Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (1): 189-196.DOI: 10.11686/cyxb2020297
Previous Articles Next Articles
Zhen-song LI(), Li-qiang WAN(), Shuo LI(), Xiang-lin LI
Received:
2020-06-29
Revised:
2020-09-27
Online:
2021-01-20
Published:
2021-01-08
Contact:
Li-qiang WAN
Zhen-song LI, Li-qiang WAN, Shuo LI, Xiang-lin LI. Response of alfalfa root architecture and physiological characteristics to drought and rehydration[J]. Acta Prataculturae Sinica, 2021, 30(1): 189-196.
处理 Treatment | 土壤含水量 Soil moisture | |||
---|---|---|---|---|
第1~4周 1st to 4th weeks | 第5周5th week | 第6周6th week | 第7周7th week | |
CK | 饱和含水量75%~80% 75%-80% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity |
LS | 饱和含水量60%~65% 60%-65% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity |
MS | 饱和含水量的45%~50% 45%-50% water holding capacity | 饱和含水量的60%~65% 60%-65% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity |
SS | 饱和含水量的30%~35% 30%-35% water holding capacity | 饱和含水量的45%~50% 45%-50% water holding capacity | 饱和含水量的60%~65% 60%-65% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity |
Table 1 Different treatment soil moisture content and treatment time
处理 Treatment | 土壤含水量 Soil moisture | |||
---|---|---|---|---|
第1~4周 1st to 4th weeks | 第5周5th week | 第6周6th week | 第7周7th week | |
CK | 饱和含水量75%~80% 75%-80% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity |
LS | 饱和含水量60%~65% 60%-65% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity |
MS | 饱和含水量的45%~50% 45%-50% water holding capacity | 饱和含水量的60%~65% 60%-65% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity |
SS | 饱和含水量的30%~35% 30%-35% water holding capacity | 饱和含水量的45%~50% 45%-50% water holding capacity | 饱和含水量的60%~65% 60%-65% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity |
处理 Treatment | 根干重 Root dry weight (g·plant-1) | 根长 Root length (cm) | 比根长 Specific root length (cm·g-1) |
---|---|---|---|
CK | 0.79±0.09A | 618±178 | 957±64bc |
LS | 0.50±0.03B | 292±86 | 1126±224ab |
MS | 0.59±0.04B | 484±84 | 1392±71a |
SS | 0.74±0.02A | 356±162 | 641±227c |
Table 2 Effects of different treatments on root dry weight, root length and specific root length
处理 Treatment | 根干重 Root dry weight (g·plant-1) | 根长 Root length (cm) | 比根长 Specific root length (cm·g-1) |
---|---|---|---|
CK | 0.79±0.09A | 618±178 | 957±64bc |
LS | 0.50±0.03B | 292±86 | 1126±224ab |
MS | 0.59±0.04B | 484±84 | 1392±71a |
SS | 0.74±0.02A | 356±162 | 641±227c |
处理 Treatment | 根表面积 Root surface area (cm2) | 根体积 Root volume (cm3) | 根密度 Root density (cm·cm-3) |
---|---|---|---|
CK | 93.10±11.14a | 0.83±0.02a | 838.15±196.10a |
LS | 34.42±8.53b | 0.32±0.01c | 292.63±85.50b |
MS | 59.27±7.47b | 0.67±0.01ab | 577.79±49.61ab |
SS | 43.88±23.97b | 0.44±0.29bc | 356.23±151.61b |
Table 3 Effects of different treatments on root surface area, root volume and root density
处理 Treatment | 根表面积 Root surface area (cm2) | 根体积 Root volume (cm3) | 根密度 Root density (cm·cm-3) |
---|---|---|---|
CK | 93.10±11.14a | 0.83±0.02a | 838.15±196.10a |
LS | 34.42±8.53b | 0.32±0.01c | 292.63±85.50b |
MS | 59.27±7.47b | 0.67±0.01ab | 577.79±49.61ab |
SS | 43.88±23.97b | 0.44±0.29bc | 356.23±151.61b |
处理 Treatment | 根尖数 Number of root tip (No.) | 拓扑指数 Topological index |
---|---|---|
CK | 3948±764A | 0.5899±0.0068c |
LS | 1463±320B | 0.6386±0.0031a |
MS | 2298±424B | 0.6203±0.0079ab |
SS | 1520±562B | 0.6022±0.0227bc |
