[1] Coen E S.The war of the whorls: genetic interactions controlling flower development. Nature, 1991, 353(6339): 31-37. [2] Ma H, Depamphilis C.The ABCs of floral evolution. Cell, 2000, 101(1): 5-8. [3] Angenent G C, Franken J, Busscher M, et al.A novel class of MADS box genes is involved in ovule development in Petunia. Plant Cell, 1995, 7(10): 1569-1582. [4] Colombo L, Franken J, Koetje E, et al.The Petunia MADS-box gene FBP11 determines ovule identity. Plant Cell, 1995, 7(11): 1859-1868. [5] Benedito V A, Angenent G C, Tuyl J M, et al.Lilium longiflorum and molecular floral development: The ABCDE model. Acta Horticulturae, 2004, 651(1): 83-89. [6] Buchner P, Boutin J P.A MADS box transcription factor of the AP1/AGL9 subfamily is also expressed in the seed coat of pea (Pisum sativum) during development. Plant Molecular Biology, 1998, 38(6): 1253-1255. [7] Gu Q, Ferrandiz C, Yanofsky M F, et al.The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development, 1998, 125(8): 1509-1517. [8] Ishikawa M, Ohmori Y, Tanaka W, et al.The spatial expression patterns of DROOPING LEAF orthologs suggest a conserved function in grasses. Genes & Genetic Systems, 2009, 84: 137-146. [9] Agrawal G K, Abe K, Yamazaki M, et al.Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-of-function mutants of the OsMADS1 gene. Plant Molecular Biology, 2005, 59: 125-135. [10] Arora R, Agarwal P, Ray S, et al.MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics, 2007, 8: 242. [11] Cui R, Han J, Zhao S, et al.Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). Plant Journal, 2010, 61: 767-781. [12] Lin X L, Wu F, Du X Q, et al.The pleiotropic SEPALLATA-like gene OsMADS34 reveals that the ‘empty glumes’ of rice (Oryza sativa) spikelets are in fact rudimentary lemmas. New Phytologist, 2013, 202(2): 689-702. [13] Zhao T, Ni Z, Dai Y, et al.Characterization and expression of 42 MADS-box genes in wheat (Triticum aestivum L.). Molecular Genetics and Genomics, 2006, 276: 334-350. [14] Paolacci A R, Tanzarella O A, Porceddu E, et al.Molecular and phylogenetic analysis of MADS-box genes of MIKC type and chromosome location of SEP-like genes in wheat (Triticum aestivum L.). Molecular Genetics and Genomics, 2007, 278: 689-708. [15] Li H F, Han Y, Liu M J, et al.Expression patterns of MADS-box genes related to flower development of wheat. Acta Agronomica Sinica, 2016, 42(7): 1067-1073. 李海峰, 韩英, 刘梦佳, 等. 小麦花发育MADS-box基因的表达模式分析. 作物学报, 2016, 42(7): 1067-1073. [16] Zhao X Y, Cheng Z J, Zhang X S, et al.Overexpression of TaMADS1, a SEPALLATA-like gene in wheat, causes early flowering and the abnormal development of floral organs in Arabidopsis. Planta, 2006, 223: 698-707. [17] Wei B, Zhang R, Guo J, et al.Genome-wide analysis of the MADS-Box gene family in Brachypodium distachyon. PLos One, 2014, 9(1): e84781. [18] Dou Y H, Han M M, Sun Q X, et al.Alternative splicing and expression pattern analyses of two MADS-box genes AGL6 and FUL1 in Brachypodium distachyon. Journal of Agricultural Biotechnology, 2015, 23(4): 459-468. 窦艳华, 韩萌萌, 孙其信, 等. 二穗短柄草 MADS-box 基因AGL6和FUL1的可变拼接和表达模式分析. 农业生物技术学报, 2015, 23(4): 459-468. [19] Li H F, Dou Y H, Liu N, et al.RNA interference vector construction of AGAMOUS LIKE6 genes in bread wheat and Brachypodium distachyon. Acta Agriculturae Boreali-occidentalis Sinica, 2015, 24(10): 22-27. 李海峰, 窦艳华, 刘楠, 等. 普通小麦和短柄草AGAMOUS LIKE6基因RNA干扰载体的构建. 西北农业学报, 2015, 24(10): 22-27. [20] Zhang M Q, Zhang J Y, Liu Z P, et al.Cloning and analysis of the MADS-box gene WM8 of Elymus nutans. Acta Prataculturae Sinica, 2012, 21(4): 141-150. 张妙青, 张吉宇, 刘志鹏, 等. 垂穗披碱草MADS-box基因WM8克隆及分析. 草业学报, 2012, 21(4): 141-150. [21] Zhu T C.Biology and ecology of Leymus chinensis. Changchun: Jilin Science & Technology Publishing House, 2004: 1-3. 祝廷成. 羊草生物生态学. 长春: 吉林科学技术出版社, 2004: 1-3. [22] Guo B Z.The flora of Chinense. Beijing: Science Press, 1987: 19. 郭本兆. 中国植物志. 北京: 科学出版社, 1987: 19. [23] Ren W W, Qian J, Zheng S Z.A comparative study on genetic differentiation of Leymus chinensis in different geographic populations. Acta Ecologica Sinica, 1999, 19(5): 689-696. 任文伟, 钱吉, 郑师章. 不同地理种群羊草的遗传分化研究. 生态学报, 1999, 19(5): 689-696. [24] Yang Y F, Liu G C, Zhang B T.An analysis of age structure and the strategy for asexual propagation of Aneurolepidium chinense population. Acta Botanica Sinica, 1995, 37: 147-153. 杨允菲, 刘庚长, 张保田. 羊草种群年龄结构及无性繁殖对策的分析. 植物学报, 1995, 37: 147-153. [25] Huang Z H, Zhu J M, Mu X J, et al.Advances on the mechanism of low sexual reproductivity of Leymus chinensis. Grassland of China, 2002, 24: 55-60. 黄泽豪, 朱锦懋, 母锡金, 等. 羊草有性繁殖力低的成因研究进展. 中国草地, 2002, 24: 55-60. [26] Wang M L.A study on seed production of Aneurolepidium chinensis. Grassland of China, 1998, 1: 18-20. 王梦龙. 羊草结实特性的研究. 中国草地, 1998, 1: 18-20. [27] Zhou Q Y, Jia J T, Huang X, et al.The large-scale investigation of gene expression in Leymus chinensis stigmas provides a valuable resource for understanding the mechanisms of poaceae self-incompatibility. BMC Genomics, 2014, 15: 399. [28] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25(4): 402-408. [29] Pelaz S, Ditta G S, Baumann E, et al.B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 2000, 405: 200-203. [30] Theissen G, Saedler H.Plant biology-Floral quartets. Nature, 2001, 409: 469-471. [31] Zahn L M, Kong H, Leebens-Mack J H, et al. The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics, 2005, 169(4): 2209-2223. [32] Malcomber S T, Kellogg E A.Heterogeneous expression patterns and separate roles of the SEPALLATA gene LEAFY HULL STERILE1 in grasses. Plant Cell, 2004, 16: 1692-1706. [33] Cacharron J, Saedler H, Theissen G.Expression of MADS-box genes ZMM8 and ZMM14 during inflorescence development of Zea mays discriminates between the upper and the lower floret of each spikelet. Development Genes and Evolution, 1999, 209: 411-420. [34] Laudencia-Chingcuanco D, Hake S.The indeterminate floral apex1 gene regulates meristem determinacy and identity in the maize inflorescence. Development, 2002, 129: 2629-2638. |