanjing Agricultural University, 2019. |
周闯. 油菜秸秆发酵条件优化及对山羊生长性能、瘤胃发酵的影响. 南京: 南京农业大学, 2019. | |
7 | Xu L J, Wang L, Liu M Z, et al. Effects of different micro-storage preparation treatments of rapeseed straw on production performance and nutrient digestibility of beef cattle. Grain Oil and Feed Technology, 2017(1): 1-3. |
许兰娇, 王亮, 刘明珠, 等. 不同微贮制剂处理油菜秸秆对肉牛生产性能及养分消化率影响. 江西饲料, 2017(1): 1-3. | |
8 | Leonowicz A, Matuszewska A, Luterek J, et al. Biodegradation of lignin by white rot fungi. Fungal Genetics and Biology, 1999, 27(2/3): 175-185. |
9 | Ni K, Zhao J, Zhu B, et al. Assessing the fermentation quality and microbial community of the mixed silage of forage soybean with crop corn or sorghum. Bioresource Technology, 2018, 265: 563-567. |
10 | Jin L, Duniere L, Lynch J P, et al. Impact of ferulic acid esterase producing lactobacilli and fibrolytic enzymes on conservation characteristics, aerobic stability and fiber degradability of barley silage. Animal Feed Science and Technology, 2015, 207: 62-74. |
11 | Xie X X, Du H F, Chen S Q, et al. Application and outlook of exogenous enzymes in ruminants. Chinese Journal of Animal Nutrition, 2016, 28(4): 1011-1019. |
解祥学, 杜红方, 陈书琴, 等. 外源酶制剂在反刍动物上的应用与展望. 动物营养学报, 2016, 28(4): 1011-1019. | |
12 | Wang Y R, Tao L, Xu G S, et al. The microstructure of straw lignocellulose and its decomposition method. China Feed, 2016(12): 38-41. |
王玉荣, 陶莲, 许贵善, 等. 秸秆木质纤维素微观结构及其裂解方法. 中国饲料, 2016(12): 38-41. | |
13 | Xie Q X, Xin G Q, Gu W, et al. Effect of fermentation with bacterial enzyme compound preparation on nutritional quality of wheat straw. Guangdong Feed, 2021, 30(12): 28-30. |
谢全喜, 辛国芹, 谷巍, 等. 菌酶复合制剂发酵对小麦秸秆营养品质的影响. 广东饲料, 2021, 30(12): 28-30. | |
14 | Menke K H, Raab L, Salewski A. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science, 1979, 93(1): 217-222. |
15 | Tan L, Li Y L, Gao X Z, et al. Determination of anthocyanidins in different plant origin foods by improved pH differential method. Food and Fermentation Industries, 2022, 48(21): 276-285. |
谭亮, 李玉林, 杲秀珍, 等. 改进pH示差法检测不同植物源性食品中花青素的方法. 食品与发酵工业, 2022, 48(21): 276-285. | |
16 | Broderick G A, Kang J H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science, 1980, 63(1): 64-75. |
17 | Yang S, Xu L, Liu H M, et al. Determination of protein and water soluble sugar content in potato. Farm Products Processing, 2022(9): 70-72, 78. |
杨森, 徐莲, 刘洪明, 等. 马铃薯蛋白质和水溶性糖含量测定. 农产品加工, 2022(9): 70-72, 78. | |
18 | Xu Q F, Zhou H, Yu Z, et al. The effect of different storage time and dilution previous fermented juice on bagged alfalfa silage. Acta Agrestia Sinica, 2006(2): 129-133. |
许庆方, 周禾, 玉柱, 等. 贮藏期和添加绿汁发酵液对袋装苜蓿青贮的影响. 草地学报, 2006(2): 129-133. | |
