[1] Liu M C, Li D Q, Wen Y M, et al. The ecological function analysis and evaluation of ecosystem in Sanjiangyuan region. Acta Scientiae Circumstantiae, 2005, 25(9): 1280-1286. 刘敏超, 李迪强, 温琰茂, 等. 三江源地区生态系统生态功能分析及其价值评估. 环境科学学报, 2005, 25(9): 1280-1286. [2] Jiang S L, Hu Y F, Pu Q, et al. Changes in soil nitrogen characteristics during grassland desertification in Northwest Sichuan. Acta Ecologica Sinica, 2016, 36(15): 4644-4653. 蒋双龙, 胡玉福, 蒲琴, 等. 川西北高寒草地沙化过程中土壤氮素变化特征. 生态学报, 2016, 36(15): 4644-4653. [3] Pu Q, Hu Y F, Li H W, et al. Characteristics of organic carbon and nitrogen in rhizosphere soil under 2 sand-fixation shrub of alpine desertified grassland. Journal of Soil and Water Conservation, 2016, 30(2): 272-276. 蒲琴, 胡玉福, 李亨伟, 等. 高寒草地2种固沙灌木根际土壤碳氮特征. 水土保持学报, 2016, 30(2): 272-276. [4] Li S J, Jia C.Formation reasons and restoration strategy of the alpine degraded grassland in Northwest of Sichuan. Journal of Sichuan Forestry Science and Technology, 2013, 34(6): 89-92. 李守剑, 贾程. 川西北高寒草地退化成因及恢复对策. 四川林业科技, 2013, 34(6): 89-92. [5] Cui Y.Effect on production performance and soil properties of artificial grassland mixed sowing oats and common vetch. Lanzhou: Gansu Agricultural University, 2014. 崔莹. 燕麦和箭筈豌豆混播对人工草地生产性能及土壤性质的影响. 兰州: 甘肃农业大学, 2014. [6] Yang Y F, Wu L W, Lin Q Y, et al. Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland. Global Change Biology, 2013, 19(2): 637-648. [7] Kennedy A C, Smith K L.Soil microbial diversity and the sustainability of agricultural soils. Plant & Soil, 1995, 170: 75-86. [8] Fang Y, Wang W, Yao X D, et al. Soil microbial community composition and environmental controls in northern temperate steppe of China. Acta Scientiarum Naturalium Universitatis Pekinensis (Natural Science Edition), 2017, 53(1): 142-150. 方圆, 王娓, 姚晓东, 等. 我国北方温带草地土壤微生物群落组成及其环境影响因素. 北京大学学报(自然科学版), 2017, 53(1): 142-150. [9] Mitchell R J, Keith A M, Potts J M, et al. Overstory and understory vegetation interact to alter soil community composition and activity. Plant & Soil, 2012, 352(1/2): 65-84. [10] Wu X D, Zhang X J, Xie Y Z, et al. Vertical distribution characters of soil organic carbon and soil enzyme activity in alfalfa field with different growing years. Acta Prataculturae Sinica, 2013, 22(1): 245-251. 吴旭东, 张晓娟, 谢应忠, 等. 不同种植年限紫花苜蓿人工草地土壤有机碳及土壤酶活性垂直分布特征. 草业学报, 2013, 22(1): 245-251. [11] Jia Q M, Chen Y Y, Yang Y, et al. Effect of different artificial grassland on soil physic-chemical properties and microbial quantities of abandoned land in arid area. Journal of Soil and Water Conservation, 2014, 28(1): 178-220. 贾倩民, 陈彦云, 杨阳, 等. 不同人工草地对干旱区弃耕地土壤理化性质及微生物数量的影响. 水土保持学报, 2014, 28(1): 178-220. [12] Yang X Z, Wang C T, Zi H B, et al. Soil microbial community structure characteristics in artificial grassland with different cultivation years in the headwater region of Three Rivers, China. Chinese Journal of Applied and Environmental Biology, 2015, 21(2): 341-349. 杨希智, 王长庭, 字洪标, 等. 三江源区不同建植年限人工草地土壤微生物群落结构特征. 应用与环境生物学报, 2015, 21(2): 341-349. [13] Jiang R T, Li F C, Shen S T.Effects of different age of alpine desertification land planted branchy tamarisk on soil aggregates and organic carbon on Northwestern Sichuan. Journal of Soil and Water Conservation, 2018, 32(1): 197-203. 江仁涛, 李富程, 沈凇涛. 不同年限红柳恢复川西北高寒沙地对土壤团聚体和有机碳的影响. 水土保持学报, 2018, 32(1): 197-203. [14] Zheng Q Y, Liu G, Xiao B X, et al. Effect of grazing intensity on species richness and biomass of alpine meadow in Northwest Sichuan. Pratacultural Science, 2017, 34(7): 1390-1396. 