Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (4): 121-129.DOI: 10.11686/cyxb2020182
Previous Articles Next Articles
Wang-long LUO(), Jian-qiang XIA, Jia-xin LI, Shu-fan SUN, Rui WANG, Bo ZHANG()
Received:
2020-04-21
Revised:
2020-06-04
Online:
2021-04-20
Published:
2021-03-16
Contact:
Bo ZHANG
Wang-long LUO, Jian-qiang XIA, Jia-xin LI, Shu-fan SUN, Rui WANG, Bo ZHANG. Selection for reproductive traits and their adaptation in Stellera chamaejasme in degraded alpine grassland[J]. Acta Prataculturae Sinica, 2021, 30(4): 121-129.
项目 Item | 冠筒长 Corolla tube length | 冠口 Corolla entrance | 小花数 Flowers number | 花序头直径 Inflorescence head diameter | 单株丛花序数 Inflorescence number per plant |
---|---|---|---|---|---|
冠口 Corolla entrance | 0.481** | ||||
小花数 Flowers number | 0.274** | 0.021 | |||
花序头直径Inflorescence head diameter | 0.808** | 0.511** | 0.362** | ||
单株丛花序数Inflorescence number per plant | -0.216* | -0.218* | -0.049 | -0.255** | |
株高 Plant height | 0.065 | -0.050 | 0.234** | 0.132 | 0.273** |
Table 1 Correlation coefficients between floral traits of S. chamaejasme (n=120)
项目 Item | 冠筒长 Corolla tube length | 冠口 Corolla entrance | 小花数 Flowers number | 花序头直径 Inflorescence head diameter | 单株丛花序数 Inflorescence number per plant |
---|---|---|---|---|---|
冠口 Corolla entrance | 0.481** | ||||
小花数 Flowers number | 0.274** | 0.021 | |||
花序头直径Inflorescence head diameter | 0.808** | 0.511** | 0.362** | ||
单株丛花序数Inflorescence number per plant | -0.216* | -0.218* | -0.049 | -0.255** | |
株高 Plant height | 0.065 | -0.050 | 0.234** | 0.132 | 0.273** |
项目 Item | 性状 Traits | 选择梯度 Selection gradients | T值 (P值) T value (P value) |
---|---|---|---|
定向选择Directional selection (β±SE) | 冠筒长 Corolla tube length | 0.067±0.040 | 1.669 (0.095) |
冠口 Corolla entrance | 0.053±0.041 | 1.300 (0.194) | |
单花序小花数Flowers number of per inflorescence | 0.303±0.041 | 7.391 (0.000) | |
单株丛花序数Inflorescence number of per plant | -0.007±0.048 | -0.142 (0.887) | |
株高 Plant height | -0.102±0.039 | -2.634 (0.008) | |
非线性选择Nonlinear selection (2γ±SE) | 冠筒长 Corolla tube length | -0.164±0.076 | -2.152 (0.031) |
冠口Corolla entrance | -0.010±0.052 | -0.181 (0.856) | |
单花序小花数 Flowers number of per inflorescence | -0.138±0.060 | -2.281 (0.023) | |
单株丛花序数Inflorescence number of per plant | -0.008±0.066 | -0.119 (0.905) | |
株高 Plant height | 0.012±0.060 | 0.206 (0.837) |
Table 2 Selection gradients of reproductive traits in S. chamaejasme analyzed by complete regression model (n=120)
项目 Item | 性状 Traits | 选择梯度 Selection gradients | T值 (P值) T value (P value) |
---|---|---|---|
定向选择Directional selection (β±SE) | 冠筒长 Corolla tube length | 0.067±0.040 | 1.669 (0.095) |
冠口 Corolla entrance | 0.053±0.041 | 1.300 (0.194) | |
单花序小花数Flowers number of per inflorescence | 0.303±0.041 | 7.391 (0.000) | |
单株丛花序数Inflorescence number of per plant | -0.007±0.048 | -0.142 (0.887) | |
株高 Plant height | -0.102±0.039 | -2.634 (0.008) | |
非线性选择Nonlinear selection (2γ±SE) | 冠筒长 Corolla tube length | -0.164±0.076 | -2.152 (0.031) |
冠口Corolla entrance | -0.010±0.052 | -0.181 (0.856) | |
单花序小花数 Flowers number of per inflorescence | -0.138±0.060 | -2.281 (0.023) | |
单株丛花序数Inflorescence number of per plant | -0.008±0.066 | -0.119 (0.905) | |
