Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (1): 72-80.DOI: 10.11686/cyxb2020089
Previous Articles Next Articles
Received:
2020-03-05
Revised:
2020-03-30
Online:
2021-01-20
Published:
2021-01-08
Fan ZHANG, Qian YANG. Effects of co-utilization of Chinese milk vetch and rice straw on the potassium cycle and potassium balance in a paddy soil[J]. Acta Prataculturae Sinica, 2021, 30(1): 72-80.
土壤Soil | 处理 Treatments | 全钾 Total K (g·kg-1) | 速效钾 Available K (mg·kg-1) | 水溶性钾 Water-soluble K (mg·kg-1) | 非特殊吸附钾 Non-specifically absorbed K (mg·kg-1) | 特殊吸附钾 Specifically absorbed K (mg·kg-1) | 非交换性钾 Non-exchangeable K (mg·kg-1) | 矿物钾 Structural K (g·kg-1) |
---|---|---|---|---|---|---|---|---|
红黄泥 Red yellow soil | FRR | 11.40±0.44a | 49.47±12.89a | 5.30±1.73a | 9.13±4.67a | 35.07±6.52a | 142.57±7.29a | 11.27±0.42a |
MvRR | 11.45±0.23a | 76.07±18.76a | 8.90±2.04a | 18.87±8.80a | 48.30±8.34a | 149.13±4.59a | 11.27±0.23a | |
MvRR+St | 11.40±0.35a | 77.43±28.37a | 8.90±3.46a | 21.37±12.48a | 47.13±12.41a | 146.03±4.01a | 11.17±0.40a | |
紫潮泥 Purple alluvial soil | FRR | 20.67±0.21b | 82.30±4.69b | 9.70±1.50b | 22.53±2.87b | 50.07±1.70b | 370.67±10.40b | 20.27±0.21b |
MvRR | 20.83±0.40b | 84.20±4.10b | 9.20±1.00b | 24.37±0.95b | 50.60±2.56b | 366.23±3.61b | 20.27±0.45b | |
MvRR+St | 21.73±0.55a | 156.30±7.69a | 21.53±1.16a | 47.03±3.75a | 87.73±3.93a | 401.87±5.83a | 21.27±0.55a |
Table 1 Effects of synergistic utilization of Chinese milk vetch and rice straw on different soil K forms in paddy soil
土壤Soil | 处理 Treatments | 全钾 Total K (g·kg-1) | 速效钾 Available K (mg·kg-1) | 水溶性钾 Water-soluble K (mg·kg-1) | 非特殊吸附钾 Non-specifically absorbed K (mg·kg-1) | 特殊吸附钾 Specifically absorbed K (mg·kg-1) | 非交换性钾 Non-exchangeable K (mg·kg-1) | 矿物钾 Structural K (g·kg-1) |
---|---|---|---|---|---|---|---|---|
红黄泥 Red yellow soil | FRR | 11.40±0.44a | 49.47±12.89a | 5.30±1.73a | 9.13±4.67a | 35.07±6.52a | 142.57±7.29a | 11.27±0.42a |
MvRR | 11.45±0.23a | 76.07±18.76a | 8.90±2.04a | 18.87±8.80a | 48.30±8.34a | 149.13±4.59a | 11.27±0.23a | |
MvRR+St | 11.40±0.35a | 77.43±28.37a | 8.90±3.46a | 21.37±12.48a | 47.13±12.41a | 146.03±4.01a | 11.17±0.40a | |
紫潮泥 Purple alluvial soil | FRR | 20.67±0.21b | 82.30±4.69b | 9.70±1.50b | 22.53±2.87b | 50.07±1.70b | 370.67±10.40b | 20.27±0.21b |
MvRR | 20.83±0.40b | 84.20±4.10b | 9.20±1.00b | 24.37±0.95b | 50.60±2.56b | 366.23±3.61b | 20.27±0.45b | |
MvRR+St | 21.73±0.55a | 156.30±7.69a | 21.53±1.16a | 47.03±3.75a | 87.73±3.93a | 401.87±5.83a | 21.27±0.55a |
土壤 Soil | 处理 Treatments | 紫云英Chinese milk vetch | 早稻Early rice | 晚稻Late rice | ||||||
---|---|---|---|---|---|---|---|---|---|---|
生物量 Biomass (kg·hm-2) | 全K Total K (g·kg-1) | K吸收 K uptake (kg·hm-2) | 产量 Yield (kg·hm-2) | 全K Total K (g·kg-1) | K积累K accumulation (kg·hm-2) | 产量 Yield (kg·hm-2) | 全K Total K (g·kg-1) | K积累K accumulation (kg·hm-2) | ||