Table 4 Effects of different treatments on the number of root tip and topological index
处理 Treatment | 根尖数 Number of root tip (No.) | 拓扑指数 Topological index |
---|---|---|
CK | 3948±764A | 0.5899±0.0068c |
LS | 1463±320B | 0.6386±0.0031a |
MS | 2298±424B | 0.6203±0.0079ab |
SS | 1520±562B | 0.6022±0.0227bc |
处理 Treatment | 丙二醛 MDA (nmol·g-1) | 过氧化氢 H2O2 (mol·g-1) | 超氧阴离子 O2- (U·g-1) |
---|---|---|---|
CK | 21.33±2.17C | 55.47±11.04 | 14.28±0.05C |
LS | 35.60±1.73B | 70.83±9.24 | 14.86±0.08B |
MS | 35.41±2.59B | 72.33±12.54 | 15.30±0.06A |
SS | 41.06±1.87A | 63.37±13.86 | 15.00±0.09B |
Table 5 Effects of different treatments on MDA, H2O2 and O2-
处理 Treatment | 丙二醛 MDA (nmol·g-1) | 过氧化氢 H2O2 (mol·g-1) | 超氧阴离子 O2- (U·g-1) |
---|---|---|---|
CK | 21.33±2.17C | 55.47±11.04 | 14.28±0.05C |
LS | 35.60±1.73B | 70.83±9.24 | 14.86±0.08B |
MS | 35.41±2.59B | 72.33±12.54 | 15.30±0.06A |
SS | 41.06±1.87A | 63.37±13.86 | 15.00±0.09B |
处理 Treatment | 超氧化物歧化酶 SOD (U·g-1) | 过氧化氢酶CAT (U·g-1) | 谷胱甘肽GSH (nmol·g-1) |
---|---|---|---|
CK | 2637±18C | 18.43±1.38A | 68.83±9.44C |
LS | 2697±12B | 18.16±1.53A | 125.00±7.22B |
MS | 2805±24A | 15.72±1.38A | 112.17±11.55B |
SS | 2785±26A | 9.49±1.67B | 169.00±9.91A |
Table 6 Effects of different treatments on SOD, CAT and GSH
处理 Treatment | 超氧化物歧化酶 SOD (U·g-1) | 过氧化氢酶CAT (U·g-1) | 谷胱甘肽GSH (nmol·g-1) |
---|---|---|---|
CK | 2637±18C | 18.43±1.38A | 68.83±9.44C |
LS | 2697±12B | 18.16±1.53A | 125.00±7.22B |
MS | 2805±24A | 15.72±1.38A | 112.17±11.55B |
SS | 2785±26A | 9.49±1.67B | 169.00±9.91A |
1 | Akhtar J, Galloway A F, Nikolopoulos G, et al. A quantitative method for the high throughput screening for the soil adhesion properties of plant and microbial polysaccharides and exudates. Plant Soil, 2018, 428: 57-65. |
2 | Richards J H, Caldwell M M. Hydraulic lift: Substantial nocturnal water transport between soil layers by Artemisia tridentate roots. Oecologia, 1987, 73(4): 486-489. |
3 | Hu X, Li X Y, Wang P, et al. Influence of exclosure on CT-measured soil macropores and root architecture in a shrub-encroached grassland in Northern China. Soil and Tillage Research, 2019, 187: 21-30. |
4 | Li W R, Zhang S Q, Ding S Y, et al. Root morphological variation and water use in alfalfa under drought stress. Acta Ecologica Sinica, 2010, 30(19): 5140-5150. |
李文娆, 张岁岐, 丁圣彦, 等. 干旱胁迫下紫花苜蓿根系形态变化及与水分利用的关系. 生态学报, 2010, 30(19): 5140-5150. | |
5 | Zhang X D, Wang Z W, Han Q F, et al.Effects of water stress on the root structure and physiological characteristics of early-stage maize. Acta Ecologica Sinica, 2016, 36(10): 2969-2977. |
张旭东, 王智威, 韩清芳, 等. 玉米早期根系构型及其生理特性对土壤水分的响应. 生态学报, 2016, 36(10): 2969-2977. | |
6 | Zhang C M, Shi S L, Liu Z, et al. Effects of drought stress on the root morphology and anatomical structure of alfalfa (Medicago sativa) varieties with differing drought-tolerance. Acta Prataculturae Sinica, 2019, 28(5): 79-89 |
张翠梅, 师尚礼, 刘珍, 等. 干旱胁迫对不同抗旱性苜蓿品种根系形态及解剖结构的影响. 草业学报, 2019, 28(5): 79-89. | |
7 | Li S, Wan L Q, Nie Z N, et al. Fractal and topological analyses and antioxidant defense systems of alfalfa (Medicago sativa L.) root system under drought and rehydration regimes. Agronomy, 2020, 10(6): 805. |
8 | Xu X N, Yi J, Yu L Q, et al. Advances on drought resistance of alfalfa. Chinese Agricultural Science Bulletin, 2009, 25(21): 180-184. |
