Acta Prataculturae Sinica ›› 2020, Vol. 29 ›› Issue (11): 172-182.DOI: 10.11686/cyxb2019571
Previous Articles Next Articles
MA Yuan, ZHANG De-gang*
Received:
2019-12-30
Revised:
2020-04-23
Online:
2020-11-20
Published:
2020-11-20
Contact:
*E-mail: Supported by:
MA Yuan, ZHANG De-gang. Regulation mechanisms of rhizosphere nutrient cycling processes in grassland: A review[J]. Acta Prataculturae Sinica, 2020, 29(11): 172-182.
[1] Ren J Z. The general theory of grassland agro-ecosystem. Hefei: Anhui Education Press, 2004. 任继周. 草地农业生态系统通论. 合肥: 安徽教育出版社, 2004. [2] Li A, Wu J, Huang J. Distinguishing between human-induced and climate-driven vegetation changes: A critical application of RESTREND in Inner Mongolia. Landscape Ecology, 2012, 27(7): 969-982. [3] Yin Y L, Wang Y Q, Li S X, 尹亚丽, 王玉琴, 李世雄, 等. 围封对退化高寒草甸土壤微生物群落多样性及土壤化学计量特征的影响. 应用生态学报, 2019, 30(1): 127-136. [4] Ma Y, Li L Z, Zhang D G, 马源, 李林芝, 张德罡, 等. 高寒草甸根际土壤化学计量特征对草地退化的响应. 应用生态学报, 2019, 30(9): 3039-3045. [5] Moreau D, Bardgett R D, Finlay R D, [6] Faucon M P, Houben D, Reynoird J P, [7] Merino C, Nannipieri P, Matus F. Soil carbon controlled by plant, microorganism and mineralogy interactions. Journal of Soil Science and Plant Nutrition, 2015, 15(2): 321-332. [8] Zhan Y Y, Xue Z Y, Ren W, 詹媛媛, 薛梓瑜, 任伟, 等. 干旱荒漠区不同灌木根际与非根际土壤氮素的含量特征. 生态学报, 2009, 29(1): 59-66. [9] Wu L K, Lin X M, Lin W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates. Chinese Journal of Plant Ecology, 2014, 38(3): 298-310. 吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 2014, 38(3): 298-310. [10] Zhang F S, Shen J B, Feng G. Rhizosphere ecology: Processes & management. Beijing: China Agricultural University Press, 2009. 张福锁, 申建波, 冯固. 根际生态学——过程与调控. 北京: 中国农业大学出版社, 2009. [11] Zhang D S, Li H B, Shen J B. Strategies for root’s foraging and acquiring soil nutrient in high efficiency under intensive cropping systems. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1547-1555. 张德闪, 李洪波, 申建波. 集约化互作体系植物根系高效获取土壤养分的策略与机制. 植物营养与肥料学报, 2017, 23(6): 1547-1555. [12] Li Y S, Feng C L, Wu X F, 李韵诗, 冯冲凌, 吴晓芙, 等. 重金属污染土壤植物修复中的微生物功能研究进展. 生态学报, 2015, 35(20): 6881-6890. [13] Lu J Y, Duan B H, Yang M, 陆姣云, 段兵红, 杨梅, 等. 植物叶片氮磷养分重吸收规律及其调控机制研究进展. 草业学报, 2018, 27(4): 178-188. [14] Fageria N K, Stone L F. Physical, chemical, and biological changes in the rhizosphere and nutrient availability. Journal of Plant Nutrition, 2006, 29(7): 1327-1356. [15] Hartmann A, Rothballer M, Schmid M. Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant and Soil, 2008, 312(1/2): 7-14. [16] Kuzyakov Y, Domanski G. Carbon input by plants into the soil. Journal of Plant Nutrition and Soil Science, 2000, 163(4): 421-431. [17] Berg G. Plant-microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 2009, 84(1): 11-18. [18] Massalha H, Korenblum E, Tholl D, [19] Larimer A L, Clay K, Bever J D. Synergism and context dependency of interactions between arbuscular mycorrhizal fungi and rhizobia with a prairie legume. Ecology, 2014, 95(4): 1045-1054. [20] Haichar F, Marol C, Berge O, [21] Kuzyakov Y. Priming effects: Interactions between living and dead organic matter. Soil Biology and Biochemistry, 2010, 42(9): 1363-1371. [22] Lakshmanan V, Kitto S L, Caplan J L, [23] Chang X X, Duan C Q, Wang H. Root excretion and plant resistance to metal toxicity. Chinese Journal of Applied Ecology, 2000, (2): 315-320. 常学秀, 段昌群, 王焕. 根分泌作用与植物对金属毒害的抗性. 应用生态学报, 2000, (2): 315-320. [24] Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant and Soil, 2001, 237(2): 173-195. [25] Rumpel C, Crème A, Ngo P T, [26] Dungait J A J, Cardenas L M, Blackwell M S A, [27] Liu Z Y, Shi W M. Distribution of nutrients in the root and rhizosphere by electron probe X-ray microanalysis. Plant Physiology Journal, 1988, 14(1): 23-28. 刘芷宇, 施卫明. 应用电子探针对植物根际和根内营养元素微区分布的探讨. 