红黄泥 Red yellow soil | FRR | 5771±1112a | 3.37±0.27a | 19.48±4.59a | 5779±2054a | 3.30±0.15ab | 19.13±6.45a | |||
MvRR | 6231±291a | 14.77±4.64b | 92.02±28.63b | 5778±1211a | 3.30±0.22a | 18.96±3.37a | 5573±810a | 3.27±0.06b | 18.21±2.52a | |
MvRR+St | 7106±1652a | 24.90±2.81a | 175.80±38.50a | 6062±1760a | 3.23±0.16a | 19.70±4.63a | 5559±602a | 3.63±0.12a | 20.20±2.20a | |
紫潮泥 Purple alluvial soil | FRR | 5997±1253a | 3.16±0.15a | 18.86±3.29a | 6348±1349a | 3.10±0.17a | 19.53±3.24a | |||
MvRR | 6442±564a | 19.77±0.49b | 127.27±10.76b | 6392±430a | 3.17±0.05a | 20.34±1.26a | 4813±1218a | 3.27±0.06a | 15.71±3.95a | |
MvRR+St | 7458±602a | 30.93±1.35a | 230.65±20.33a | 6429±15a | 3.18±0.14a | 20.44±0.91a | 5552±1124a | 3.30±0.00a | 18.32±3.71a |
Table 2 Effects of co-utilization of Chinese milk vetch and rice straw on economic target yield and K content in each crop planting season
土壤 Soil | 处理 Treatments | 紫云英Chinese milk vetch | 早稻Early rice | 晚稻Late rice | ||||||
---|---|---|---|---|---|---|---|---|---|---|
生物量 Biomass (kg·hm-2) | 全K Total K (g·kg-1) | K吸收 K uptake (kg·hm-2) | 产量 Yield (kg·hm-2) | 全K Total K (g·kg-1) | K积累K accumulation (kg·hm-2) | 产量 Yield (kg·hm-2) | 全K Total K (g·kg-1) | K积累K accumulation (kg·hm-2) | ||
红黄泥 Red yellow soil | FRR | 5771±1112a | 3.37±0.27a | 19.48±4.59a | 5779±2054a | 3.30±0.15ab | 19.13±6.45a | |||
MvRR | 6231±291a | 14.77±4.64b | 92.02±28.63b | 5778±1211a | 3.30±0.22a | 18.96±3.37a | 5573±810a | 3.27±0.06b | 18.21±2.52a | |
MvRR+St | 7106±1652a | 24.90±2.81a | 175.80±38.50a | 6062±1760a | 3.23±0.16a | 19.70±4.63a | 5559±602a | 3.63±0.12a | 20.20±2.20a | |
紫潮泥 Purple alluvial soil | FRR | 5997±1253a | 3.16±0.15a | 18.86±3.29a | 6348±1349a | 3.10±0.17a | 19.53±3.24a | |||
MvRR | 6442±564a | 19.77±0.49b | 127.27±10.76b | 6392±430a | 3.17±0.05a | 20.34±1.26a | 4813±1218a | 3.27±0.06a | 15.71±3.95a | |
MvRR+St | 7458±602a | 30.93±1.35a | 230.65±20.33a | 6429±15a | 3.18±0.14a | 20.44±0.91a | 5552±1124a | 3.30±0.00a | 18.32±3.71a |
土壤 Soil | 处理 Treatments | 输入Input | 输出 Output | 表观平衡 Balance | ||
---|---|---|---|---|---|---|
前茬晚稻秸秆 Previous late rice straw | 紫云英种子 Chinese milk vetch seed | 合计 Total | 紫云英吸收 Chinese milk vetch uptake | |||
红黄泥 Red yellow soil | MvRR | 0.16 | 0.16 | 92.02b | -91.85 | |
MvRR+St | 216.80 | 0.16 | 216.96 | 175.80a | 41.16 | |
紫潮泥 Purple alluvial soil | MvRR | 0.16 | 0.16 | 127.27b | -127.11 | |
MvRR+St | 217.94 | 0.16 | 218.10 | 230.65a | -12.55 |
Table 3 K input-output of two typical paddy soils system in Chinese milk vetch planting season (kg·hm-2)
土壤 Soil | 处理 Treatments | 输入Input | 输出 Output | 表观平衡 Balance | ||
---|---|---|---|---|---|---|
前茬晚稻秸秆 Previous late rice straw | 紫云英种子 Chinese milk vetch seed | 合计 Total | 紫云英吸收 Chinese milk vetch uptake | |||