徐向南, 易津, 于林清, 等. 紫花苜蓿抗旱性研究进展. 中国农学通报, 2009, 25(21): 180-184. | |
9 | Liu J X, Wang X, Wang F Q. Effect of water stress on osmotic adjustment and activity of protective enzymes in alfalfa seedlings. Pratacultural Science, 2005, 22(3): 18-21. |
刘建新, 王鑫, 王凤琴. 水分胁迫对苜蓿幼苗渗透调节物质积累和保护酶活性的影响. 草业科学, 2005, 22(3): 18-21. | |
10 | Khalloufi F, Oufdou K, Lahrouni M, et al. Physiological and antioxidant responses of Medicago sativa-rhizobia symbiosis to cyanobacterial toxins (Microcystins) exposure. Toxicon, 2013(76): 167-177. |
11 | Wang Y, Ma F, Li M, et al. Physiological responses of kiwifruit plants to exogenous ABA under drought conditions. Plant Growth Regulation, 2011, 64(1): 63-74. |
12 | Wang J Q, Li H, Liu Q, et al. Effects of exogenous plant hormones on physiological characteristics and yield of sweet potato under drought stress. Chinese Journal of Applied Ecology, 2020, 31(1): 189-198. |
王金强, 李欢, 刘庆, 等. 干旱胁迫下喷施外源植物激素对甘薯生理特性和产量的影响. 应用生态学报, 2020, 31(1): 189-198. | |
13 | Lynch J. Root architecture and plant productivity. Plant Physiology, 1995, 109(1): 7-13. |
14 | Fitter A H, Stickland T R, Harvey M L, et al. Architectural analysis of plant root systems 1. Architectural correlates of exploitation efficiency. New Phytologist, 1991, 118(3): 375-382. |
15 | Fitter A H, Stickland T R. Architectural analysis of plant root systems 2. Influence of nutrient supply on architecture in contrasting plant species. New Phytologist, 1991, 118(3): 383-389. |
16 | Berntson G M. Topological scaling and plant root system architecture: Developmental and functional hierarchies. New Phytologist, 1997, 135(4): 621-634. |
17 | Heath R L, Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Beijing: Academic Press, 1968, 125(1): 189-198. |
18 | Willekens H, Chamnongpol S, Davey M, et al. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. The EMBO Journal, 1997, 16(16): 4806-4816. |
19 | Elstner E F, Heupel A. Formation of hydrogen peroxide by isolated cell walls from horseradish (Armoracia lapathifolia Gilib.). Planta, 1976, 130(3): 175-180. |
20 | Giannopolitis C N, Ries S K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 1977, 59(2): 309-314. |
21 | Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 1981, 22(5): 867-880. |
22 | Griffith O W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Beijing: Academic Press, 1980, 106(1): 207-212. |
23 | Zhang X H, Wang W R, Xu X F, et al. Determination of the content of gibberellin and abscisic acid in soybean by high performance liquid chromatography. Chinese Journal of Health Laboratory Technology, 2012, 22(12): 2825-2826. |
张秀红, 王文瑞, 徐晓枫, 等. 高效液相色谱测定大豆中赤霉素和脱落酸含量方法的建立. 中国卫生检验杂志, 2012, 22(12): 2825-2826. | |
24 | Zhao L Y, Deng X P, Shan L. A review on types and mechanisms of compensation effect of crops under water deficit. Chinese Journal of Applied Ecology, 2004, 15(3): 523-526. |
赵丽英, 邓西平, 山仑. 水分亏缺下作物补偿效应类型及机制研究概述. 应用生态学报, 2004, 15(3): 523-526. | |
25 | Zhou L, Gan Y, Ou X B, et al. Progress in molecular and physiological mechanisms of water-saving by compensation for water deficit of crop and how they relate to crop production. Chinese Journal of Eco-Agriculture, 2011, 19(1): 217-225. |
周磊, 甘毅, 欧晓彬, 等. 作物缺水补偿节水的分子生理机制研究进展. 中国生态农业学报, 2011, 19(1): 217-225. | |
26 | Dorlodot S D, Forster B, Pagès L, et al. Root system architecture: Opportunities and constraints for genetic improvement of crops. Trends in Plant Science, 2007, 12(10): 474-481. |
