Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (11): 98-107.DOI: 10.11686/cyxb2020420
Previous Articles Next Articles
Xiao-hong LIU(), Yun CHEN(), Zhe-hao YAN, Han TANG, Jiao-jiao QIANG, Yue QI, Yi-zhi DU
Received:
2020-09-14
Revised:
2021-01-27
Online:
2021-10-19
Published:
2021-10-19
Contact:
Yun CHEN
Xiao-hong LIU, Yun CHEN, Zhe-hao YAN, Han TANG, Jiao-jiao QIANG, Yue QI, Yi-zhi DU. The effects of grass hedgerow roots on shear strength and scouring resistance of root-soil complexes in the purple soil region[J]. Acta Prataculturae Sinica, 2021, 30(11): 98-107.
试验名称 Test category | 草篱种类 Grasses hedgerows | 根系直径 Root diameter (mm) | 根长密度 Root length density (×10-3 cm·cm-3) | 根表面积密度 Root surface area density (×10-3 cm2·cm-3) | 根体积密度 Root volume density (×10-3 cm3·cm-3) |
---|---|---|---|---|---|
抗剪 Shear resistance | 紫花苜蓿 M. sativa | 0.0<d≤1.0 | 553.34±18.33Aa | 17.28±0.12Bb | 0.56±0.02Ba |
1.0<d≤2.0 | 23.96±12.52Bb | 10.06±1.11Bb | 0.35±0.03Bb | ||
d>2.0 | 7.88±13.25Cb | 40.62±5.58Aa | 1.57±0.03Ab | ||
总体指标 Sum | 585.51±19.66b | 68.18±4.32b | 2.47±1.38b | ||
拉巴豆 D. lablab | 0.0<d≤1.0 | 565.54±18.99Aa | 86.65±2.35Aa | 0.48±0.08Cb | |
1.0<d≤2.0 | 78.21±15.77Ba | 36.28±4.32Ba | 1.39±0.07Ba | ||
d>2.0 | 81.09±16.54Ba | 46.28±1.97Ba | 3.04±1.36Aa | ||
总体指标 Sum | 725.04±15.33a | 169.78±4.39a | 4.97±1.38a | ||
抗冲 Impact resistance | 紫花苜蓿 M. sativa | 0.0<d≤1.0 | 452.01±25.33Aa | 29.68±7.25Ab | 0.24±0.02Cb |
1.0<d≤2.0 | 18.45±2.36Ba | 8.72±1.11Ba | 0.34±0.05Ba | ||
d>2.0 | 34.74±6.78Ba | 34.46±5.52Aa | 0.49±0.04Aa | ||
总体指标 Sum | 505.34±20.19a | 81.75±6.63a | 1.05±0.05a | ||
拉巴豆 D. lablab | 0.0<d≤1.0 | 405.97±34.69Ab | 35.76±4.21Aa | 0.40±0.06Aa | |
1.0<d≤2.0 | 19.79±3.55Ba | 8.63±2.56Ca | 0.31±0.03Ba | ||
d>2.0 | 20.40±4.23Bb | 25.51±3.34Bb | 0.40±0.02Aa | ||
总体指标 Sum | 446.42±31.22a | 77.67±5.21a | 1.08±0.04a |
Table 1 Whole diameter root parameters of root-soil complex
试验名称 Test category | 草篱种类 Grasses hedgerows | 根系直径 Root diameter (mm) | 根长密度 Root length density (×10-3 cm·cm-3) | 根表面积密度 Root surface area density (×10-3 cm2·cm-3) | 根体积密度 Root volume density (×10-3 cm3·cm-3) |
---|---|---|---|---|---|
抗剪 Shear resistance | 紫花苜蓿 M. sativa | 0.0<d≤1.0 | 553.34±18.33Aa | 17.28±0.12Bb | 0.56±0.02Ba |
1.0<d≤2.0 | 23.96±12.52Bb | 10.06±1.11Bb | 0.35±0.03Bb | ||
d>2.0 | 7.88±13.25Cb | 40.62±5.58Aa | 1.57±0.03Ab | ||
总体指标 Sum | 585.51±19.66b | 68.18±4.32b | 2.47±1.38b | ||
拉巴豆 D. lablab | 0.0<d≤1.0 | 565.54±18.99Aa | 86.65±2.35Aa | 0.48±0.08Cb | |
1.0<d≤2.0 | 78.21±15.77Ba | 36.28±4.32Ba | 1.39±0.07Ba | ||
d>2.0 | 81.09±16.54Ba | 46.28±1.97Ba | 3.04±1.36Aa | ||
总体指标 Sum | 725.04±15.33a | 169.78±4.39a | 4.97±1.38a | ||
抗冲 Impact resistance | 紫花苜蓿 M. sativa | 0.0<d≤1.0 | 452.01±25.33Aa | 29.68±7.25Ab | 0.24±0.02Cb |
1.0<d≤2.0 | 18.45±2.36Ba | 8.72±1.11Ba | 0.34±0.05Ba | ||
d>2.0 | 34.74±6.78Ba | 34.46±5.52Aa | 0.49±0.04Aa | ||
总体指标 Sum | 505.34±20.19a | 81.75±6.63a | 1.05±0.05a | ||