红黄泥 Red yellow soil | MvRR | 0.16 | 0.16 | 92.02b | -91.85 | |
MvRR+St | 216.80 | 0.16 | 216.96 | 175.80a | 41.16 | |
紫潮泥 Purple alluvial soil | MvRR | 0.16 | 0.16 | 127.27b | -127.11 | |
MvRR+St | 217.94 | 0.16 | 218.10 | 230.65a | -12.55 |
土壤 Soil | 处理 Treatments | 输入Input | 输出 Output | 平衡 Balance | ||||||
---|---|---|---|---|---|---|---|---|---|---|
化肥 Chemical fertilizer | 早稻秧苗 Early rice seedling | 紫云英 Chinese milk vetch | 合计 Total | 早稻籽粒 Rice seed | 早稻秸秆 Early rice straw | 早稻植株地下部分Early rice root | 水稻吸收 Uptake of early rice | |||
红黄泥 Red yellow soil | FRR | 74.68 | 19.88 | 94.56 | 19.48a | 135.16a | 10.36b | 165.00 | -70.44 | |
MvRR | 74.68 | 19.88 | 92.02 | 186.58 | 18.96a | 138.97a | 11.68ab | 169.61 | 16.97 | |
MvRR+St | 74.68 | 19.88 | 175.80 | 270.36 | 19.70a | 152.05a | 17.68a | 189.43 | 80.93 | |
紫朝泥 Purple alluvial soil | FRR | 74.68 | 19.88 | 94.56 | 18.86a | 123.00a | 11.38a | 153.24 | -58.68 | |
MvRR | 74.68 | 19.88 | 127.27 | 221.83 | 20.23a | 146.48a | 9.72a | 176.43 | 45.40 | |
MvRR+St | 74.68 | 19.88 | 230.65 | 325.21 | 20.44a | 146.87a | 13.89a | 181.20 | 144.01 |
Table 4 K input-output of two typical paddy soils system in early rice planting season (kg·hm-2)
土壤 Soil | 处理 Treatments | 输入Input | 输出 Output | 平衡 Balance | ||||||
---|---|---|---|---|---|---|---|---|---|---|
化肥 Chemical fertilizer | 早稻秧苗 Early rice seedling | 紫云英 Chinese milk vetch | 合计 Total | 早稻籽粒 Rice seed | 早稻秸秆 Early rice straw | 早稻植株地下部分Early rice root | 水稻吸收 Uptake of early rice | |||
红黄泥 Red yellow soil | FRR | 74.68 | 19.88 | 94.56 | 19.48a | 135.16a | 10.36b | 165.00 | -70.44 | |
MvRR | 74.68 | 19.88 | 92.02 | 186.58 | 18.96a | 138.97a | 11.68ab | 169.61 | 16.97 | |
MvRR+St | 74.68 | 19.88 | 175.80 | 270.36 | 19.70a | 152.05a | 17.68a | 189.43 | 80.93 | |
紫朝泥 Purple alluvial soil | FRR | 74.68 | 19.88 | 94.56 | 18.86a | 123.00a | 11.38a | 153.24 | -58.68 | |
MvRR | 74.68 | 19.88 | 127.27 | 221.83 | 20.23a | 146.48a | 9.72a | 176.43 | 45.40 | |
MvRR+St | 74.68 | 19.88 | 230.65 | 325.21 | 20.44a | 146.87a | 13.89a | 181.20 | 144.01 |
土壤 Soil | 处理 Treatments | 输入Input | 输出 Output | 平衡 Balance | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
化肥 Chemical fertilizer | 晚稻秧苗 Late rice seedling | 早稻植株地下部分 Early rice root | 早稻秸秆 Early rice straw | 合计 Total | 晚稻 籽粒 Late rice | 晚稻秸秆 Late rice straw | 晚稻植株地下部分 Late rice root | 晚稻吸收Uptake of late rice | |||
红黄泥 Red yellow soil | FRR | 99.57 | 29.96 | 10.36 | 139.89 | 19.13a | 188.19a | 15.24a | 222.56 | -82.67 | |
MvRR | 99.57 | 29.96 | 11.68 | 141.21 | 18.21a | 188.73a | 18.59a | 225.53 | -84.34 | ||
MvRR+St | 99.57 | 29.96 | 17.68 | 152.05 | 299.26 | 20.20a | 222.93a | 21.18a | 264.31 | 34.95 | |