27 | Jongrungklang N, Toomsan B, Vorasoot N, et al. Rooting traits of peanut genotypes with different yield responses to pre-flowering drought stress. Field Crop Research, 2010, 120(1): 265-270. |
28 | Shan L S, Li Y, Duan Y N, et al. Response of root morphology and water use efficiency of Reaumuria soongoricato soil water change. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(6): 1198-1205. |
单立山, 李毅, 段雅楠, 等. 红砂幼苗根系形态特征和水分利用效率对土壤水分变化的响应. 西北植物学报, 2014, 34(6): 1198-1205. | |
29 | Oppelt A L, Kurth W, Godbold D L. Topology, scaling relations and Leonardo’s rule in root systems from African tree species. Tree Physiology, 2001, 21(2): 117-128. |
30 | Li W T, Ning P, Wang F, et al. Effects of exogenous abscisic acid (ABA) on growth and physiological characteristics of Machilus yunnanensis seedlings under drought stress. Chinese Journal of Applied Ecology, 2020, 31(5): 1543-1550. |
李琬婷, 宁朋, 王菲, 等. 外源脱落酸对干旱胁迫下滇润楠幼苗生长及生理特性的影响. 应用生态学报, 2020, 31(5): 1543-1550. | |
31 | Choudhury F K, Rivero R M, Blumwald E, et al. Reactive oxygen species, abiotic stress and stress combination. The Plant Journal, 2017, 90(5): 856-867. |
32 | Li H, Li B, Ma H, et al. Effects on antioxidative enzymes of alfalfa seedlings under simulated drought. Grassland and Turf, 2016, 36(4): 54-58. |
李红, 李波, 马赫, 等. 模拟干旱胁迫对苜蓿幼苗抗氧化酶系统的影响. 草原与草坪, 2016, 36(4): 54-58. | |
33 | Zhang L X, Li S X. Effects of nitrogen, potassium and glycine betaine on the lipid peroxidation and protective enzymes activities in water-stressed summer maize. Acta Agronomica Sinica, 2007, 33(3): 482-490. |
张立新, 李生秀. 氮、钾、甜菜碱对水分胁迫下夏玉米叶片膜脂过氧化和保护酶活性的影响. 作物学报, 2007, 33(3): 482-490. | |
34 | Li C Y, Tian X R, Chen J, et al. Physiological response of Plagiomniumacutum during desiccation and rehydration process. Guihaia, 2009, 29(1): 139-142. |
李朝阳, 田向荣, 陈军, 等. 脱水与复水过程中湿地匍灯藓的生理生化响应. 广西植物, 2009, 29(1): 139-142. | |
35 | Wang H Z, Ma J, Li X Y, et al. Effects of water stress on active oxygen generation and protection system in rice during grain filling stage. Scientia Agricultura Sinica, 2007, 7: 1379-1387. |
王贺正, 马均, 李旭毅, 等. 水分胁迫对水稻结实期活性氧产生和保护系统的影响. 中国农业科学, 2007, 7: 1379-1387. | |
36 | Cui Y Y, Pandey D M, Hahn E J, et al.Effect of drought on physiological aspects of crassulacean acid metabolism in Doritaenopsis. Plant Science, 2004, 167(6): 1219-1226. |
37 | Guerrero F, Mullet J E. Increased abscisic acid biosynthesis during plant dehydration requires transcription. Plant Physiology, 1986, 80(2): 588-591. |
38 | Zhang J H, Jia W S, Yang J C, et al. Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Research, 2006, 97(1): 111-119. |
39 | Shen Y Y, Huang C L, Zhang X H, et al. Plant drought tolerance molecular mechanism. Chinese Journal of Eco-Agriculture, 2002, 10(1): 30-34. |
沈元月, 黄丛林, 张秀海, 等. 植物抗旱的分子机制研究. 中国生态农业学报, 2002, 10(1): 30-34. | |
40 | Jia W S, Xing Y, Lu C M, et al. Signal transduction from water stress perception to ABA accumulation. Acta Botanica Sinica, 2002, 44(10): 1135-1141. |
41 | Li J, Li C Y. Seventy-year major research progress in plant hormones by Chinese scholars. Science Sinica, 2019, 49(10): 1227-1281. |
黎家, 李传友. 新中国成立70年来植物激素研究进展. 中国科学: 生命科学, 2019, 49(10): 1227-1281. |
[1] | Yi-yao HOU, Xiao LI, Rui-cai LONG, Qing-chuan YANG, Jun-mei KANG, Chang-hong GUO. Effect of overexpression of the alfalfa MsHB7 gene on drought tolerance of Arabidopsis [J]. Acta Prataculturae Sinica, 2021, 30(4): 170-179. |