郑群英, 刘刚, 肖冰雪, 等. 放牧对川西北高寒草甸植物物种丰富度和生物量的影响. 草业科学, 2017, 34(7): 1390-1396. [15] She S F, Hu Y F, Shu X Y, et al. Variation of C, N and P stoichiometry in dominant understory plants during stand development in Salix cupularis plantations in alpine grassland in Northwestern Sichuan, China. Acta Prataculturae Sinica, 2018, 27(4): 123-130. 佘淑凤, 胡玉福, 舒向阳, 等. 川西北高寒沙地不同年限高山柳林下优势植物碳、氮、磷生态化学计量特征. 草业学报, 2018, 27(4): 123-130. [16] Gao X F, Han G D, Zhang G G.Soil microbial community structure and composition of Stipa breviflora on the desert steppe. Acta Ecologica Sinica, 2017, 37(15): 5129-5136. 高雪峰, 韩国栋, 张国刚. 短花针茅荒漠草原土壤微生物群落组成及结构. 生态学报, 2017, 37(15): 5129-5136. [17] Caporaso J G, Lauber C L, Walters W A, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(Supple 1): 4516-4522. [18] Zinger L, Shahnavaz B, Baptist F, et al. Microbial diversity in alpine tundra soils correlates with snow cover dynamics. The ISME Journal, 2009, 3(7): 850. [19] Magoĉ T, Salzberg S L.FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 2011, 27(21): 2957-2963. [20] Zhao A H, Du X J, Zang J, et al. Soil bacterial diversity in the Baotianman deciduous broad-leaved forest. Biodiversity Science, 2015, 23(5): 649-657. 赵爱花, 杜晓军, 臧婧, 等. 宝天曼落叶阔叶林土壤细菌多样性. 生物多样性, 2015, 23(5): 649-657. [21] Stackebrandt E, Goebel B M.Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic Bacteriology, 1994, 44(14): 846-849. [22] Cole J R, Wang Q, Fish J A, et al. Ribosomal database project: Data and tools for high throughput rRNA analysis. Nucleic Acids Research, 2014, 42(Database): D633-D642. [23] Wang Q, Garrity G M, Tiedje J M, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 2007, 73(16): 5261-5267. [24] Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 2013, 41(Database): D590-D596. [25] Edgar R C.MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 2004, 32(5): 1792-1797. [26] Li B, Zhang X, Guo F, et al. Characterization of tetracycline resistant bacterial community in saline activated sludge using batch stress incubation with high-throughput sequencing analysis. Water Research, 2013, 47(13): 4207-4216. [27] Mao Y F, Yu W Z, Wang Z H, et al. Effects of applying vitamin B6 to soil on soil microbial diversity of apple orchard. Journal of Plant Nutrition and Fertilizers, 2018, 24(2): 394-403. 毛云飞, 于文章, 王增辉, 等. 土施维生素B6对苹果园土壤微生物多样性的影响. 植物营养与肥料学报, 2018, 24(2): 394-403. [28] Spain A M, Krumholz L R, Elshahed M S.Abundance, composition, diversity and novelty of soil Proteobacteria. The ISME Journal, 2009, 3(8): 992-1000. [29] Fierer N, Bradford M A, Jackson R B.Toward an ecological classification of soil bacteria. Ecology, 2007, 88(6): 1354-1364. [30] Dion P.Extreme views on prokaryote evolution//Microbiology of extreme soils. Berlin, Heidelberg: Springer, 2008: 45-70. [31] Zhu L, Huang J, Chen T Y, et al. Root-associated and endophytic fungal community diversity in Xanthoceras sorbifolia bunge plantation. Journal of Northeast Forestry University, 2015, 43(5): 105-111. 朱琳, 黄建, 陈天阳, 等. 文冠果人工林根际土壤真菌和根系内生真菌群落多样性. 东北林业大学学报, 2015, 43(5): 105-111. [32] Yelle D J, Ralph J, Lu F, et al. Evidence for cleavage of lignin by a brown rot basidiomycete. Environmental Microbiology, 2008, 10(7): 1844-1849. [33] Christina B, Kathrin F, Stephan N, et al. Estimating the phanerozoic history of the Ascomycota lineages: Combining fossil and molecular data. Molecular Phylogenetics and Evolution, 2014, 78(1): 386-398. |