株高 Plant height | 0.012±0.060 | 0.206 (0.837) |
项目 Item | 性状 Traits | 选择梯度 Selection gradients | T值 (P值) T value (P value) |
---|---|---|---|
定向选择Directional selection (β±SE) | 冠筒长 Corolla tube length | 0.094±0.035 | 2.715 (0.006) |
单花序小花数 Flowers number of per inflorescence | 0.291±0.038 | 7.689 (0.000) | |
株高 Plant height | -0.108±0.034 | -3.210 (0.001) | |
非线性选择Nonlinear selection (2γ±SE) | 冠筒长Corolla tube length | -0.124±0.056 | -2.247 (0.024) |
单花序小花数Flowers number of per inflorescence | -0.152±0.048 | -3.168 (0.001) | |
相关选择Correlational selection | 株高×冠筒长Plant height×corolla tube length | 0.059±0.037 | 1.618 (0.106) |
Table 3 Selection gradients of reproductive traits in S. chamaejasme analyzed by minimum adequate model (n=120)
项目 Item | 性状 Traits | 选择梯度 Selection gradients | T值 (P值) T value (P value) |
---|---|---|---|
定向选择Directional selection (β±SE) | 冠筒长 Corolla tube length | 0.094±0.035 | 2.715 (0.006) |
单花序小花数 Flowers number of per inflorescence | 0.291±0.038 | 7.689 (0.000) | |
株高 Plant height | -0.108±0.034 | -3.210 (0.001) | |
非线性选择Nonlinear selection (2γ±SE) | 冠筒长Corolla tube length | -0.124±0.056 | -2.247 (0.024) |
单花序小花数Flowers number of per inflorescence | -0.152±0.048 | -3.168 (0.001) | |
相关选择Correlational selection | 株高×冠筒长Plant height×corolla tube length | 0.059±0.037 | 1.618 (0.106) |
1 | Harder L D, Johnson S D. Darwin’s beautiful contrivances: Evolutionary and functional evidence for floral adaptation. New Phytologist, 2009, 183(3): 530-545. |
2 | Campbell D R, Waser N M, Price M V. Mechanisms of hummingbird-mediated selection for flower width in Ipomopsis aggregata. Ecology, 1996, 77(5): 1463-1472. |
3 | Stebbins G L. Adaptive Radiation of reproductive characteristics in angiosperms, I: Pollination mechanisms. Annual Review of Ecology and Systematics, 1970, 1(1): 307-326. |
4 | Sletvold N, Grindeland J M, Gren J. Pollinator-mediated selection on floral display, spur length and flowering phenology in the deceptive orchid Dactylorhiza lapponica. New Phytologist, 2010, 188(2): 385-392. |
5 | Benitez-Vieyra S, Glinos E, Medina A M N, et al. Temporal variation in the selection on floral traits in Cyclopogon elatus (Orchidaceae). Evolutionary Ecology, 2012, 26(6): 1451-1468. |
6 | Zhao Z G, Huang S Q. Differentiation of floral traits associated with pollinator preference in a generalist-pollinated Herb, Trollius ranunculoides (Ranunculaceae). International Journal of Plant Sciences, 2013, 174(4): 637-646. |
7 | Totland O. Environment-dependent pollen limitation and selection on floral traits in an alpine species. Ecology, 2001, 82(8): 2233-2244. |
8 | Conner J K, Hartl D L. A primer of ecological genetics. Sinauer Associates Incorporated, 2004: 199-208. |
9 | Zhang B, Li Q J. Phenotypic selection on the staminal lever mechanism in Salvia digitaloides (Labiaceae). Evolutionary Ecology, 2013, 28(2): 373-386. |
10 | Gomez J M, Bosch J, Perfectti F, et al. Spatial variation in selection on corolla shape in a generalist plant is promoted by the preference patterns of its local pollinators. Proceedings of the Royal Society B: Biological Sciences, 2008, 275(1648): 2241-2249. |
11 | Maad J, Alexandersson R. Variable selection in Platanthera bifolia (Orchidaceae): Phenotypic selection differed between sex functions in a drought year. Journal of Evolutionary Biology, 2004, 17(3): 642-650. |