[2] | Di ZHANG, Li-fei REN, Guang-bin LIU, Fu-qing LUO, Wen-hao ZHANG, Tian-zuo WANG. Comparative metabolite profiling of alfalfa seeds dried at different temperatures [J]. Acta Prataculturae Sinica, 2021, 30(3): 158-166. |
[3] | Bai-ping SHA, Ying-zhong XIE, Xue-qin GAO, Wei CAI, Bing-zhe FU. Effects of coupling of drip irrigation water and fertilizer on yield and quality of alfalfa in the yellow river irrigation district [J]. Acta Prataculturae Sinica, 2021, 30(2): 102-114. |
[4] | Shuang LIU, Fu-ping HUI. Distribution of alfalfa in the Ming and Qing Dynasties and the underlying driving factors [J]. Acta Prataculturae Sinica, 2021, 30(2): 178-189. |
[5] | Hong-tao XIANG, Dian-feng ZHENG, Ning HE, Wan LI, Man-li WANG, Shi-ya WANG. Research progress on the physiological response of plants to low temperature and the amelioration effcectiveness of exogenous ABA [J]. Acta Prataculturae Sinica, 2021, 30(1): 208-219. |
[6] | WU Yong, LIU Xiao-jing, LIN Fang, TONG Chang-chun. A data envelopment analysis study of alfalfa fertilization responses and economic return in the desert irrigation area of Hexi [J]. Acta Prataculturae Sinica, 2020, 29(9): 94-105. |
[7] | XING Yi-mei, DONG Li, ZHAN Li-feng, CAI Hua, YANG Sheng-qiu, SUN Na. Effect of mixed inoculation of Glomus mosseae and Sinorhizobium melilotion alkali resistance of alfalfa [J]. Acta Prataculturae Sinica, 2020, 29(9): 136-145. |
[8] | QIN Feng-fei, LI Zhi-hua, LIU Xin-bao, QU Hui, PINGCUO Zhuo-ma, LUOSONG Qun-cuo, SU Meng-han. Effects of exogenous 2, 4-epibrassinolide on the growth and photosynthesis of alfalfa under high temperature and low light stress in summer [J]. Acta Prataculturae Sinica, 2020, 29(9): 146-160. |
[9] | TONG Chang-chun, LIU Xiao-jing, LIN Fang, YU Tie-feng. Yield effect of optimisation of photosynthetic characteristics of alfalfa through balanced fertilization [J]. Acta Prataculturae Sinica, 2020, 29(8): 70-80. |
[10] | LU Jiao-yun, XIONG Jun-bo, ZHANG He-shan, TIAN Hong, YANG Hui-min, LIU Yang. Effects of water stress on yield, quality and trace element composition of alfalfa [J]. Acta Prataculturae Sinica, 2020, 29(8): 126-133. |
[11] | CUI Xue-lian, XIA Chao. Effect of exogenous abscisic acid on seedling establishment of Epichloё gansuensis-Achnatherum inebrians symbiont [J]. Acta Prataculturae Sinica, 2020, 29(7): 70-80. |
[12] | CAI Lu, WANG Lin-lin, LUO Zhu-zhu, LI Ling-ling, NIU Yi-ning, CAI Li-qun, XIE Jun-hong. Meta-analysis of alfalfa yield and WUE response to growing ages in China [J]. Acta Prataculturae Sinica, 2020, 29(6): 27-38. |
[13] | ZHANG Li-li, SHI Min, LI Yan-zhong. Effect of anthracnose infection on alfalfa yield and quality in the Shaerqin area [J]. Acta Prataculturae Sinica, 2020, 29(6): 117-126. |
[14] | HE Guo-xing, SONG Jian-chao, WEN Ya-jie, LIU Cai-ting, QI Juan. Effects of different rhizobium fertilizers on alfalfa productivity and soil fertility [J]. Acta Prataculturae Sinica, 2020, 29(5): 109-120. |
[15] | ZHANG Yu-xia, WANG Xian-guo, TIAN Yong-lei, CONG Bai-ming, WANG Yue-lin, CHEN Wei-dong, GAO Kai. Effect of sowing date on cold resistance of different alfalfa varieties in Horqin sandy land [J]. Acta Prataculturae Sinica, 2020, 29(4): 73-80. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||