Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (6): 16-27.DOI: 10.11686/cyxb2020354
Previous Articles Next Articles
Xiao-ding LIN(), Le CHANG, Dan FENG()
Received:
2020-07-28
Revised:
2020-10-26
Online:
2021-05-21
Published:
2021-05-21
Contact:
Dan FENG
Xiao-ding LIN, Le CHANG, Dan FENG. Remote-sensing estimation of vegetation gross primary productivity and its spatiotemporal changes in Qinghai Province from 2000 to 2019[J]. Acta Prataculturae Sinica, 2021, 30(6): 16-27.
1 | Yuan W P, Cai W W, Liu D, et al. Satellite-based vegetation production models of terrestrial ecosystem: An overview. Advances in Earth Science, 2014, 29(5): 541-550. |
袁文平, 蔡文文, 刘丹, 等. 陆地生态系统植被生产力遥感模型研究进展. 地球科学进展, 2014, 29(5): 541-550. | |
2 | Vitousek P M, Mooney H A, Lubchenco J, et al. Human domination of earth’s ecosystems. Science, 1997, 277(25): 494-499. |
3 | Li Z Q, Yu G R, Xiao X M, et al. Ecosystem productivity was estimated using MODIS data and climatic data//The first national ecological and Agrometeorological business development and Technology Exchange Conference. Kunming: Jiangxi Meteorological Service, National Meteorological Centre, 2006: 353-363. |
李正泉, 于贵瑞, 肖向明, 等. 利用MODIS资料与气候数据估算生态系统生产力//首届全国生态与农业气象业务发展与技术交流会. 昆明: 江西省气象局, 国家气象中心, 2006: 353-363. | |
4 | Sims D A, Rahman A F, Cordova V D, et al. A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS. Remote Sensing of Environment: An Interdisciplinary Journal, 2008, 112(4): 1633-1646. |
5 | Sims D A, Rahman A F, Cordova V D, et al. On the use of MODIS EVI to assess gross primary productivity of North American ecosystems. Journal of Geophysical Research: Biogeosciences, 2006, 111(G4), DOI: 10.1029/2006JG000162. |
6 | Huete A R, Didan K, Shimabukuro Y E, et al. Amazon rainforests green-up with sunlight in dry season. Geophysical Research Letters, 2006, 33(6): 6401-6405. |
7 | Huete A R, Restrepo-Coupe N, Ratana P, et al. Multiple site tower flux and remote sensing comparisons of tropical forest dynamics in monsoon Asia. Agricultural and Forest Meteorology, 2008, 148(5): 748-760. |
8 | Olofsson P, Lagergren F, Lindroth A, et al. Towards operational remote sensing of forest carbon balance across Northern Europe. Biogeosciences, 2008(3): 817. |
9 | Arneth A, Schubert P, Eklundh L, et al. Exploring the potential of MODIS EVI for modeling gross primary production across African ecosystems. Remote Sensing of Environment: An Interdisciplinary Journal, 2011, 115(4): 1081-1089. |
10 | Huang N, Chen J M, Wu C. Predicting gross primary production from the enhanced vegetation index and photosynthetically active radiation: Evaluation and calibration. Remote Sensing of Environment: An Interdisciplinary Journal, 2011, 115(12): 3424-3435. |
11 | Ma X, Huete A, Yu Q, et al. Spatial patterns and temporal dynamics in savanna vegetation phenology across the North Australian Tropical Transect. Remote Sensing of Environment, 2013, 139: 97-115. |
12 | Hilker T, Hall F G, Coops N C. Data assimilation of photosynthetic light-use efficiency using multi-angular satellite data: I. Model formulation. Remote Sensing of Environment: An Interdisciplinary Journal, 2012, 121: 301-308. |
13 | Guanter L, Zhang Y, Jung M, et al. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(14): 1327-1333. |
