[1] Yu T Y, Sun X S, Shi C R, et al. Advances in soil acidification hazards and control techniques. Chinese Journal of Ecology, 2014, 33(11): 3137-3143. 于天一, 孙秀山, 石程仁, 等. 土壤酸化危害及防治技术研究进展. 生态学杂志, 2014, 33(11): 3137-3143. [2] Zhuang G T.Current situation of national soil pollution and strategieson prevention and control. Bulletin of Chinese Academy of Sciences, 2015, 30(4): 477-483. 庄国泰. 我国土壤污染现状与防控策略. 中国科学院院刊, 2015, 30(4): 477-483. [3] Hu Y W.Study on the treatment of sulphate reducing bacteria in heavy metal mine wastewater. Kunming: Kunming University of Science and Technology, 2017. 胡远伟. 重金属矿山废水的硫酸盐还原菌处理研究. 昆明: 昆明理工大学, 2017. [4] Macklin M G, Brewer P A, Balteanu D, et al. The long term fate and environmental significance of contaminant metals released by the January and March 2000 mining tailings dam failures in Maramures County, upper Tisa Basin, Romania. Applied Geochemistry, 2003, 18(2): 241-257. [5] Zhou J J, Zhou J, Feng R G. Status of China’s heavy metal contamination in soil and its remediation strategy. Bulletin of Chinese Academy of Sciences, 2014, 29(3):272, 315-320, 350. 周建军, 周桔, 冯仁国. 我国土壤重金属污染现状及治理战略. 中国科学院院刊, 2014, 29(3):272, 315-320, 350. [6] Rascio N, Navariizzo F.Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science, 2011, 180(2): 169-181. [7] Verbruggen N, Hermans C, Schat H.Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist, 2009, 181(4): 759-776. [8] Hu P J, Li Z, Zhong D X, et al. Research progress on the phytoextraction of heavy metal contaminated soils in China. Plant Physiology Communications, 2014, 50(5): 577-584. 胡鹏杰, 李柱, 钟道旭, 等. 我国土壤重金属污染植物吸取修复研究进展. 植物生理学报, 2014, 50(5): 577-584. [9] He L.Responses of seedling to neighboring plant soil acidity stress. Zhejiang: Zhejiang University, 2015. 何磊. 土壤酸胁迫下幼苗对邻体植物的响应. 浙江: 浙江大学, 2015. [10] Hou X L, Chang Q S, Liu G F, et al. Two lead-hyperaccumulator: Pogonatherum crinitum and Lsache globosa. Chinese Journal of Environmental Engineering, 2012, 6(3): 989-994. 侯晓龙, 常青山, 刘国锋, 等. Pb超富集植物金丝草(Pogonatherum crinitum)、柳叶箬(Lsache globosa). 环境工程学报, 2012, 6(3): 989-994. [11] Han H, Chen S Y, Zhao Y M, et al. Influence of lead stress on the ascorbate-glutathione cycle and subcellular distribution in leaves and roots of Pogonatherum crinitum. Journal of Agro-Environment Science, 2018, 37(4): 656-664. 韩航, 陈顺钰, 赵雅曼, 等. 铅胁迫对金丝草AsA-GSH循环及铅积累的影响. 农业环境科学学报, 2018, 37(4): 656-664. [12] Xu H H, Li N, Liu S J, et al. Research progress in seed germination and its control. Acta Agronomica Sinica, 2014, 40(7): 1141-1156. 徐恒恒, 黎妮, 刘树君, 等. 种子萌发及其调控的研究进展. 作物学报, 2014, 40(7): 1141-1156. [13] Hou X L, Liu A Q, Cai L P, et al. Effects of Pb stress on seed germination and seedlings growth of pogonatherum crinitum as Pb accumulator plant. Journal of Southwest Forestry College, 2013, 33: 54-58. 侯晓龙, 刘爱琴, 蔡丽平, 等. Pb 胁迫对富集植物金丝草种子萌发和幼苗生长的影响. 西南林业大学学报, 2013, 33: 54-58. [14] Wang Y S, Hou X L, Wu P F, et al. Analysis of the characteristics and the evalua-tion of heavy metal pollutions in the desertedland-area left-over by the rare earth mining in Changting, Fujian. Journal of Safety and Environment, 2014, 14(4): 259-262. 王友生, 侯晓龙, 吴鹏飞, 等. 长汀稀土矿废弃地土壤重金属污染特征及其评价. 安全与环境学报, 2014, 14(4): 259-262. [15] Hou X L.Response mechanism of Pb hyperaccumulator Pogonatherum crinitum to Pb stress. Fujian: Fujian Agriculture and Forestry University, 2013. 侯晓龙. 铅超富集植物金丝草对Pb胁迫的响应机制研究. 福建: 福建农林大学, 2013. [16] Lu R K.Methods of soil agricultural chemistry analysis. Beijing: China Agricultural Science and Technology Press, 2000. 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. [17] Wang Y S, Yang Z M.Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassiatora L. Plant & Cell Physiology, 2006, 46(12): 1915-1923. [18] Liu N, Lin Z F.Use of evans blue for testing cell viability of intact leaves of plant. Plant Physiology Communications, 2011, 47(6): 570-574. 刘楠, 林植芳. 用伊文思蓝染色法检测植物整体叶片的细胞活性. 