[1] Sun J H, Wang Y R, Yu L.Growth characteristics and their correlation with the yield of Medicago sativa. Acta Prataculturae Sinica, 2004, 13(4): 80-86. 孙建华, 王彦荣, 余玲. 紫花苜蓿生长特性及产量性状相关性研究. 草业学报, 2004, 13(4): 80-86. [2] Yang J H, Zhang G C, Liu X, et al. Study on benefits of alfalfa conserving soil and water. Journal of Soil Erosion and Soil and Water Conservation, 1997, 3(2): 91-96. 杨吉华, 张光灿, 刘霞, 等. 紫花苜蓿保持水土效益的研究. 水土侵蚀与水土保持学报, 1997, 3(2): 91-96. [3] Guo H Q, Ren W B, Xu Z, et al. Progress on researches of transgenic of alfalfa. Journal of Nuclear Agricultural, 2010, 24(1): 55-61. 郭慧琴, 任卫波, 徐柱, 等. 紫花苜蓿转基因研究进展. 核农学报, 2010, 24(1): 55-61. [4] Zhao G Q, Mu P, Zhang B.Research progress on Medicago sativa genetic engineering. Acta Prataculturae Sinica, 2006, 15(6): 9-18. 赵桂琴, 慕平, 张勃. 紫花苜蓿基因工程研究进展. 草业学报, 2006, 15(6): 9-18. [5] Deak M, Kiss G B, Koncz C, et al. Transformation of Medicago by Agrobacterium mediated gene transfer. Plant Cell Reports, 1986, 5(2): 97-100. [6] Park E J, Jeknic Z, Sakamoto A, et al. Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage. Plant Journal, 2004, 40(4): 474-487. [7] Tang L, Cai H, Ji W, et al. Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.). Plant Physiology and Biochemistry, 2013, 71: 22-30. [8] Jiang Q, Zhang J, Guo X, et al. Physiological characterization of transgenic alfalfa (Medicago sativa) plants for improved drought tolerance. International Journal of Plant Sciences, 2009, 170(8): 969-978. [9] Rubio M C, González E M, Minchin F R, et al. Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases. Physiologia Plantarum, 2002, 115(4): 531-540. [10] Sun Z M, Li H B, Zhang L J, et al. Physiological mechanism of the enhanced drought tolerance in transgenic poplar (Populus alba×Populus glandulosa) with codA gene. Chinese Journal of Applied and Environmental Biology, 2017, 23(1): 60-66. 孙振玫, 李红兵, 张丽娟, 等. 转codA基因杨树耐旱性增强的生理机制. 应用与环境生物学报, 2017, 23(1): 60-66. [11] Wang W B, Wang J S, Deng X P, et al. Progress of plant nucleoside two kinase (NDPKs) research. Journal of Agriculture, 2011, 1(6): 1-5. 王文斌, 王金胜, 邓西平, 等. 植物核苷二磷酸激酶(NDPKs)研究进展. 农学学报, 2011, 1(6): 1-5. [12] Tang L, Kim M D, Yang K S, et al. Enhanced tolerance of transgenic potato plants overexpressing nucleoside diphosphate kinase 2 against multiple environmental stresses. Transgenic Research, 2008, 17(4): 705-715. [13] Roychoudhury A, Paul S, Basu S.Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Reports, 2013, 32(7): 985-1006. [14] Kim S H, Ahn Y O, Ahn M J, et al. Cloning and characterization of an Orange gene that increases carotenoid accumulation and salt stress tolerance in transgenic sweetpotato cultures. Plant Physiology and Biochemistry, 2013, 70(1): 445-454. [15] Wang Z, Li H B, Ke Q B, et al. Transgenic alfalfa plants expressing AtNDPK2 exhibit increased growth and tolerance to abiotic stresses. Plant Physiology and Biochemistry, 2014, 84: 67-77. [16] Li H B, Wang Z, Ke Q, et al. Overexpression of codA gene confers enhanced tolerance to abiotic stresses in alfalfa. Plant Physiology and Biochemistry, 2014, 85: 31-40. [17] Wang Z, Ke Q B, Kim M D, et al. Transgenic alfalfa plants expressing the sweet potato Orange gene exhibit enhanced abiotic stress tolerance. Plos One, 2015, 10(5): e0126050. [18] Wang Z, Su G X, Li M, et al. Overexpressing Arabidopsis ABF3 increases tolerance to multiple abiotic stresses and reduces leaf size in alfalfa. Plant Physiology and Biochemistry, 2016, 109: 199-208. [19] Li L H, Wang Y, Hu H Y, et al. Responses of photosynthetic characters and fluorescence parameters of alfalfa with different drought tolerances to drought. Acta Agriculture Boreali Sinica, 2015, 30(4): 126-131. 李立辉, 王岩, 胡海燕, 等. 初花期干旱对不同抗旱性紫花苜蓿光合特征及荧光参数的影响. 