14 | Badgley G, Field C B, Berry J A. Canopy near-infrared reflectance and terrestrial photosynthesis. Science Advances, 2017, 3(3): e1602244. |
15 | Badgley G, Anderegg L D L, Berry J A, et al. Terrestrial gross primary production: Using NIRV to scale from site to globe. Global Change Biology, 2019, 25(11): 3731-3740. |
16 | Liu P. Remote sensed net primary productivity and its spatital-temporal pattern over “Three-River Headwaters” Region in 2000-2012. Xining: Qinghai Normal University, 2016. |
刘鹏. 2000-2012年三江源植被生产力遥感估算及其时空格局分析. 西宁: 青海师范大学, 2016. | |
17 | Zhang J P, Liu C L, Hao H G, et al. Spatial-temporal change of carbon storage and carbon sink of grassland ecosystem in the Three-River Headwaters Region based on MODIS GPP/NPP data. Ecology and Environmental Sciences, 2015, 24(1): 8-13. |
张继平, 刘春兰, 郝海广, 等. 基于MODIS GPP/NPP数据的三江源地区草地生态系统碳储量及碳汇量时空变化研究. 生态环境学报, 2015, 24(1): 8-13. | |
18 | Liu F, Zeng Y N. Spatial-temporal change in vegetation net primary productivity and its response to climate and human activities in Qinghai Plateau in the past 16 years. Acta Ecologica Sinica, 2019, 39(5): 1528-1540. |
刘凤, 曾永年. 近16年青海高原植被NPP时空格局变化及气候与人为因素的影响. 生态学报, 2019, 39(5): 1528-1540. | |
19 | Jia J H, Liu H Y, Lin Z S.Multi-time scale changes of vegetation NPP in six provinces of Northwest China and their responses to climate change.Acta Ecologica Sinica, 2019, 39(14): 5058-5069. |
贾俊鹤, 刘会玉, 林振山. 中国西北地区植被NPP多时间尺度变化及其对气候变化的响应. 生态学报, 2019, 39(14): 5058-5069. | |
20 | Ding S W, Chen Y Y, Tan L R, et al. Vegetation changes in the Meng Mountain Region from 2001 to 2016 based on MODIS data. Journal of Capital Normal University (Natural Science Edition), 2018, 39(4): 81-87. |
丁少文, 陈亦妍, 谭丽荣, 等. 基于MODIS数据的蒙山2001-2016年植被动态变化研究. 首都师范大学学报(自然科学版), 2018, 39(4): 81-87. | |
21 | Wu L B, Gu S, Zhao L, et al. Variation in net CO2 exchange, gross primary production and its affecting factors in the planted pasture ecosystem in Sanjiangyuan Region of the Qinghai-Tibetan Plateau of China.Chinese Journal of Plant Ecology, 2010, 34(7): 770-780. |
吴力博, 古松, 赵亮, 等. 三江源地区人工草地的生态系统CO2净交换、总初级生产力及其影响因子. 植物生态学报, 2010, 34(7): 770-780. | |
22 | State Environmental Protection Administration. The RS investigation map of ecological environment for Western China. Beijing: Science Press, 2002. |
国家环保总局. 中国西部地区生态环境现状遥感调查图集. 北京: 科学出版社, 2002. | |
23 | Jiang C, Guan K, Wu G, etal. A daily, 250 m and real-time gross primary productivity product (2000-present) covering the contiguous United States. Earth System Science Data, 2020, 13(2): 281-298. |
24 | Ryu Y, Jiang C, Kobayashi H, et al. MODIS-derived global land products of shortwave radiation and diffuse and total photosynthetically active radiation at 5 km resolution from 2000. Remote Sensing of Environment, 2018, 204: 812-825. |
25 | Liu J Y, Zhuang D F, Wang J H, et al. 1∶100000 landuse dataset of Qinghai Province (2000). National Tibetan Plateau Data Center, 2013. DOI: 10.11888/Socioeco.tpdc.270634. |
刘纪远, 庄大方, 王建华, 等. 青海省1∶10万土地利用数据集(2000). 国家青藏高原科学数据中心, 2013. DOI: 10.11888/Socioeco.tpdc.270634. | |
26 | Peng S Z. 1 km monthly mean temperature dataset for china (1901-2017). National Tibetan Plateau Data Center, 2019. DOI: 10.11888/Meteoro.tpdc.270961. |
彭守璋. 中国1 km分辨率逐月平均气温数据集(1901-2017). 国家青藏高原科学数据中心, 2019. DOI: 10.11888/Meteoro.tpdc.270961. | |