12 | Sandring S, Rllhmaki M A, Savolainen O. Selection on flowering time and floral display in an alpine and a lowland population of Arabidopsis lyrata. Journal of Evolutionary Biology, 2007, 20(2): 558-567. |
13 | Obeso J R. The costs of reproduction in plants. New Phytologist, 2002, 155(3): 321-348. |
14 | Lu N N, Liu Z H, Ma Y, et al. Phenotypic selection analysis of flower traits in Delphinium kamaonense var. glabrescens (Ranunculaceae). Biodiversity Science, 2019, 27(7): 772-777. |
路宁娜, 刘振恒, 马妍, 等. 展毛翠雀的花性状表型选择. 生物多样性, 2019, 27(7): 772-777. | |
15 | Zhao C Z, Gao F Y, Sheng Y P, et al. Fine-scale spatial distribution and spatial association of Stellera chamaejasme population. Arid Land Geography, 2011, 34(3): 492-498. |
赵成章, 高福元, 盛亚萍, 等. 狼毒种群小尺度空间分布格局及空间关联性研究. 干旱区地理, 2011, 34(3): 492-498. | |
16 | Gao F Y, Zhao C Z, Zhuo M, et al. Spatial distribution and spatial association of Stellera chamaejasme population in the different altitude in in degraded alpine grassland. Acta Ecologica Sinica, 2014, 34(3): 605-612. |
高福元, 赵成章, 卓马, 等. 高寒退化草地不同海拔梯度狼毒种群分布格局及空间关联性. 生态学报, 2014, 34(3): 605-612. | |
17 | Xing F, Wang Y H, Guo J X. Spatial distribution patterns and dispersal mechanisms of the seed population of Stellera chamaejasme on degraded grasslands in Inner Mongolia, China. Acta Ecologica Sinica, 2004, 24(1): 143-148. |
邢福, 王艳红, 郭继勋. 内蒙古退化草原狼毒种子的种群分布格局与散布机制. 生态学报, 2004, 24(1): 143-148. | |
18 | Sun G, Luo P, Wu N, et al. Stellera chamaejasme L. increases soil N availability, turnover rates and microbial biomass in an alpine meadow ecosystem on the eastern Tibetan Plateau of China. Soil Biology and Biochemistry, 2009, 41(1): 86-91. |
19 | Zhao C Z, Zhang Q P. The spatial pattern of soil seed bank of Stellera chamaejasme community in degraded grassland of the Qilian Mountains. Chinese Journal of Grassland, 2010, 32(1): 79-85. |
赵成章, 张起鹏. 祁连山退化草地狼毒群落土壤种子库的空间格局. 中国草地学报, 2010, 32(1): 79-85. | |
20 | Zhang Q, Zhao C Z, Dong X G, et al. Relationships between flower size, flower number, and plant size of Stellera chamaejasme population along an altitude gradient of degraded alpine grassland in Northwest China. Chinese Journal of Ecology, 2013, 32(12): 3160-3166. |
张茜, 赵成章, 董小刚, 等. 高寒退化草地不同海拔狼毒种群花大小, 数量与个体大小的关系. 生态学杂志, 2013, 32(12): 3160-3166. | |
21 | Zhang Q, Zhao C Z, Dong X G, et al. Relationship between flower size and leaf size, number of Stellera chamaejasme population of degraded alpine grassland along an altitude gradient. Chinese Journal of Ecology, 2015, 34(1): 40-46. |
张茜, 赵成章, 董小刚, 等. 高寒退化草地不同海拔狼毒种群花大小与叶大小, 叶数量的关系. 生态学杂志, 2015, 34(1): 40-46. | |
22 | Zhang Z Q, Zhang Y H, Sun H. The reproductive biology of Stellera chamaejasme (Thymelaeaceae): A self-incompatible weed with specialized flowers. Flora-Morphology, Distribution, Functional Ecology of Plants, 2011, 206(6): 567-574. |
23 | Zhang G, Guo Y Z, Zhang S P, et al. Harm status and control strategy of poisonous weeds of natural grasslands in Tianzhu County of Gansu Province. Progress in Veterinary Medicine, 2019, 40(3): 123-128. |
张庚, 郭亚洲, 张水平, 等. 甘肃天祝县天然草地毒草危害状况调查与防控. 动物医学进展, 2019, 40(3): 123-128. | |