植物生理学报, 1988, 14(1): 23-28. [28] Marschner H. Marschner’s mineral nutrition of higher plants. Amsterdam, Netherlands: Academic Press (Elsevier), 2011. [29] Hamilton III E W, Frank D A, Hinchey P M, [30] Gianfreda L. Enzymes of importance to rhizosphere processes. Journal of Soil Science and Plant Nutrition, 2015, 15(2): 283-306. [31] Marinari S, Moscatelli C, Grego S. Enzymes at plant-soil interface//Gianfreda L, Rao M A, edition. Enzymes in agricultural sciences. OMICS eBooks Group. https://www.esciencecentral.org/ebooks/ebookdetail/enzymes-in-agricultural-sciences, 2014: 94-109. [32] Knicker H, Lüdemann H D, Haider K. Incorporation studies of NH4+ during incubation of organic residues by l5N-CPMAS-NMR-spectroscopy. European Journal of Soil Science, 1997, 48(3): 431-441. [33] Burns R G, Dick R P. Enzymes in the environment: Activity, ecology, and applications. Florida: CRC Press, 2002. [34] Dalai R C. Soil organic phosphorus. Advances in Agronomy. New York: Academic Press (Elsevier), 1977, 29: 83-117. [35] Nannipieri P, Smalla K. Nucleic acids and proteins in soil. Berlin, Heidelberg: Springer Science & Business Media, 2006. [36] Egamberdieva D, Renella G, Wirth S, [37] Cenini V L. Linkages between soil enzyme activities and critical ecosystem processes in grasslands. London: Ulster University, 2016. [38] Makoi J H, Ndakidemi P A. Selected soil enzymes: Examples of their potential roles in the ecosystem. African Journal of Biotechnology, 2008, 7(3): 181-191. [39] Dornbush M E. Grasses, litter, and their interaction affect microbial biomass and soil enzyme activity. Soil Biology and Biochemistry, 2007, 39(9): 2241-2249. [40] Rao M A, Scelza R, Acevedo F, [41] Bardgett R D, Manning P, Morriёn E, [42] Achat D L, Augusto L, Gallet-Budynek A, [43] Berendsen R L, Pieterse C M J, Bakker P A H M. The rhizosphere microbiome and plant health. Trends in Plant Science, 2012, 17(8): 478-486. [44] Philippot L, Hallin S, Börjesson G, [45] Conrad R. Microbial ecology of methanogens and methanotrophs. Advances in Agronomy, 2007, 96(7): 1-63. [46] Kang S M, Khan A L, Waqas M, [47] Carter J P, Spink J, Cannon P F, [48] Bari R, Jones J D G. Role of plant hormones in plant defence responses. Plant Molecular Biology, 2009, 69(4): 473-488. [49] Hurek T, Handley L L, Reinhold-Hurek B, [50] Fierer N, Schimel J P. A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Science Society of America Journal, 2003, 67(3): 798-805. [51] Neumann G, Massonneau A, Martinoia E, [52] Bressan M, Roncato M A, Bellvert F, [53] Schimel J, Schaeffer S M. Microbial control over carbon cycling in soil. Frontiers in Microbiology, 2012, 3: 348. [54] Ekschmitt K, Liu M, Vetter S, [55] Redin M, Guénon R, Recous S, [56] Suding K N, Collins S L, Gough L, [57] Clark C M, Cleland E E, Collins S L, [58] Turner T. Metatranscriptomic analysis of community structure and metabolism of the rhizosphere microbiome. Norwich: University of East Anglia, 2013. [59] Rodríguez H, Fraga R, Gonzalez T, [60] Beauregard M S, Hamel C, St-Arnaud M. Long-term phosphorus fertilization impacts soil fungal and bacterial diversity but not AM fungal community in alfalfa. Microbial Ecology, 2010, 59(2): 379-389. [61] Zhou H. Characteristics and adaptation mechanism of soil microbial communities of alpine steppe under different altitudes on Qinghai-Tibetan Plateau. Lanzhou: Gansu Agricultural University, 2019. 周恒. 不同海拔高寒草原土壤微生物特征及其适应机制. 兰州: 甘肃农业大学, 2019. [62] Coolon J D, Jones K L, Todd T C, [63] Dijkstra F A, Carrillo Y, Pendall E, [64] Zhang F S, Cao Y P. Rhizosphere dynamics and plant nutrition. Acta Pedologica Sinica, 1992, (3): 239-250. 张福锁, 曹一平. 根际动态过程与植物营养. 土壤学报, 1992, (3): 239-250. [65] Cheng W, Parton W J, Gonzalez-Meler M A, [66] Neumann G, Romheld V. The release of root exudates as affected by the plant’s physiological status. The Rhizosphere, USA: CRC Press, 2000: 57-110. [67] Zhang H H, Tang M, Chen H, [68] Gong M, Tang M, Zhang Q, [69] Yoshitomi K J, Shann J R. Corn ( [70] Ohwaki Y, Sugahara K. Active extrusion of protons and exudation of carboxylic acids in response to iron deficiency by roots of chickpea ( [71] Imas P, Bar-Yosef B, Kafkafi U, |