27 | Peng S Z. 1 km monthly precipitation dataset for China (1901-2017). National Tibetan Plateau Data Center, 2020. DOI: 10.11888/Meteoro.tpdc.270961. |
彭守璋. 中国1 km分辨率逐月降水量数据集(1901-2017). 国家青藏高原科学数据中心, 2020. DOI: 10.5281/zenodo.3185722. | |
28 | Wu G, Guan K, Jiang C, et al. Radiance-based NIRv as a proxy for GPP of corn and soybean. Environmental Research Letters, 2020, 15(3): 34009-34010. |
29 | Mudge J F, Baker L F, Edge C B, et al. Setting an optimal α that minimizes errors in null hypothesis significance tests. PLoS One, 2012, 7(2): e32734. |
30 | Wu S S, Yao Z J, Jiang L G, et al. The spatial-temporal variations and hydrological effects of vegetation NPP based on MODIS in the source region of the Yangtze River. Journal of Natural Resources, 2016, 31(1): 39-51. |
吴珊珊, 姚治君, 姜丽光, 等. 基于MODIS的长江源植被NPP时空变化特征及其水文效应. 自然资源学报, 2016, 31(1): 39-51. | |
31 | Liu G, Sun R, Xiao Z Q, et al. Analysis of spatial and temporal variation of net primary productivity and climate controls in China from 2001 to 2014. Acta Ecological Sinica, 2017, 37(15): 4936-4945. |
刘刚, 孙睿, 肖志强, 等. 2001-2014年中国植被净初级生产力时空变化及其与气象因素的关系. 生态学报, 2017, 37(15): 4936-4945. | |
32 | Xu J, Chen H L, Shang S S, et al. Response of net primary productivity of Tibetan Plateau vegetation to climate change based on CEVSA model. Arid Land Geography, 2020, 43(3): 592-601. |
许洁, 陈惠玲, 商沙沙, 等. 2000-2014年青藏高原植被净初级生产力时空变化及对气候变化的响应. 干旱区地理, 2020, 43(3): 592-601. | |
33 | Han B H, Zhou B R, Yan Y Q, et al. Analysis of vegetation coverage change and its driving factors over Tibetan Plateau from 2000 to 2018. Acta Agrestia Sinica, 2019, 27(6): 1651-1658. |
韩炳宏, 周秉荣, 颜玉倩, 等. 2000-2018年间青藏高原植被覆盖变化及其与气候因素的关系分析. 草地学报, 2019, 27(6): 1651-1658. | |
34 | Liu Q R. Spatial and temporal variations of terrestrial gross pirmary productivity and underlying driving factors in China. Nanjing: Nanjing University, 2017. |
刘青瑞. 中国陆地生态系统总初级生产力变化趋势及成因分析.南京: 南京大学, 2017. | |
35 | Anav A, Friedlingstein P, Beer C, et al. Spatiotemporal patterns of terrestrial gross primary production. Reviews of Geophysics, 2015, 53(3): 785-818. |
36 | Chen C, Park T, Wang X, et al. China and India lead in greening of the world through land-use management. Nature Sustainability, 2019, 2(2): 122-129. |
37 | Keenan T F, Prentice I C, Canadell J G, et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nature Communications, 2016, 7(1): 349-396. |
38 | Chen M J, Ju W, Ciais P, et al. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nature Communications, 2019, 10(20): 511-526. |
39 | Jung M, Reichstein M, Margolis H A. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. Journal of Geophysical Research: Biogeosciences, 2011, 116(G3): DOI: 10.1029/2010JG001566. |
40 | Running S W, Nemani R R, Heinsch F A, et al. A continuous satellite-derived measure of global terrestrial primary production. BioScience, 2004, 54(6): 547. |
[1] | WU Ni-tu, LIU Gui-xiang, YANG Yong, SONG Xiang-yang, BAI Hai-hua. Dynamic monitoring of net primary productivity and its response to climate factors in native grassland in Inner Mongolia using a light-use efficiency model [J]. Acta Prataculturae Sinica, 2020, 29(11): 1-10. |
[2] | SHEN Bei-bei, DING Lei, LI Zhen-wang, XIN Xiao-ping, XU Da-wei, ZHU Xiao-yu, WANG Xu, CHEN Bao-rui. Analysis of spatio-temporal changes and climate-response of net primary production in Hulunbuir grassland [J]. Acta Prataculturae Sinica, 2019, 28(5): 1-14. |