24 | Shi Y, Hu T H, Gao H J, et al. The community vegetation composition and stability characteristics of alpine meadow under two grazing modes. Acta Prataculturae Sinica, 2019, 28(9): 1-10. |
施颖, 胡廷花, 高红娟, 等. 两种放牧模式下高寒草甸群落植被构成及稳定性特征. 草业学报, 2019, 28(9): 1-10. | |
25 | Lande R, Arnold S J. The measurement of selection on correlated characters. Evolutionary Ecology, 1983, 37(6): 1210-1226. |
26 | Zhang B, Claßen-Bockhoff R. Sex-differential reproduction success and selection on floral traits in gynodioecious Salvia pratensis. BMC Plant Biology, 2019, 19(1): 1-10. |
27 | Xie L H, Huang Q Y, Cao H J, et al. Leaf functional traits of Acer mono in Wudalianchi Volcano, China. Biodiversity Science, 2019, 27(3): 286-296. |
谢立红, 黄庆阳, 曹宏杰, 等. 五大连池火山色木槭叶功能性状特征. 生物多样性, 2019, 27(3): 286-296. | |
28 | Conner J K. Understanding natural selection: An approach integrating selection gradients, multiplicative fitness components, and path analysis. Ethology Ecology & Evolution, 1996, 8(4): 387-397. |
29 | Hodgins K A, Barrett S C H. Natural selection on floral traits through male and female function in wild populations of the heterostylous daffodil Narcissus triandrus. Evolution, 2008, 62(7): 1751-1763. |
30 | Gomez. Phenotypic selection and response to selection in Lobularia maritima: Importance of direct and correlational components of natural selection. Journal of Evolutionary Biology, 2001, 13(4): 689-699. |
31 | Irwin R E. The consequences of direct versus indirect species interactions to selection on traits: Pollination and nectar robbing in Ipomopsis aggregata. The American Naturalist, 2006, 167(3): 315-328. |
32 | Verma S K, Angadi S G, Patil V S, et al. Growth, yield and quality of chrysanthemum (Chrysanthemum morifolium Ramat.) cv. Raja as influenced by integrated nutrient management. Karnataka Journal of Agricultural Sciences. 2011, 24: 681-683. |
33 | Bloch D, Erhardt A. Selection toward shorter flowers by butterflies whose probosces are shorter than floral tubes. Ecology, 2008, 89(9): 2453-2460. |
34 | Nilsson L A. The evolution of flowers with deep corolla tubes. Nature, 1988, 334: 147-149. |
35 | Johnson S, Steiner K. Long-tongued fly pollination and evolution of floral spur length in the Disa draconis complex (Orchidaceae). Evolution, 1997, 51: 45-53. |
36 | Laverty T M. Bumblebee learning and flower morphology. Animal Behaviour, 1994, 47: 531-545. |
37 | Darwin C. On the various contrivances by which british and foreign orchids are fertilised by insects. London: John Murray, 1862: 202. |
38 | Hedhly A, Hormaza J I, Herrero M. The effect of temperature on pollen germination, pollen tube growth, and stigmatic receptivity in peach. Plant Biology, 2005, 7(5): 476-483. |
39 | Dietrich L, Koerner C. Thermal imaging reveals massive heat accumulation in flowers across a broad spectrum of alpine taxa. Alpine Botany, 2014, 124(1): 27-35. |
40 | Zhang G P, Yang M L, Cheng X X, et al. Effects of floral morphology on flower temperature increment in alpine plants. Guihaia, 2017, 37(7): 822-828. |
张国鹏, 杨明柳, 程贤训, 等. 高山植物花形态特征对花温度积累的影响. 广西植物, 2017, 37(7): 822-828. | |
41 | Yang D M, Zhang J J, Zhou D, et al. Leaf and twig functional traits of woody plants and their relationships with environmental change: A review. Chinese Journal of Ecology, 2012, 31(3): 702-713. |