紫朝泥 Purple alluvial soil | FRR | 99.57 | 29.96 | 11.38 | 140.91 | 19.53a | 200.41a | 24.91a | 244.85 | -103.94 | |
MvRR | 99.57 | 29.96 | 9.72 | 139.25 | 15.71a | 182.38a | 24.99a | 223.08 | -83.83 | ||
MvRR+St | 99.57 | 29.96 | 13.89 | 146.87 | 290.29 | 18.32a | 199.88a | 23.26a | 241.46 | 48.83 |
Table 5 K input-output of two typical paddy soils system in late rice planting season (kg·hm-2)
土壤 Soil | 处理 Treatments | 输入Input | 输出 Output | 平衡 Balance | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
化肥 Chemical fertilizer | 晚稻秧苗 Late rice seedling | 早稻植株地下部分 Early rice root | 早稻秸秆 Early rice straw | 合计 Total | 晚稻 籽粒 Late rice | 晚稻秸秆 Late rice straw | 晚稻植株地下部分 Late rice root | 晚稻吸收Uptake of late rice | |||
红黄泥 Red yellow soil | FRR | 99.57 | 29.96 | 10.36 | 139.89 | 19.13a | 188.19a | 15.24a | 222.56 | -82.67 | |
MvRR | 99.57 | 29.96 | 11.68 | 141.21 | 18.21a | 188.73a | 18.59a | 225.53 | -84.34 | ||
MvRR+St | 99.57 | 29.96 | 17.68 | 152.05 | 299.26 | 20.20a | 222.93a | 21.18a | 264.31 | 34.95 | |
紫朝泥 Purple alluvial soil | FRR | 99.57 | 29.96 | 11.38 | 140.91 | 19.53a | 200.41a | 24.91a | 244.85 | -103.94 | |
MvRR | 99.57 | 29.96 | 9.72 | 139.25 | 15.71a | 182.38a | 24.99a | 223.08 | -83.83 | ||
MvRR+St | 99.57 | 29.96 | 13.89 | 146.87 | 290.29 | 18.32a | 199.88a | 23.26a | 241.46 | 48.83 |
土壤 Soil | 处理 Treatments | 输入 Input (kg·hm-2) | 输出 Output (kg·hm-2) | 归还Return (kg·hm-2) | 归还/输入 Return/Input | 表观 平衡 Balance (kg·hm-2) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
前茬晚稻秸秆 Previous late rice straw | 紫云英 种子 Chinese milk vetch seed | 双季稻秧苗 Rice seedling | 化肥 Chemical fertilizer | 合计 Total | 双季稻籽粒 Rice seed | 双季稻秸秆 Rice straw | 合计 Total | 双季稻植株地下部分 Rice root | 双季稻秸秆 Rice straw | 紫云英 Chinses milk vetch | 合计 Total | ||||
红黄泥 Red yellow soil | FRR | 49.84 | 174.25 | 224.09 | 38.61 | 323.35 | 361.96 | 25.60 | 25.60 | 0.11 | -137.87 | ||||
MvRR | 0.16 | 49.84 | 174.25 | 224.25 | 37.17 | 327.70 | 364.87 | 30.27 | 92.02 | 122.29 | 0.55 | -140.62 | |||
MvRR+St | 216.80 | 0.16 | 49.84 | 174.25 | 441.05 | 39.90 | 39.90 | 38.86 | 374.98 | 175.80 | 589.64 | 1.34 | 401.15 | ||
紫朝泥 Purple alluvial soil | FRR | 49.84 | 174.25 | 224.09 | 38.39 | 323.41 | 361.80 | 36.29 | 36.29 | 0.16 | -137.71 | ||||
MvRR | 0.16 | 49.84 | 174.25 | 224.25 | 35.94 | 328.86 | 364.80 | 34.71 | 127.27 | 161.98 | 0.72 | -140.55 | |||
MvRR+St | 217.94 | 0.16 | 49.84 | 174.25 | 442.19 | 38.77 | 38.77 | 37.15 | 346.75 | 230.65 | 614.55 | 1.39 | 403.42 |
Table 6 K input-output of red yellow soil system in Chinese milk vetch -double cropping rice rotation pattern
土壤 Soil | 处理 Treatments | 输入 Input (kg·hm-2) | 输出 Output (kg·hm-2) | 归还Return (kg·hm-2) | 归还/输入 Return/Input | 表观 平衡 Balance (kg·hm-2) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
