[1] Rao N S S. Soil Microbiology[M]. Enfield: Science Publishers, Inc., 1999. [2] Wu J G, Ai L. Soil microbial activity and biomass C and N content in three type typical ecosystems in Qilian Mountains, China. Journal of Plant Ecology, 2008, 32(2): 465-476. [3] Jenkinson D S, Brookes P C, Powlson D S. Measuring soil microbial biomass. Soil Biology and Biochemistry, 2004, 36: 5-7. [4] Yang C D, Long R J, Chen X R, et al . Study on microbial biomass and its correlation with the soil physical properties under the alpine grassland of the east of Qilian Mountains. Acta Prataculturae Sinica, 2007, 16(4): 62-68. [5] Wendu R L, Li G, Zhang J N, et al . The study of soil microbial biomass and soil enzyme activity on different grassland in Hulunbeier, Inner Mongolia. Acta Prataculturae Sinica, 2010, 19(5): 94-102. [6] Tang Y S, Wei C F, Yan T M, et al . Biological indicator of soil quality: a review. Soils, 2007, 39(2): 157-163. [7] Zhou Y, Xu X G, Wang F, et al . Soil microbial biomass respiration and metabolic quotient along an altitudinal gradient in Wuyi Mountain of southeastern China. Chinese Journal of Ecology, 2009, 28(2): 265-269. [8] Sinha S, Masto R E, Ram L C, et al . Rhizosphere soil microbial index of tree species in a coal mining ecosystem. Soil Biology and Biochemistry, 2009, 41: 1824-1832. [9] Fu H, Wang Y R, Wu C X, et al . Effects of grazing on soil physical and chemical properties of Alxa desert grassland. Journal of Desert Research, 2002, 22(4): 339-343. [10] Zhou Z Y, Yan S Y, Qin Y, et al . The characters of shrubby diversity of Alxa arid desert region. Journal of Arid Land Resources and Environment, 2009, 23(9): 146-150. [11] Yang Z P, Zhang Q, Wang Y L, et al . Spatial and temporal variability of soil properties under Caragana microphylla shrubs in the northwestern Shanxi Loess Plateau, China. Journal of Arid Environments, 2011, 75: 538-544. [12] Maestre F T, Bowker M A, Puche M D, et al . Shrub encroachment can reverse desertification in semi-arid Mediterranean grasslands. Ecology Letters, 2009, 12(9): 930-941. [13] Xiong X G, Han X G. Resource islands and its roles in the thicketization of grasslands and thicketization-grasslands. Acta Prataculturae Sinica, 2006, 15(1): 9-14. [14] Jia G M, Liu B R, Wang G, et al . The microbial biomass and activity in soil with shrub ( Caragana korshinskii K.) plantation in the semi-arid loess plateau in China. European Journal of Soil Biology, 2010, 46: 6-10. [15] Yin C H, Feng G, Tian C Y, et al . Enrichment effects of soil organic matter and salinity under the tamarisk shrubs in arid area. Chinese Journal of Eco-Agriculture, 2008, 16(1): 263-265. [16] Liu B, Zhao W Z, Yang R. Characteristics and spatial heterogeneity of Tamarix ramosissima nebkhas at Desert-Oasis ecotone. Acta Ecologica Sinica, 2008, 28(4): 1446-1455. [17] Dougill A J, Thomas A D. Nebkha dunes in the Molopo Basin, South Africa and Botswana: formation controls and