[1] Bewley J D, Black M.Seeds: Physiology of development and germination. New York: Springer, 1994: 199-271. [2] Penfield S, Hall A.A role for multiple circadian clock genes in the response to signals that break seed dormancy in Arabidopsis. The Plant Cell, 2009, 21: 1722-1732. [3] Chao W, Foley M, Dogramac M, et al. Alternating temperature breaks dormancy in leafy spurge seeds and impacts signaling networks associated with HY5. Functional & Integrative Genomics, 2011, 11: 637-649. [4] Huang X H, Hu X W, Xu Z H, et al. Effects of exogenous hormones on the dormancy and germination of Leymus chinensis. Acta Prataculturae Sinica, 2013, 22(5): 183-189. 黄晓辉, 胡小文, 徐宗海, 等. 羊草种子休眠和萌发的激素调控研究. 草业学报, 2013, 22(5): 183-189. [5] Chiwocha S D S, Cutler A J, Abrams S R, et al. The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. The Plant Journal, 2005, 42(1): 35-48. [6] Mitchum M G, Yamaguchi S, Hanada A, et al. Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development. The Plant Journal, 2006, 45: 804-818. [7] Hirano K, Ueguchi-Tanaka M, Matsuoka M.GID1-mediated gibberellin signaling in plants. Trends in Plant Science, 2008, 13: 192-199. [8] Nambara E, Marion-Poll A.ABA action and interactions in seeds. Trends in Plant Science, 2003, 8: 213-217. [9] Nambara E, Okamoto M, Tatematsu K, et al. Abscisic acid and the control of seed dormancy and germination. Seed Science Research, 2010, 20: 55-67. [10] Nambara E, Marion-Poll A.Abscisic acid biosynthesis and catabolism. Annual Review of Plant Biology, 2005, 56: 165-185. [11] Kushiro T, Okamoto M, Nakabayashi K, et al. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8'-hydroxylases: Key enzymes in ABA catabolism. The EMBO Journal, 2004, 23: 1647-1656. [12] Finkelstein R R, Gampala S S L, Rock C D. Abscisic acid signaling in seeds and seedlings. The Plant Cell, 2002, 14: 15-45. [13] Yamauchi Y, Ogawa M, Kuwahara A, et al. Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. The Plant Cell, 2004, 16: 367-378. [14] Vaistij F E, Gan Y, Penfield S, et al. Differential control of seed primary dormancy in Arabidopsis ecotypes by the transcription factor Spatula. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110: 10866-10871. [15] Toh S, Imamura A, Watanabe A, et al. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in arabidopsis seeds. Plant Physiology, 2008, 146: 1368-1385. [16] Zhang N, Hasenstein K H.Distribution of expansins in graviresponding maize roots. Plant and Cell Physiology, 2000, 41: 1305-1312. [17] Li Y, Jones L, McQueen-Mason S. Expansins and cell growth. Current Opinion in Plant Biology, 2003, 6: 603-610. [18] Nakaune M, Hanada A, Yin Y G, et al. Molecular and physiological dissection of enhanced seed germination using short-term low-concentration salt seed priming in tomato. Plant Physiology and Biochemistry, 2012, 52: 28-37. [19] Zhu T C.Biology and ecology of Leymus chinensis. Changchun: Jilin Science & Tecnology Publishing House, 2004: 1-3. 祝廷成. 羊草生物生态学. 长春: 吉林科学技术出版社, 2004: 1-3. [20] Zhao C X, Yang Y F, Zhang G T, et al. Study on germination rate of sheepgrass seeds. Grassland of China, 1986, (5): 54-56, 80. 赵传孝, 杨根凤, 张国瞳, 等. 羊草种子发芽率的研究. 中国草原, 1986, (5): 54-56, 80. [21] Gu A L, Yi J, Roman H, et al. Effects of low-temperatures on seed germination of Leymus chinensis and Pascopyrum smithii. Chinese Journal of Grassland, 2005, 27(2): 50-54. 