前茬晚稻秸秆 Previous late rice straw | 紫云英 种子 Chinese milk vetch seed | 双季稻秧苗 Rice seedling | 化肥 Chemical fertilizer | 合计 Total | 双季稻籽粒 Rice seed | 双季稻秸秆 Rice straw | 合计 Total | 双季稻植株地下部分 Rice root | 双季稻秸秆 Rice straw | 紫云英 Chinses milk vetch | 合计 Total | ||||
红黄泥 Red yellow soil | FRR | 49.84 | 174.25 | 224.09 | 38.61 | 323.35 | 361.96 | 25.60 | 25.60 | 0.11 | -137.87 | ||||
MvRR | 0.16 | 49.84 | 174.25 | 224.25 | 37.17 | 327.70 | 364.87 | 30.27 | 92.02 | 122.29 | 0.55 | -140.62 | |||
MvRR+St | 216.80 | 0.16 | 49.84 | 174.25 | 441.05 | 39.90 | 39.90 | 38.86 | 374.98 | 175.80 | 589.64 | 1.34 | 401.15 | ||
紫朝泥 Purple alluvial soil | FRR | 49.84 | 174.25 | 224.09 | 38.39 | 323.41 | 361.80 | 36.29 | 36.29 | 0.16 | -137.71 | ||||
MvRR | 0.16 | 49.84 | 174.25 | 224.25 | 35.94 | 328.86 | 364.80 | 34.71 | 127.27 | 161.98 | 0.72 | -140.55 | |||
MvRR+St | 217.94 | 0.16 | 49.84 | 174.25 | 442.19 | 38.77 | 38.77 | 37.15 | 346.75 | 230.65 | 614.55 | 1.39 | 403.42 |
1 | Gao S J, Zhang R G, Cao W D, et al. Long-term rice-rice-green manure rotation changing the microbial communities in typical red paddy soil in South China. Journal of Integrative Agriculture, 2015, 14(12): 2512-2520. |
2 | Ye X, Liu H, Li Z, et al. Effects of green manure continuous application on soil microbial biomass and enzyme activity. Journal of Plant Nutrition, 2014, 37(1/2/3/4): 498-508. |
3 | Gao C J, Cao W D, Bai J S, et al. Long-term application of winter green manures changed the soil microbial biomass properties in red paddy soil. Acta Pedologica Sinica, 2015, 52(4): 202-210. |
高崇涓, 曹卫东, 白金顺, 等. 长期冬种绿肥改变红壤稻田土壤微生物生物量特性. 土壤学报, 2015, 52(4): 202-210. | |
4 | Lü Y H, Guo X Y, Li B Y, et al. Effects of the incorporation of various amounts of Chinese milk vetch (Astragalus sinicus L.) and reducing chemical fertilizer on soil fertility and rice yield. Soil and Fertilizer Sciences in China, 2017(5): 94-98. |
吕玉虎, 郭晓彦, 李本银, 等. 翻压不同量紫云英配施减量化肥对土壤肥力和水稻产量的影响.中国土壤与肥料, 2017(5): 94-98. | |
5 | Xie Z J, Xu C X, Xu Z L, et al. Effects of applying mineral fertilizer reasonably on the availability of soil nutrient and yields of rice under applying equivalent green manure. Soil and Fertilizer Sciences in China, 2011(4): 79-82. |
谢志坚, 徐昌旭, 许政良, 等. 翻压等量紫云英条件下不同化肥用量对土壤养分有效性及水稻产量的影响. 中国土壤与肥料, 2011(4): 79-82. | |
6 | Yang B J, Huang G Q, Chen H J, et al. Optimum combination of winter green manure plowed and nitrogen application levels for high nitrogen uptake and utilization in rice. Plant Nutrition and Fertilizer Science, 2016, 22(5): 1187-1195. |
杨滨娟, 黄国勤, 陈洪俊, 等. 利于水稻氮素吸收的绿肥翻压量和施氮水平研究. 植物营养与肥料学报, 2016, 22(5): 1187-1195. | |
7 | Lu Y H, Liao Y L, Nie J, et al. Effect of different incorporation of Chinese milk vetch coupled with urea or controlled release urea on yield and nitrogen and potassium nutrient use efficiency in double-cropping rice system. Plant Nutrition and Fertilizer Science, 2017, 23(2): 360-368. |