华北农学报, 2015, 30(4): 126-131. [20] Chu J M, Meng P, Zhang J S, et al. Effects of soil water stress on the photosynthesis characteristics and chlorophyll fluorescence parameters of Cerasus humilis seedling. Forest Research, 2008, 21(3): 295-300. [21] Silva J M D, Arrabaça M C. Photosynthesis in the water-stressed C4 grass Setaria sphacelata is mainly limited by stomata with both rapidly and slowly imposed water deficits. Physiologia Plantarum, 2004, 121(3): 409-420. [22] Xu W Z, Deng X P, Xu B C, et al. Photosynthetic activity and efficiency of Bothriochloa ischaemum and Lespedeza davurica in mixtures across growth periods under water stress. Acta Physiologiae Plantarum, 2014, 36(4): 1033-1044. [23] Singh S K, Reddy K R.Regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea (Vigna unguiculata (L.) Walp.) under drought. Journal of Photochemistry and Photobiology B: Biology, 2011, 105(1): 40-50. [24] Escalona J M, Tomàs M, Ribascarbo M, et al. Genetic variation of plant water status, water use efficiency and grape yield and quality in response to soil water availability in grapevine (Vitis vinifera L.). Acta Horticulturae, 2012, 931(931): 143-150. [25] Guo X P, Liu Z P, Wang Q M, et al. Study on photosynthetic compensatory effects of PEG osmotic stress and rewatering on maize. Journal of Hohai University (Natural Sciences), 2007, 35(3): 286-290. 郭相平, 刘展鹏, 王青梅, 等. 采用PEG模拟干旱胁迫及复水玉米光合补偿效应. 河海大学学报(自然科学版), 2007, 35(3): 286-290. [26] Sakamoto A, Murata A N.Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Molecular Biology, 1998, 38(6): 1011-1019. [27] Clavel D, Diouf O, Khalfaoui J L, et al. Genotypes variations in fluorescence parameters among closely related groundnut (Arachis hypogaea L.) lines and their potential for drought screening programs. Field Crops Research, 2006, 96(2): 296-306. [28] Sakamoto A, Valverde R, Chen T H H ,et al.Transformation of Arabidopsis with the codA gene for choline oxidase enhances freezing tolerance of plants. The Plant Journal, 2000, 22(5): 449-453. [29] Yang H M, Zhang X Y, Wang G X.Relationship between stomatal character, photosynthetic character and seed chemical composition in grass pea at different water availabilities. Journal of Agricultural Science, 2004, 142(6): 675-681. [30] Zhao C Q, Lu Z G, Pang Y Z, et al. Effects of soil water stress on photosynthesis characteristic on Taxus media. Journal of Southwest China Normal University (Natural Science), 2003, 28(1): 126-129. 赵昌琼, 芦站根, 庞永珍, 等. 土壤水分胁迫对曼地亚红豆杉光合特性的影响. 西南师范大学学报(自然科学版), 2003, 28(1): 126-129. [31] Zhu J M, Meng P, Zhang J S, et al. Effects of soil water stress on the photosynthesis characteristics and chlorophyll fluorescence parameters of Cerasus humilis seedling. Forest Research, 2008, 21(3): 295-300. 褚建民, 孟平, 张劲松, 等. 土壤水分胁迫对欧李幼苗光合及叶绿素荧光特性的影响. 林业科学研究, 2008, 21(3): 295-300. [32] Nazarli H, Faraji F, Zardashti M R.Effect of drought stress and polymer on osmotic adjustment and photosynthetic pigments of sunflower. Cercetari Agronomice in Moldova, 2011, 44(1): 35-41. [33] Bai C, Rivera S M, Medina V, et al. An in vitro system for the rapid functional characterization of genes involved in carotenoid biosynthesis and accumulation. The Plant Journal, 2014, 77(3): 464-475. [34] Tang Q, Li Y, Yuan Q P.Effects of an ergosterol synthesis inhibitor on gene transcription of terpenoid biosynthesis in Blakeslea trispora. Current Microbiology, 2008, 57(6): 527-531. [35] Li S, Zhao G J, Xu W Z, et al. Responses of old world bluestem root systems to changes in soil water conditions. Acta Prataculturae Sinica, 2016, 25(2): 169-177. 李帅, 赵国靖, 徐伟洲, 等. 白羊草根系形态特征对土壤水分阶段变化的响应. 草业学报, 2016, 25(2): 169-177. [36] Lawlor D W, Cornic G.Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell and Environment, 2002, 25(2): 275-294. [37] Kang J, Choi H, Im M, et al. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell, 2002, 14(2): 343-357. [38] Chong P F, Zeng J J, Shan L S, et al. The physiological response of desert grassland plant Reamuria soongorica under drought stress to exogenous ABA. Acta Agrestia Sinica, 2016, 24(5): 1001-1008. 种培芳, 曾继娟, 单立山, 等. 干旱胁迫下荒漠草地植物红砂幼苗对外源ABA的生理响应. 草地学报, 2016, 24(5): 1001-1008. [39] Choi G, Kim J I, Hong S W, et al. A possible role for NDPK2 in the regulation of auxin-mediated responses for plant growth and development. Plant and Cell Physiology, 2005, 46(8): 1246-1254. [40] Hadi F, Bano A, Fuller M P.The improved phytoextraction of lead (Pb) and the growth of maize (Zea mays L.): The role of plant growth regulators (GA3 and IAA) and EDTA alone and in combinations. Chemosphere, 2010, 80(4): 457-462. |