19 | Liang Q, Lu M B, Lu Z D, et al. Determination of lactic acid in fermentation broth by p-hydroxybiphenol colorimetry. Food Science, 2008(6): 357-360. |
梁琼, 鲁明波, 卢正东, 等. 对羟基联苯法定量测定发酵液中的乳酸. 食品科学, 2008(6): 357-360. | |
20 | Zhang L Y. Feed analysis and quality test technology (The 4th edition). Beijing: China Agricultural University Press, 2016. |
张丽英. 饲料分析及饲料质量检测技术(第4版). 北京: 中国农业大学出版社, 2016. | |
21 | Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 1991, 74(10): 3583-3597. |
22 | Sniffen C J, O’connor J D, Soest P, et al. A net carbohydrate and protein system for evaluating cattle diets: Ⅱ. carbohydrate and protein availability. Journal of Animal Science, 1992, 70(11): 3562-3577. |
23 | Krishnamoorthy U, Sniffen C J, Stern M D, et al. Evaluation of a mathematical model of rumen digestion and an in vitro simulation of rumen proteolysis to estimate the rumen-undegraded nitrogen content of feedstuffs. British Journal of Nutrition, 1983, 50(3): 555-568. |
24 | Tang S X, Jiang H L, Zhou C S, et al. Effects of different forage species on in vitro gas production characteristics. Acta Prataculturae Sinica, 2005(3): 72-77. |
汤少勋, 姜海林, 周传社, 等. 不同牧草品种对体外发酵产气特性的影响. 草业学报, 2005(3): 72-77. | |
25 | Su H Y. Study on associative effects between mulberry leaves (Morus alba) and oil-seed meals in ruminants. Hangzhou: Zhejiang University, 2002. |
苏海涯. 反刍动物日粮中桑叶与饼粕类饲料间组合效应的研究. 杭州: 浙江大学, 2002. | |
26 | Zhou X, Huang Q L, Wang J, et al. Effects of adding lactic acid bacteria and molasses on fermentation quality and in vitro dry matter disappearance rate of Rumex hanus by silage with different moisture contents. Chinese Journal of Animal Nutrition, 2021, 33(3): 1594-1606. |
周昕, 黄秋连, 王健, 等. 添加乳酸菌剂和糖蜜对不同含水量食叶草青贮发酵品质及体外干物质消失率的影响. 动物营养学报, 2021, 33(3): 1594-1606. | |
27 | Nascimento A M C, Gomes Pereira O, Paula R A D, et al. Novel lactic acid bacteria strains as inoculants on alfalfa silage fermentation. Scientific Reports, 2019, 9(1): 8007. |
28 | You L J, Bao W C, Yao C Q, et al. Changes in chemical composition, structural and functional microbiome during alfalfa (Medicago sativa) ensilage with Lactobacillus plantarum PS-8. Animal Nutrition, 2022, 9: 100-109. |
29 | Xie W B, Chen J J, Tian B, et al. Effect of Lactobacillus buchneri on quality and in vitro digestibility of corn straw silage. Feed Research, 2022, 45(21): 122-126. |
谢文斌, 陈娟娟, 田斌, 等. 布氏乳杆菌对玉米秸秆青贮品质和体外消化率的影响. 饲料研究, 2022, 45(21): 122-126. | |
30 | Huang Z P. Effects of feeding whole-plant corn silage inoculated with Lactobacillus plantrum or Lactobacillus buchneri on growth performance and rumen microflora of lambs. Lanzhou: Lanzhou University, 2020. |
黄志鹏. 饲喂添加植物乳杆菌和布氏乳杆菌的全株玉米青贮对羔羊生长性能及瘤胃菌群的影响. 兰州: 兰州大学, 2020. | |
31 | Wang Y R. Effects of different microbial ecological preparations on microstructure and in-situ ruminal degradability of rice straw. Alaer: Tarim University, 2017. |