鲁艳红, 廖育林, 聂军, 等. 紫云英与尿素或控释尿素配施对双季稻产量及氮钾利用率的影响. 植物营养与肥料学报, 2017, 23(2): 360-368. | |
8 | Gao J S, Cao W D, Li D C, et al. Effect of long-term double-rice and green manure rotation on rice yield and soil organic matter in paddy field. Acta Ecologica Sinica, 2011, 31(16): 4542-4548. |
高菊生, 曹卫东, 李冬初, 等. 长期双季稻绿肥轮作对水稻产量及稻田土壤有机质的影响. 生态学报, 2011, 31(16): 4542-4548. | |
9 | Liu L S, Xu M G, Zhang L, et al. Evolution characteristics of soil particulate organic carbon in the paddy field with long-term planting green manure. Plant Nutrition and Fertilizer Science, 2015, 21(6): 1439-1446. |
刘立生, 徐明岗, 张璐, 等. 长期种植绿肥稻田土壤颗粒有机碳演变特征. 植物营养与肥料学报, 2015, 21(6): 1439-1446. | |
10 | Zhang F. Nitrogen, phosphorus and potassium cycling and sustainability of rice yield in a winter crop-double cropping rice rotation system. Chinese Journal of Eco-Agriculture, 2019, 27(5): 705-716. |
张帆. 冬季作物-双季稻轮作种植模式氮、磷、钾养分循环与产量可持续性特征. 中国生态农业学报, 2019, 27(5): 705-716. | |
11 | Huang J, Gao J S, Zhang Y Z, et al. Dynamics of Chinese milk vetch decomposition in paddy field under different fertilization and the supply ability of soil potassium. Soil and Fertilizer Sciences in China, 2016(1): 83-88. |
黄晶, 高菊生, 张扬珠, 等. 紫云英还田后不同施肥下的腐解及土壤供价特征. 中国土壤与肥料, 2016(1): 83-88. | |
12 | Lu R K. Methods of soil and agricultural chemistry analysis. Beijing: China Agricultural Science and Technology Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. | |
13 | Liao Y L, Lu Y H, Xie J, et al. Effects of long-term application of chemical potassium fertilizer and incorporation of rice straw on potassium supplying capacity of red soil in double cropping paddy field. Acta Pedologica Sinica, 2017, 54(2): 456-467. |
廖育林, 鲁艳红, 谢坚, 等. 长期施用钾肥和稻草对红壤双季稻田土壤供钾能力的影响. 土壤学报, 2017, 54(2): 456-467. | |
14 | Li X S, Shi J L, Wang S J, et al. Effect of long-term straw returning on form and spatial distribution of potassium in agricultural soil. Journal of Northwest A & F University (Natural Sciences), 2016, 44(3): 109-117. |
李秀双, 师江澜, 王淑娟, 等. 长期秸秆还田对农田土壤钾素形态及空间分布的影响. 西北农林科技大学学报(自然科学版), 2016, 44(3): 109-117. | |
15 | Vesterdal L. Influence of soil type on mass loss and nutrient release from decomposing foliage litter of beech and Norway spruce. Canadian Journal of Forest Research, 1999, 29(1): 95-105. |
16 | Mclatchey G P, Reddy K R. Regulation of organic matter decomposition and nutrient release in a wetland soil. Journal of Environmental Quality, 1998, 27(5): 1268-1274. |
17 | Yin Z Y, Huang L, Xue B, et al. Effect of continuous straw incorporation on forms of potassium in the paddy soils. Chinese Journal of Soil Science, 2017, 48(2): 351-358. |
殷志遥, 黄丽, 薛斌, 等. 连续秸秆还田对水稻土中钾素形态的影响. 土壤通报, 2017, 48(2): 351-358. | |