their validity asindicators of soil degradation. Journal of Arid Environments, 2002, 50: 413-428. [18] Zhang P J, Yang J, Song B Y, et al . Spatial heterogeneity of soil resources of Caragana tibetica community. Chinese Journal of Plant Ecology, 2009, 33(2): 338-346. [19] Shan L S, Li Y, Dong Q L, et al . Ecological adaptation of Reaumuria soongorica root system architecture to arid environment. Journal of Desert Research, 2012, 32(5): 1283-1290. [20] Jin Y X, Xu B, Yang X C, et al . Belowground biomass and features of environmental factors in the degree of grassland desertification. Acta Prataculturae Sinica, 2013, 22(5): 44-51. [21] Zhang H, Shi P J, Zheng Q H. Research progress in relationship between shrub invasion and soil heterogeneity in a natural semi-arid grassland. Acta Phytoecologica Sinica, 2001, 25(3): 366-370. [22] Kang J. Soil Microbial Biomass Carbon and Nitrogen in Different Grassland Types on the Western Slopes of the Helan Mountains, China[D]. Lanzhou: Lanzhou University, 2006. [23] Martikainen P J, Palojarvi A. Evaluation of the fumigation extraction method for the determination of microbial C and N in a range of forest soils. Soil Biology and Biochemistry, 1990, 22: 797-802. [24] Mazzarino M J, Oliva L, Abril A, et al . Factors affecting nitrogen dynamics in a semiarid woodland. Plant and Soil, 1991, 138: 85-98. [25] Li X Z, Qu Q H. Soil microbial biomass carbon and nitrogen in Mongolian grassland. Acta Pedologica Sinica, 2002, 39(1): 97-104. [26] Zhao J, Yang J, Shao Y Q. Microbiological quantitive assessment on soil health in a degraded grassland microbiological quantitative assessment on soil health in a degraded grassland. Journal of Agro-Environment Science, 2007, 26(6): 2090-2094. [2] 吴建国, 艾丽. 祁连山3种典型生态系统土壤微生物活性和生物量碳氮含量. 植物生态学报, 2008, 32(2): 465-476. [4] 杨成德, 龙瑞军, 陈秀蓉, 等. 东祁连山高寒草甸土壤微生物量及其与土壤物理因子相关性特征. 草业学报, 2007, 16(4): 62-68. [5] 文都日乐, 李刚, 张静妮, 等. 呼伦贝尔不同草地类型土壤微生物量及土壤酶活性研究. 草业学报, 2010, 19(5): 94-102. [6] 唐玉姝, 魏朝富, 颜廷梅, 等. 土壤质量生物学指标研究进展. 土壤, 2007, 39(2): 157-163. [7] 周焱, 徐宪根, 王丰, 等. 武夷山不同海拔梯度土壤微生物生物量、微生物呼吸及其商值(qMB, qCO 2 ). 生态学杂志, 2009, 28(2): 265-269. [9] 付华, 王彦荣, 吴彩霞, 等. 放牧对阿拉善荒漠草地土壤性状的影响. 中国沙漠, 2002, 22(4): 339-343. [10] 周志宇, 颜淑云, 秦彧, 等. 阿拉善干旱荒漠区灌木多样性的特点. 干旱区资源与环境, 2009, 23(9): 146-150. [13] 熊小刚, 韩兴国. 资源岛在草原灌丛化和灌丛化草原中的作用. 草业学报, 2006, 15(1): 9-14. [15] 尹传华, 冯固, 田长彦, 等. 干旱区柽柳灌丛下土壤有机质、盐分的富集效应研究. 中国生态农业学报, 2008, 16(1): 263-265. [16] 刘冰, 赵文智, 杨荣. 荒漠绿洲过渡带柽柳灌丛沙堆特征及其空间异质性. 生态学报, 2008, 28(4): 1446-1455. [18] 张璞进, 杨劼, 宋炳煜, 等. 藏锦鸡儿群落土壤资源空间异质性. 植物生态学报, 2009, 33(2): 338-346. [19] 单立山, 李毅, 董秋莲, 等. 红砂根系构型对干旱的生态适应. 中国沙漠, 2012, 32(5): 1283-1290. [20] 金云翔, 徐斌, 杨秀春, 等. 不同沙化程度草原地下生物量及其环境因素特征. 草业学报, 2013, 22(5): 44-51. [21] 张宏, 史培军, 郑秋红. 半干旱地区天然草地灌丛化与土壤异质性关系研究进展. 植物生态学报, 2001, 25(3): 366-370. [22] 康健. 贺兰山西坡不同草地类型土壤微生物碳、氮特征[D]. 兰州: 兰州大学, 2006. [25] 李香真, 曲秋皓. 蒙古高原草原土壤微生物量碳氮特征. 土壤学报, 2002, 39(1): 97-104. [26] 赵吉, 杨劼, 邵玉琴. 退化草原土壤健康的微生物学量化评价. 农业环境科学学报, 2007, 26(6): 2090-2094. |