王玉荣. 不同微生态制剂对稻秸分子结构及瘤胃降解特性的影响. 阿拉尔: 塔里木大学, 2017. | |
32 | Si H Z. Effect of different lactic acid bacteria on fermentation characteristics and bacteria diversity of alfalfa silage. Changchun: Jilin Agricultural University, 2016. |
司华哲. 不同乳酸菌对紫花苜蓿青贮发酵品质及菌群动态变化的影响研究. 长春: 吉林农业大学, 2016. | |
33 | Fu T. The effects of microbial inoculants on the fermentation process and quality of corn silage. Beijing: Chinese Academy of Agricultural Sciences, 2005. |
傅彤. 微生物接种剂对玉米青贮饲料发酵进程及其品质的影响. 北京: 中国农业科学院, 2005. | |
34 | Lv W L, Diao Q Y, Yan G L, et al. Effect of Lactobacillus buchneri on the quality and aerobic stability of green corn-stalk silages. Acta Prataculturae Sinica, 2011, 20(3): 143-148. |
吕文龙, 刁其玉, 闫贵龙, 等. 布氏乳杆菌对青玉米秸青贮发酵品质和有氧稳定性的影响. 草业学报, 2011, 20(3): 143-148. | |
35 | Tao L, Feng W X, Wang Y R, et al. Effects of microecological agents on fermentation quality, nutrition composition and in situ ruminal degradability of corn stalk silage. Acta Prataculturae Sinica, 2016, 25(9):152-160. |
陶莲, 冯文晓, 王玉荣, 等. 微生态制剂对玉米秸秆青贮发酵品质、营养成分及瘤胃降解率的影响. 草业学报, 2016, 25(9): 152-160. | |
36 | Russell J B, O’connor J D, Fox D G, et al. A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. Journal of Animal Science, 1992, 70(11): 3551-3561. |
37 | Lv L F, Jiang N, Pan C Y, et al. Evaluation of CNCPS and GI characteristics of Hybrid pennisetum, Leymus chinensis and corn straw. Heilongjiang Animal Science and Veterinary, 2019, 586(22): 109-113. |
吕路芳, 姜宁, 潘春媛, 等. 杂交狼尾草与羊草、玉米秸秆CNCPS和GI特性评价. 黑龙江畜牧兽医, 2019, 586(22): 109-113. | |
38 | Li F F. Study on CNCPS protein composition and feeding value of hay and silage in different haze/probiotic period. Shihezi: Shihezi University, 2019. |
李菲菲. 不同茬次、刈割期对苜蓿干草/青贮CNCPS蛋白组分和品质的影响. 石河子: 石河子大学, 2019. | |
39 | Lan G S, Wang F B, Zhang Z A, et al. Using Cornell net carbohydrate-protein system and cluster analysis technique to evaluate the nutritional value of rape straw. Chinese Journal of Animal Nutrition, 2019, 31(4): 1877-1886. |
兰贵生, 王芳彬, 张智安, 等. 利用康奈尔净碳水化合物-蛋白质体系与聚类分析技术评价油菜秸秆营养价值. 动物营养学报, 2019, 31(4): 1877-1886. | |
40 | You J H. Research on evaluation of efficiency of stalks degraded by white rot fungi with CNCPS. Nanjing: Nanjing Agricultural University, 2013. |
游济豪. 利用CNCPS法评估白腐真菌降解秸秆效率的研究. 南京: 南京农业大学, 2013. | |
41 | Cotta M A, Russell J B. Effect of peptides and amino acids on efficiency of rumen bacterial protein synthesis in continuous culture. Journal of Dairy Science, 1982, 65(2): 226-234. |
42 | Zhou C S, Tang S X, Jiang H L, et al. In vitro fermentation characteristics of crop straws and their combined utilization. Chinese Journal of Applied Ecology, 2005, 16(10): 1862-1867. |
周传社, 汤少勋, 姜海林, 等. 农作物秸秆体外发酵营养特性及其组合利用研究. 应用生态学报, 2005, 16(10): 1862-1867. | |