18 | Pan F X, Lu J W, Li X K, et al. Effect of fertilizer application of rice season on yield and nutrition accumulation of green manure. Soils, 2012, 44(5): 762-768. |
潘福霞, 鲁剑巍, 李小坤, 等. 水稻季施肥对后季绿肥物质养分积累的影响. 土壤, 2012, 44(5): 762-768. | |
19 | Li C M, Wang X Y, Sun B. Characteristics of nutrient release and its affecting factors during plant residue decomposition under different climate and soil conditions. Acta Pedologica Sinica, 2017, 54(5): 1206-1217. |
李昌明, 王晓玥, 孙波. 不同气候和土壤条件下秸秆腐解过程中养分的释放特征及其影响因素. 土壤学报, 2017, 54(5): 1206-1217. | |
20 | Zhou X, Liao Y L, Lu Y H, et al. Effects of Chinese milk vetch and rice straw synergistic dispatching on grain yield and economic benefit of double cropping rice system under fertilizer reduction. Journal of Hunan Agricultural University (Natural Sciences), 2017, 43(5): 469-474. |
周兴, 廖育林, 鲁艳红, 等. 减量施肥下紫云英与稻草协同利用对双季稻产量和经济效益的影响. 湖南农业大学学报(自然科学版), 2017, 43(5): 469-474. | |
21 | Zhou G P, Xie Z J, Cao W D, et al. Co-incorporation of high rice stubble and Chinese milk vetch improving soil fertility and yield of rice. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(23): 157-163. |
周国朋, 谢志坚, 曹卫东, 等. 稻草高茬-紫云英联合还田改善土壤肥力提高作物产量. 农业工程学报, 2017, 33(23): 157-163. | |
22 | Song L, Han S, Lu J W, et al. Study on characteristics of decomposing and nutrients releasing of different proportional mixture of rape straw and Chinese milk vetch in rice field. Soil and Fertilizer Sciences in China, 2015(3): 100-104. |
宋莉, 韩上, 鲁剑巍, 等. 油菜秸秆、紫云英绿肥及其不同比例配施还田的腐解及养分释放规律研究. 中国土壤与肥料, 2015(3): 100-104. | |
23 | Wang F, Lin C, Li Q H, et al. A study on organic carbon and nutrient releasing characteristics of different Astragalus sinicus manure use levels in a single cropping region of subtropical China. Acta Prataculturae Sinica, 2012, 21(4): 319-324. |
王飞, 林诚, 李清华, 等. 亚热带单季稻区紫云英不同翻压量下有机碳和养分释放特征. 草业学报, 2012, 21(4): 319-324. |
[1] | LIU Fang, CHEN Zhen, XU Wen, CHU Zhi-ying, GUAN Yong-xiang, WU Gui-cheng, HUAN Jing, SUN Zheng-guo. Impacts of different paddy soils on nodule growth characteristics of Chinese milk vetch [J]. Acta Prataculturae Sinica, 2020, 29(6): 153-161. |
[2] | FU Jin-tao, WANG Xue-kai, NI Kui-kui, YANG Fu-yu. The effects of adding lactic acid bacteria and molasses on fermentation of Broussonetia papyrifera and rice straw mixed silage [J]. Acta Prataculturae Sinica, 2020, 29(4): 121-128. |
[3] | LUO Ying-jie, CHEN Gui-hua, MU Lin, HU Long-xing, ZHANG Zhi-fei, GAO Shuai, WEI Zhong-shan. Effects on silage quality of mixing different ratios of rice straw with alfalfa and wheat bran [J]. Acta Prataculturae Sinica, 2019, 28(5): 178-184. |
[4] | ZHENG Chun-feng, LIU Chun-zeng, LI Ben-yin, Lü Yu-hu, PAN Zi-liang, CAO Wei-dong. Effects of boron foliar spray on grain-setting characteristics of Chinese milk vetch (Astragalus sinicus) [J]. Acta Prataculturae Sinica, 2019, 28(11): 192-199. |