[1] | JIA Hong-mei, FANG Qian, ZHANG Shu-hua, YAN Zhu-yun, LIU Min. Effects of AM fungi on growth and rhizosphere soil enzyme activities of Salvia miltiorrhiza [J]. Acta Prataculturae Sinica, 2020, 29(6): 83-92. |
[2] | ZHOU Han-yang, SUN Peng-yue, YU Xin-rong, ZHOU Yu, ZHANG Zhi-wei, GAO Jin-zhu, ZHAO Dong-hao, LUO Yi-lan, HU Tian-ming, FU Juan-juan. Protective effects of Flavobacterium succinicans on perennial ryegrass under shade stress [J]. Acta Prataculturae Sinica, 2020, 29(6): 137-143. |
[3] | LIU Xue-er, MA Jin-feng, YANG Cheng-de, LI Tong-hua. Antifungal activity and identification of soil bacteria from the rhizosphere of Stipa plants in alpine grassland of Qinghai [J]. Acta Prataculturae Sinica, 2019, 28(8): 161-169. |
[4] | XU Sheng-rong, ZHANG En-he, MA Rui-li, WANG Qi, LIU Qing-lin, HUANG Yu-fang. Effects of mulching on soil environment and water utilization by roots of Lycium barbarum [J]. Acta Prataculturae Sinica, 2019, 28(2): 12-22. |
[5] | ZHANG Yi-Fan, CHEN Lin, LI Xue-Bin, LI Yue-Fei, YANG Xin-Guo. Soil nutrients and carbon management indexes in the rhizosphere versus non-rhizosphere area of different plant species in desert grassland [J]. Acta Prataculturae Sinica, 2017, 26(8): 24-34. |
[6] | WANG Peng-Fei, JIA Lu-Ting, DU Jun-Jie, ZHANG Jian-Cheng, MU Xiao-Peng, DING Wei. Improvement of soil quality by Chinese dwarf cherry cultivation in the Loess Plateau steep hill region [J]. Acta Prataculturae Sinica, 2017, 26(3): 65-74. |
[7] | ZENG Qing-Fei, WANG Qian, LU Rui-Xia, LIU Zheng-Shu, WU Jia-Hai, WANG Xiao-Li. Identification of soybean growth-promoting rhizobacteria and their effects on the growth and quality of Glycine max and Lotus corniculatus [J]. Acta Prataculturae Sinica, 2017, 26(1): 99-111. |
[8] | ZHOU Yuanyuan, ZHOU Xiangrui, ZHOU Zhiyu, JIN Qian, LI Jinhui, SONG Xin. Variations in the phenotypic character of Hedysarum mongolicum at different ages [J]. Acta Prataculturae Sinica, 2015, 24(3): 134-141. |
[9] | LI Jin-hui,LU Xin,ZHOU Zhi-yu,ZHAO Ping,JIN Qian,ZHOU Yuan-yuan. Phosphorus contents in the rhizosphere and bulk soil under Amorpha fruticosa established in different years [J]. Acta Prataculturae Sinica, 2014, 23(6): 61-68. |
[10] | XU Min-yun,HE Jin-sheng. A review of grassland carrying capacity: definition, theoretical consideration and model [J]. Acta Prataculturae Sinica, 2014, 23(3): 313-324. |
[11] | LI Rui-qin, LIU Xing, QIU Hui-zhen, ZHANG Wen-ming, ZHANG Chun-hong, WANG Di, ZHANG Jun-lian, SHEN Qi-rong. Changes in the dominant pathogens causing Fusarium dry rot of potato in rhizospheric soil under continuous potato cropping systems based on real-time quantitative PCR [J]. Acta Prataculturae Sinica, 2013, 22(6): 239-248. |
[12] | LI Rui-qin, LIU Xing, QIU Hui-zhen, ZHANG Wen-ming, ZHANG Chun-hong, WANG Di, ZHANG Jun-lian, SHEN Qi-rong. Rapid detection of Rhizoctonia in rhizosphere soil of potato using real-time quantitative PCR [J]. Acta Prataculturae Sinica, 2013, 22(5): 136-144. |
[13] | WANG Wen, JIANG Wen-lan, XIE Zhong-kui, ZHANG De-gang, GONG Xu-yin, KOU Jiang-tao. Study on soil water in rhizosphere and root system distribution of Nitraria tangutorum on Loess Plateau [J]. Acta Prataculturae Sinica, 2013, 22(1): 20-28. |
[14] | DONG Li-ping, LI Xian-ting, CAO Jing, SU Yi-bing, DAI Li-lan, CHU Jin-peng. Dynamics of soil salt content in the rhizosphere soils of four salt-tolerant forage species [J]. Acta Prataculturae Sinica, 2011, 20(6): 68-76. |
[15] | ZHAO Ling,CHAI Zhao-xiang,LI Jin-hua,WANG Di. Isolation and identification of four new Erwinia carotovora subsp. carotovora strains [J]. Acta Prataculturae Sinica, 2011, 20(4): 244-251. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||