43 | Chen L, Ren A, Li B, et al. Effect of Lactobacillus plantarum on in vitro rumen fermentation characteristics of maize straw and rice straw. Chinese Journal of Animal Nutrition, 2017, 29(2): 678-689. |
陈亮, 任傲, 李斌, 等. 植物乳杆菌对玉米秸秆和水稻秸秆体外发酵特性的影响. 动物营养学报, 2017, 29(2): 678-689. | |
44 | Zhang Y L, Yang Z Y, Li C C, et al. Effect of Lactobacillus plantarum on fermentation quality, aerobic stability and rumen in vitro gas production characteristics of whole-plant hybrid Broussonetia papyrifera silage. Chinese Journal of Animal Nutrition, 2021, 33(11): 6320-6329. |
张玉琳, 杨泽毅, 李超程, 等. 植物乳杆菌对全株杂交构树青贮品质、有氧稳定性及瘤胃体外产气特性的影响. 动物营养学报, 2021, 33(11): 6320-6329. | |
45 | Zhang Q Y, Li J, Hao L Z, et al. Evaluation of forage nutritional value of alpine meadow grassland in different phenological periods in Zeku county of Qinghai province by in vitro method. Chinese Journal of Animal Nutrition, 2020, 32(3): 1415-1423. |
张群英, 李捷, 郝力壮, 等. 体外法评价青海省泽库县高寒草甸草场不同物候期牧草的营养价值. 动物营养学报, 2020, 32(3): 1415-1423. | |
46 | Zhang W, Pan K, Liu C, et al. Recombinant Lentinula edodes xylanase improved the hydrolysis and in vitro ruminal fermentation of soybean straw by changing its fiber structure. International Journal of Biological Macromolecules, 2020, 151: 286-292. |
[1] | 王静, 孔令莹, 徐建风, 康静, 沈振峰, 刘婷. 不同粒度猫尾草对羔羊体外发酵特性和微生物数量的影响[J]. 草业学报, 2023, 32(3): 224-233. |
[2] | 周承福, 汪水平, 张佰忠, 张秀敏, 王荣, 马志远, 王敏. 水热处理对黄豆秸秆体外发酵、甲烷生成及微生物的影响[J]. 草业学报, 2022, 31(2): 171-181. |
[3] | 郭艳霞, 李孟伟, 唐振华, 彭丽娟, 彭开屏, 谢芳, 谢华德, 杨承剑. 添加亚油酸条件下不同剂量硝酸钠对水牛瘤胃体外发酵脂肪酸组成及相关微生物数量的影响[J]. 草业学报, 2021, 30(9): 159-167. |
[4] | 温媛媛, 张美琦, 刘桃桃, 沈宜钊, 高艳霞, 李秋凤, 曹玉凤, 李建国. 体外产气法评价生薯条加工副产品-稻草混贮与全株玉米青贮组合效应的研究[J]. 草业学报, 2021, 30(8): 154-163. |
[5] | 周恩光, 王虎成, 尚占环. 甜高粱的饲用价值及其绵羊体外瘤胃发酵产气性能研究[J]. 草业学报, 2020, 29(5): 43-49. |
[6] | 涂瑞, 苗建军, 彭忠利, 高彦华, 柏雪, 谢昕廷. 不同精粗比日粮中添加小肽对牦牛瘤胃体外发酵特性的影响[J]. 草业学报, 2020, 29(3): 78-88. |
[7] | 梁婷玉, 郞侠, 吴建平, 王彩莲, 刘立山, 张瑞, 韦胜. 燕麦与苜蓿不同比例组合对驴盲肠体外发酵的影响[J]. 草业学报, 2019, 28(6): 185-195. |
[8] | 周瑞, 刘立山, 吴建平, 韦胜, 郎侠, 王彩莲. 牛至精油对绵羊瘤胃体外养分降解率、发酵特性及CH4产量的影响[J]. 草业学报, 2019, 28(11): 168-176. |
[9] | 魏欢, 李翔宇, 于全平, 陈勇. 添加5种植物酚类化合物对高精料底物瘤胃体外发酵及产甲烷的影响[J]. 草业学报, 2018, 27(11): 192-199. |
[10] | 孟梅娟, 涂远璐, 白云峰, 严少华, 高立鹏, 刘萍. 小麦秸秆与米糠粕瘤胃体外发酵组合效应研究[J]. 草业学报, 2016, 25(9): 161-172. |
[11] | 王晓成, 刘军花, 朱伟云, 毛胜勇. 瘤胃源酵母的分离筛选及对不同底物发酵能力影响[J]. 草业学报, 2016, 25(5): 141-148. |
[12] | 潘龙, 牛俊丽, 卜登攀, 杜洪, 程建波, 孙先枝, 王秀敏, 秦俊杰, 袁耀明, 张幸开. 柴胡皂苷对体外发酵参数及细菌数量变化的影响[J]. 草业学报, 2015, 24(6): 85-91. |
[13] | 毛胜勇,姚文,陈勇. 山羊瘤胃和粪便中厌氧真菌的分离及发酵粗饲料能力初探[J]. 草业学报, 2014, 23(4): 357-363. |
[14] | 马艳艳,李袁飞,成艳芬,朱伟云. 不同化学处理对稻草体外发酵动态变化的影响[J]. 草业学报, 2014, 23(3): 350-355. |
[15] | 毛胜勇,何文波,朱伟云. 酸中毒条件下添加阿卡波糖对瘤胃微生物发酵的影响[J]. 草业学报, 2012, 21(6): 130-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||