[5] | XIE Zhi-jian, ZHOU Chun-huo, HE Ya-qin, SONG Tao, YU Yang, WU Jia. A review of Astragalus sinicus in paddy fields in south China since 2000s [J]. Acta Prataculturae Sinica, 2018, 27(8): 185-196. |
[6] | CHANG Dan-na, LIU Chun-zeng, LI Ben-yin, LÜ Yu-hu, PAN Zi-liang, GAO Song-juan,CAO Wei?dong. Effects of incorporating Chinese milk vetch on reductive material characteristics and greenhouse gas emissions in paddy soil [J]. Acta Prataculturae Sinica, 2018, 27(12): 133-144. |
[7] | LI Jun-Feng, YUAN Xian-Jun, DONG Zhi-Hao, Seare Tajebe Desta, CHEN Lei, BAI Xi, BAI Yun-Feng, SHAO Tao. Isolation and identification of facultatively anaerobic cellulolytic bacterium in the rumen of Tibetan yaks (Bos grunniens) [J]. Acta Prataculturae Sinica, 2017, 26(6): 176-184. |
[8] | WANG Yan-Qiu, GAO Song-Juan, CAO Wei-Dong, LI Jing-Huan, NIE Jun, XU Chang-Xu, BAI Jin-Shun, ZENG Nao-Hua, ZHOU Guo-Peng. Fertility and nitrification characteristics of two typical paddy soils after application of milk vetch (Astragalus sinicus) for 8 years [J]. Acta Prataculturae Sinica, 2017, 26(2): 180-189. |
[9] | GUO Hai-Ming, XIA Tian-Chan, ZHU Wen, ZHANG Yong, YE Jun-An. Effect of additives on the quality and aerobic stability of rice straw silage [J]. Acta Prataculturae Sinica, 2017, 26(2): 190-196. |
[10] | DONG Chen-Fei, GU Hong-Ru, DING Cheng-Long, XU Neng-Xiang, ZHANG Wen-Jie. Effects of gibberellic acid on forage quality of rice (Oryza sativa) straw [J]. Acta Prataculturae Sinica, 2016, 25(11): 94-102. |
[11] | DONG Chen-Fei, GU Hong-Ru, XU Neng-Xiang, CHENG Yun-Hui, ZHANG Wen-Jie, DING Cheng-Long. Effects of gibberellic acid on nonstructural carbohydrates content in rice (Oryza sativa) straw harvested at different times [J]. Acta Prataculturae Sinica, 2015, 24(8): 53-64. |
[12] | XU Neng-Xiang, DONG Chen-Fei, GU Hong-Ru, CHENG Yun-Hui, ZHANG Wen-Jie, DING Cheng-Long. Effects of α-amylase on fermentation of rice (Oryza sativa) straw [J]. Acta Prataculturae Sinica, 2015, 24(11): 146-154. |
[13] | WANG Hong-ze,WANG Zhi-sheng,KANG Kun,ZOU Hua-wei,SHEN Jun-hua,HU Rui. Effects of corn flour and lactic acid bacteria on quality of mixed silage made from sweet potato vines, distiller’s grains and rice straw [J]. Acta Prataculturae Sinica, 2014, 23(6): 103-110. |
[14] | XIE Zhi-jian,XU Chang-xu,LIU Guang-rong,CAO Wei-dong. Effects of different doses of bensulfuron-methyl·butachlor and quinclorac on the growing environment and nutrient accumulation of Chinese milk vetch [J]. Acta Prataculturae Sinica, 2014, 23(5): 201-207. |
[15] | LIN Xin-jian,LAN Zhong-ming,ZHANG Hui,WANG Fei,HE Chun-mei. Organic acid composition analysis of root exudation of Chinese milk vetch genotypes [J]. Acta Prataculturae Sinica, 2014, 23(4): 146-152. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||