谷安琳, 易津, Roman Holubowicz, 等. 低温对羊草和冰草种子萌发率的影响. 中国草地学报, 2005, 27(2): 50-54. [22] Ma H Y, Liang Z W, Chen Y.Research progress on improving germination rate of Leymus chinensis. Grassland of China, 2005, (4): 64-68. 马红媛, 梁正伟, 陈渊. 提高羊草种子发芽率方法研究进展. 中国草地, 2005, (4): 64-68. [23] Ma H Y, Liang Z W, Kong X J, et al. Effects of salinity, temperature and their interaction on the germination percentage and seedling growth of Leymus chinensis. Acta Ecologica Sinica, 2008, 28(10): 4710-4717. 马红媛, 梁正伟, 孔祥军, 等. 盐分、温度及其互作对羊草种子发芽率和幼苗生长的影响. 生态学报, 2008, 28(10): 4710-4717. [24] Lin J X, Li X Y, Zhang Z J, et al. Effect of temperature, salinity, alkalinity and their interactions on seed germination and seedling growth of Leymus chinensis. Acta Agrestia Sinca, 2011, (6): 1005-1009. 蔺吉祥, 李晓宇, 张兆军, 等. 温度与盐碱胁迫交互作用对羊草种子萌发与幼苗生长的影响. 草地学报, 2011, (6): 1005-1009. [25] Lin J X, Shao S, Sui D, et al. Comparisons of several methods of improving seed germination percentage of Leymus chinensis. Chinese Journal of Grassland, 2014, 36(3): 47-51. 蔺吉祥, 邵帅, 隋丹, 等. 几种提高羊草种子发芽率方法的比较. 中国草地学报, 2014, 36(3): 47-51. [26] He X Q, Hu X W, Wang Y R.Study on seed dormancy mechanism and breaking technique of Leymus chinensis. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(1): 120-125. 何学青, 胡小文, 王彦荣. 羊草种子休眠机制及破除方法研究. 西北植物学报, 2010, 30(1): 120-125. [27] Hu X W, Huang X H, Wang Y R.Hormonal and temperature regulation of seed dormancy and germination in Leymus chinensis. Plant Growth Regulation, 2012, 67: 199-207. [28] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408. [29] Yan A, Wu M J, Yan L M, et al. AtEXP2 is involved in seed germination and abiotic stress response in Arabidopsis. Plos One, 2014, 9(1): e85208. [30] Chen F, Bradford K J.Expression of an expansin is associated with endosperm weakening during tomato seed germination. Plant Physiology, 2000, 124: 1265-1274. [31] Cosgrove D J.Loosening of plant cell walls by expansins. Nature, 2000, 407: 321-326. [32] Penfield S, Josse E M, Kannangara R, et al. Cold and light control seed germination through the bHLH transcription factor Spatula. Current Biology, 2005, 15: 1998-2006. [33] Suttle J C, Lulai E C, Huckle L L, et al. Wounding of potato tubers induces increases in ABA biosynthesis and catabolism and alters expression of ABA metabolic genes. Journal of Plant Physiology, 2013, 170: 560-566. [34] Wang X, Jing Y, Zhang B, et al. Glycosyltransferase-like protein ABI8/ELD1/KOB1 promotes Arabidopsis hypocotyl elongation through regulating cellulose biosynthesis. Plant, Cell and Environment, 2015, 38(3): 411-422. [35] Cletus J, Balasubramania V, Vashisht D, et al. Transgenic expression of plant chitinases to enhance disease resistance. Biotechnology Letters, 2013, 35(11): 1719-1732. [36] Zhao C, Zhu J K.The broad roles of CBF genes: From development to abiotic stress. Plant Signaling & Behavior, 2016, 11(8): e1215794. [37] Liu X, Hong L, Li X Y, et al. Improved drought and salt tolerance in transgenic Arabidopsis overexpressing a NAC transcriptional factor from Arachis hypogaea. Bioscience Biotechnology and Biochemistry, 2011, 75(3): 443-450. [38] Li X X, Hou S L, Gao Q, et al. LcSAIN1, a novel salt-induced gene from sheepgrass, confers salt stress tolerance in transgenic Arabidopsis and rice. Plant Cell Physiology, 2013, 54(7): 1172-1185. |