[3] | GE Jing, MENG Bao-Ping, YANG Shu-Xia, GAO Jin-Long, YIN Jian-Peng, ZHANG Ren-Ping, FENG Qi-Sheng, LIANG Tian-Gang. Monitoring of above-ground biomass in alpine grassland based on agricultural digital camera and MODIS remote sensing data: A case study in the Yellow River Headwater Region [J]. Acta Prataculturae Sinica, 2017, 26(7): 23-34. |
[4] | GE Jing, MENG Bao-Ping, YANG Shu-Xia, GAO Jin-Long, FENG Qi-Sheng, LIANG Tian-Gang, HUANG Xiao-Dong, GAO Xin-Hua, LI Wen-Long, ZHANG Ren-Ping, WANG Yun-Long. Dynamic monitoring of alpine grassland coverage based on UAV technology and MODIS remote sensing data-A case study in the headwaters of the Yellow River [J]. Acta Prataculturae Sinica, 2017, 26(3): 1-12. |
[5] | MENG Bao-Ping, CUI Xia, YANG Shu-Xia, GAO Jin-Long, HU Yuan-Ning, CHEN Si-Yu, LIANG Tian-Gang. Scaling-up methodology for alpine grassland coverage monitoring based on Landsat 8 OLI and MODIS remote sensing data: A case study in XiaheSangke grassla [J]. Acta Prataculturae Sinica, 2016, 25(7): 1-12. |
[6] | LIU Yan,YANG Yun,LI Yang. A study on snow fraction mapping based on hierarchical dynamic endmember spectral mixture analysis (DESMA) over Northern Xinjiang [J]. Acta Prataculturae Sinica, 2014, 23(4): 300-310. |
[7] | WANG Ying, WANG Jing-song, YAO Yu-bi, ZHAO Fu-nian. Dynamic monitoring of drought based on Temperature Vegetation Dryness Index in Guangdong Province [J]. Acta Prataculturae Sinica, 2014, 23(2): 98-107. |
[8] | WANG Wei, HUANG Xiao-dong, LV Zhi-bang, LIANG Tian-gang. A study on snow mapping in the Tibetan Plateau based on MODIS and AMSR-E data [J]. Acta Prataculturae Sinica, 2013, 22(4): 227-238. |
[9] |
CHEN Meng-die, HUANG Xiao-dong, HOU Xiu-min, FENG Qi-sheng, YU Hui, GUO Zheng-gang, LIANG Tian-gang.
Dynamic monitoring of biomass and vegetation coverage in rodent damaged grassland regions of Qinghai Province, China [J]. Acta Prataculturae Sinica, 2013, 22(4): 247-256. |
[10] | WANG Hao, LI Wen-long, DU Guo-zhen, ZHU Xiao-li. Research on the change of grassland vegetation coverage using 3S technology in Gannan [J]. Acta Prataculturae Sinica, 2012, 21(3): 26-37. |
[11] | SONG Chun-qiao, YOU Song-cai, LIU Gao-huan, KE Ling-hong, ZHONG Xin-ke. Spatio-temporal pattern and change of Nagqu grassland and the influence of human factors [J]. Acta Prataculturae Sinica, 2012, 21(3): 1-10. |
[12] | WU Jian-shuang, ZHOU Yu-ting. Modelling light use efficiency of alpine meadows on the Northern Tibetan Plateau based on the MODIS algorithm [J]. Acta Prataculturae Sinica, 2012, 21(1): 239-247. |
[13] | WANG Yuan-yuan, WANG Meng, LI Gui-cai, WANG Jun-bang, YANG Zhong-dong, RONG Zhi-guo. Research on validating MODIS/LAI product in a typical semi-arid steppe of Xilinhot in Northern China [J]. Acta Prataculturae Sinica, 2011, 20(4): 252-260. |
[14] | WANG Ying, XIA Wen-tao, LIANG Tian-gang, WANG Chao. Spatial and temporal dynamic changes of net primary product basedon MODIS vegetation index in Gannan grassland [J]. Acta Prataculturae Sinica, 2010, 19(1): 201-210. |
[15] | FENG Qi-sheng, ZHANG Xue-tong, LIANG Tian-gang. Dynamic monitoring of snow cover based on MOD10A1 and AMSR-E in the north of Xinjiang Province, China [J]. Acta Prataculturae Sinica, 2009, 18(1): 125-133. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||