杨冬梅, 章佳佳, 周丹, 等. 木本植物茎叶功能性状及其关系随环境变化的研究进展. 生态学杂志, 2012, 31(3): 702-713. | |
42 | Irwin R E. Morphological variation and female reproductive success in two sympatric Trillium species: Evidence for phenotypic selection in Trilliumerectum and Trilliumgrandiflorum (Liliaceae). American Journal of Botany, 2000, 87(2): 205-214. |
43 | Wu Y, Liu Y R, Peng H, et al. Pollination ecology of alpine herb Meconopsis integrifolia at different altitudes. Chinese Journal of Plant Ecology, 2015, 39(1): 1-13. |
吴云, 刘玉蓉, 彭瀚, 等. 高山植物全缘叶绿绒蒿在不同海拔地区的传粉生态学研究. 植物生态学报, 2015, 39(1): 1-13. | |
44 | Zhao Z G, Du G Z, Zhou X H, et al. Variations with altitude in reproductive traits and resource allocation of three tibetan species of ranunculaceae. Australian Journal of Botany, 2006, 54(7): 691-700. |
45 | Milla R, Reich P B. Multi-trait interactions, not phylogeny, fine-tune leaf size reduction with increasing altitude. Annals of Botany, 2011, 107(3): 455-465. |
46 | Zhang Q, Zhao C Z, Ma X L, et al. Response of reproductive allocation of Stellera chamaejasme population in alpine grassland to altitude. Chinese Journal of Ecology, 2013, 32(2): 247-252. |
张茜, 赵成章, 马小丽, 等. 高寒草地狼毒种群繁殖分配对海拔的响应. 生态学杂志, 2013, 32(2): 247-252. |
[1] | MA Yan, LU Ning-na, LU Guang-mei, CHEN Xue-lin. Phenotypic selection for floral traits of two sympatric Pedicularis species [J]. Acta Prataculturae Sinica, 2020, 29(2): 186-192. |
[2] | Hui-fang SUN, Yan WEI, Zi-yan YAN, Cheng YAN. Effect of seasonal transformation of flower morphology on reproduction of Viola philippica [J]. Acta Prataculturae Sinica, 2020, 29(12): 198-204. |
[3] | ZHANG Jin-xia, CHEN Yuan, GUO Feng-xia, WANG Yin-quan, ZHOU Sheng-mao, XIAO Sheng-wei. Studies of the flowering habits and pollination for diploid Isatis indigotica [J]. Acta Prataculturae Sinica, 2019, 28(6): 157-166. |
[4] | WANG Xiao-Lei, WANG Jian, ZHANG Qing-Ling, YAN Jing, QIANG Sheng, SONG Xiao-Ling. Fitness of resistant backcross generation (BC3F2-3) between glufosinate-resistant transgenic oilseed rape and wild Brassica juncea [J]. Acta Prataculturae Sinica, 2017, 26(12): 138-151. |
[5] | ZHANG Yong-Chao, YUAN Xiao-Bo, NIU De-Cao, WU Shu-Juan, ZHANG Dian-Ye, ZONG Wen-Jie, FU Hua. Response of plateau pika burrow density to vegetation management in an alpine meadow, Maqu County, Gansu [J]. Acta Prataculturae Sinica, 2016, 25(2): 87-94. |
[6] | ZHANG Wei-zhong,HE Bing,CAO Guang-chun,ZHANG Ze-hua,WU Ya-han,LIU Shi-chao,WANG Hai-rong. Quantitative analysis of the effects of Stipa krylovii and Leymus chinensis on the factors of vitiality of Oedaleus decorus asiaticus [J]. Acta Prataculturae Sinica, 2013, 22(5): 302-309. |
[7] | LI Bing, LIU Zuo-jun, ZHAO Zhi-gang, HU Chun, REN Hong-mei, WU Guo-qiang. Influence of altitude on reproductive traits and reproductive allocation of different colours in Anemone obtusiloba populations [J]. Acta Prataculturae Sinica, 2013, 22(1): 10-19. |
[8] | ZHENG Yi-qi, ZANG Guo-zhang, GUO Hai-lin, LIU Jian-xiu, REN Ge. Analysis of heredity and correlation of reproductive traits in centipedegrass (Eremochloa ophiuroides)hybrids [J]. Acta Prataculturae Sinica, 2011, 20(2): 283-289. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||