植物生理学报, 2011, 47(6): 570-574. [19] Wu X F, Ni P, Yang T, et al. Evaluation of drought and salt resistance of 10 species Asteraceae. Chinese Journal Ecology, 2018, 37(7): 1959-1968. 吴晓凤, 倪沛, 杨涛, 等. 10种菊科植物的抗旱性与抗盐性评价. 生态学杂志, 2018, 37(7): 1959-1968. [20] Ouyang L.The influence of acid aluminum stress and soil amendment on the growth of trifolium repens. Hunan: Hunan Agricultural University, 2016. 欧阳玲. 酸铝胁迫和土壤改良剂对白三叶生长的影响. 湖南: 湖南农业大学, 2016. [21] Yang S Y, Li J C, Hui W K, et al. Study on the physiological mechanism for seedling resistance to strong acid stress in Acacia auriculiformis. Ecological Science, 2017, 36(5): 11-17. 杨舒贻, 李俊成, 惠文凯, 等. 强酸胁迫下大叶相思幼苗抗性生理机制研究. 生态科学, 2017, 36(5): 11-17. [22] Zhang Y X, Zhang Q, Li X, et al. Effects of pH and cadmium on the seed germination and seedling growth of Amorpha fruticosa L. Environmental Chemistry, 2012, 31(10): 1569-1574. 张玉秀, 张倩, 李霞, 等. 不同pH与重金属Cd胁迫对紫穗槐萌发和幼苗生长的影响. 环境化学, 2012, 31(10): 1569-1574. [23] Zhang H Y.Effects of simulated acid rain on seed germination and seedling growth of different type corn (Zea mays). Chinese Journal of Applied Ecology, 2013, 24(6): 1621-1626. 张海艳. 模拟酸雨对不同类型玉米种子萌发和幼苗生长的影响. 应用生态学报, 2013, 24(6): 1621-1626. [24] Xu Y M, Wang C Q, Wu J X, et al. Effects of Mn2+ and Pb2+ on seed germination and seedling growth of Elymus nutans. Acta Prataculturae Sinica, 2018, 27(3): 194-200. 徐雅梅, 王传旗, 武俊喜, 等. Mn2+、Pb2+对野生垂穗披碱草种子萌发与幼苗生长的影响. 草业学报, 2018, 27(3): 194-200. [25] Sun J J, Yu X J, Wang J H, et al. Effects of heavy metals Cu2+,Cd2+ and Pb2+ on seed germination and seedling growth of 8 grasses. Acta Agrestia Sinica, 2018, 26(3): 673-683. 孙金金, 鱼小军, 王金辉, 等. 重金属Cu2+、Cd2+和Pb2+对8种禾草种子萌发和幼苗生长的影响. 草地学报, 2018, 26(3): 673-683. [26] Chen S Y, Han H, Xue L Y, et al. Effects of Pb, Cd, and acid stress on seed germination, seedling growth, and antioxidant enzyme activities of Liquidambar formosana. Journal of Agro-Environment Science, 2018, 37(4): 647-655. 陈顺钰, 韩航, 薛凌云, 等. Pb、Cd和酸胁迫对枫香种子萌发、幼苗生长及体内抗氧化酶活性的影响. 农业环境科学学报, 2018, 37(4): 647-655. [27] Yang G Y, Wan L L, Lei X Q, et al. Effects of lead and chromium on the growth, photosynthetic performance, and antioxidant activity of Scenedesmus obliquus. Acta Scientiae Circumstantiae, 2014, 34(6): 1606-1614. 杨国远, 万凌琳, 雷学青, 等. 重金属铅、铬胁迫对斜生栅藻的生长、光合性能及抗氧化系统的影响. 环境科学学报, 2014, 34(6): 1606-1614. [28] Pan X, Qiu Q, Li J Y, et al. Physiological indexes of six plant species from the tibetan plateau under drought stress. Acta Ecologica Sinica, 2014, 34(13): 3558-3567. 潘昕, 邱权, 李吉跃, 等. 干旱胁迫对青藏高原6种植物生理指标的影响. 生态学报, 2014, 34(13): 3558-3567. [29] Li L, Yang P Z, Ke S W, et al. Effect of low temperature stress on physiological indexes of cold resistance of Stylosanthes guuianensis var. intermedia and S. guianensis ‘TPRC2001-1’. Pratacultural Science, 2018, 35(6): 1409-1415. 李黎, 杨鹏郅, 柯善文, 等. 低温胁迫对细茎柱花草与TPRC2001-1柱花草抗寒生理指标的影响. 草业科学, 2018, 35(6): 1409-1415. [30] Luo J W, Li Y, Su S S, et al. Response of antioxidant enzymes and PCs in root of Neyraudia reynaudiana to Cd, Pb stress. Ecology and Environmental Sciences, 2016, 25(6): 1047-1053. 罗洁文, 李莹, 苏烁烁, 等. 类芦根系抗氧化酶和植物螯合肽对Cd、Pb胁迫的应答. 生态环境学报, 2016, 25(6): 1047-1053. [31] Xu P, Li J, Lü H Y, et al. Effects of drought stress on ultrastructure of chloroplast and mitochondria and membrane lipid peroxidation of Ammodendron argenteum. Arid Zone Research, 2016, 33(1): 120-130. 徐萍, 李进, 吕海英, 等. 干旱胁迫对银沙槐幼苗叶绿体和线粒体超微结构及膜脂过氧化的影响. 干旱区研究, 2016, 33(1): 120-130. [32] Li X G, Bi Y P, Zhao S J, et al. Effects of short-term chilling stress on the photosystems and chloroplast ultrastructure in sweet pepper. Scientia Agricultura Sinica, 2005, (6): 1226-1231. 李新国, 毕玉平, 赵世杰, 等. 短时低温胁迫对甜椒叶绿体超微结构和光系统的影响. 中国农业科学, 2005, (6): 1226-1231. [33] Krzeslowska M.The cell wall in plant cell response to trace metals: Polysaccharide remodeling and its role in defense strategy. Acta Physiologiae Plantarum, 2011, 33(1): 35-51. |