Welcome to Acta Prataculturae Sinica ! Today is Share:

Acta Prataculturae Sinica ›› 2019, Vol. 28 ›› Issue (7): 123-131.DOI: 10.11686/cyxb2018813

• Orginal Article • Previous Articles     Next Articles

Photochemical activity in flag leaves of winter wheat when following maize, peanut, or a maize-peanut intercrop in a crop rotation

WANG Fei, YIN Fei, LONG Hao-qiang, LI Xue, WU Yan-yan, JIAO Nian-yuan*, MA Chao, FU Guo-zhan   

  1. College of Agriculture, Henan University of Science and Technology, Dryland Agricultural Engineering Technology Research Center of Henan, Luoyang 471000, China
  • Received:2018-12-14 Revised:2019-04-22 Online:2019-07-20 Published:2019-07-20

Abstract: The aim of this research was to verify that photosynthetic activity of flag leaves and yield, in winter wheat, is enhanced when following a maize-peanut intercrop in a crop rotation. Winter wheat was sown into plots in a field experiment which had previously grown a maize-peanut intercrop (ICR), maize (MCR) or peanut (PCR), either without, or with phosphate fertilizer at 180 kg P2O5·ha-1 (P0 or P1, respectively). Data gathered included: soil moisture content before wheat sowing, wheat flag leaf gas exchange parameters, and characteristics of photosystem Ⅱ (PSⅡ), photosystem Ⅰ (PSⅠ) and their interrelationships. Compared with MCR, ICR significantly (P<0.05) increased soil moisture content at wheat sowing, the net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), the performances of electron donor (Wk) and acceptor (Vj) sites of the electron transport chain in the PSⅡ reaction center in flag leaves of winter wheat; and enhanced the absorbed energy flux (ABS/CSo), trapped energy flux (TRo/CSo), electron transport flux (ETo/CSo) per cross section (CS) in flag leaves of winter wheat. Compared to MCR, ICR significantly improved the maximum quantum yield of primary photochemistry (φpo), energy conversion efficiency (Ψo), electron transfer efficiency (δRo), PSⅠ performance (ΔI/Io), coordination between PSⅡ and PSⅠ (ΦPSⅠ/PSⅡ) in flag leaves, and the yield of winter wheat; and increased the φpo and δRo at the milk-stage of grain development, as compared to PCR. Supplying phosphate fertilizer increased the Pn, ABS/CSo, TRo/CSo, ETo/CSo, φpo, Ψo, δRo, ΔI/Io and ΦPSⅠ/PSⅡ in flag leaves of winter wheat. The data indicate that intercropping peanut with maize in a crop rotation benefited the following crop in the rotation. In this experiment, following a maize-peanut intercrop, the activity of light reaction centers in flag leaves of winter wheat were enhanced, so the net photosynthetic rate was increased. Conservation of soil moisture during the maize-peanut intercrop phase of the rotation appears to be an important contributing factor in these results.

Key words: maize intercropping peanut crops for rotation, soil moisture content, winter wheat, photochemical activity, photosystem