拉巴豆 D. lablab | 0.0<d≤1.0 | 405.97±34.69Ab | 35.76±4.21Aa | 0.40±0.06Aa | |
1.0<d≤2.0 | 19.79±3.55Ba | 8.63±2.56Ca | 0.31±0.03Ba | ||
d>2.0 | 20.40±4.23Bb | 25.51±3.34Bb | 0.40±0.02Aa | ||
总体指标 Sum | 446.42±31.22a | 77.67±5.21a | 1.08±0.04a |
处理 Treatments | 竖直荷载Vertical load (kPa) | 内摩擦角 Internal friction angle(°) | 粘聚力 Cohesion (kPa) | |||
---|---|---|---|---|---|---|
100 kPa | 200 kPa | 300 kPa | 400 kPa | |||
对照Blank control | 55.10±3.32c | 100.52±7.74c | 136.33±10.14c | 183.17±20.31c | 22.78±2.57c | 13.38±1.22b |
紫花苜蓿M. sativa | 71.59±2.64b | 116.34±9.10b | 168.39±5.27b | 219.41±16.39b | 26.10±2.33b | 20.06±2.35ab |
拉巴豆D. lablab | 75.11±6.93a | 131.22±4.11a | 183.29±13.11a | 235.69±17.21a | 28.37±0.97a | 22.88±0.92a |
Table 2 Shear strength of CK and grass hedgerows root-soil complex
处理 Treatments | 竖直荷载Vertical load (kPa) | 内摩擦角 Internal friction angle(°) | 粘聚力 Cohesion (kPa) | |||
---|---|---|---|---|---|---|
100 kPa | 200 kPa | 300 kPa | 400 kPa | |||
对照Blank control | 55.10±3.32c | 100.52±7.74c | 136.33±10.14c | 183.17±20.31c | 22.78±2.57c | 13.38±1.22b |
紫花苜蓿M. sativa | 71.59±2.64b | 116.34±9.10b | 168.39±5.27b | 219.41±16.39b | 26.10±2.33b | 20.06±2.35ab |
拉巴豆D. lablab | 75.11±6.93a | 131.22±4.11a | 183.29±13.11a | 235.69±17.21a | 28.37±0.97a | 22.88±0.92a |
试验名称 Test category | 成分 Component | 特征值 Eigenvalue | 方差贡献率 Variance contribution rate (%) | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 |
---|---|---|---|---|---|---|---|---|---|---|---|
抗剪 Shear resistance | F1 | 5.057 | 63.212 | 0.945 | 0.241 | -0.733 | -0.966 | 0.845 | -0.882 | 0.951 | 0.488 |
F2 | 1.702 | 21.275 | 0.091 | 0.915 | 0.220 | 0.133 | 0.328 | 0.226 | 0.282 | -0.743 | |
抗冲 Impact resistance | F1 | 4.207 | 52.583 | 0.951 | 0.293 | -0.629 | -0.945 | 0.814 | 0.149 | 0.914 | 0.638 |
F2 | 1.691 | 21.138 | 0.289 | 0.885 | 0.690 | 0.068 | -0.057 | 0.196 | 0.301 | -0.460 | |
F3 | 1.371 | 17.137 | -0.086 | -0.344 | -0.087 | -0.043 | 0.385 | 0.896 | -0.022 | -0.533 |
Table 3 The factor load matrix after principal component analysis and the variance contribution rate
试验名称 Test category | 成分 Component | 特征值 Eigenvalue | 方差贡献率 Variance contribution rate (%) | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 |
---|---|---|---|---|---|---|---|---|---|---|---|
抗剪 Shear resistance | F1 | 5.057 | 63.212 | 0.945 | 0.241 | -0.733 | -0.966 | 0.845 | -0.882 | 0.951 | 0.488 |
F2 | 1.702 | 21.275 | 0.091 | 0.915 | 0.220 | 0.133 | 0.328 | 0.226 | 0.282 | -0.743 | |
抗冲 Impact resistance | F1 | 4.207 | 52.583 | 0.951 | 0.293 | -0.629 | -0.945 | 0.814 | 0.149 | 0.914 | 0.638 |
F2 | 1.691 | 21.138 | 0.289 | 0.885 | 0.690 | 0.068 | -0.057 | 0.196 | 0.301 | -0.460 | |
F3 | 1.371 | 17.137 | -0.086 | -0.344 | -0.087 | -0.043 | 0.385 | 0.896 | -0.022 | -0.533 |
试验名称 Test category | 草篱种类 Grasses hedgerows | F1 | F2 | F3 | F |
---|---|---|---|---|---|
抗剪 Shear resistance | 紫花苜蓿M. sativa | 2.733 | -1.783 | / | 1.348 |
拉巴豆D. lablab | 2.804 | 1.921 | / | 2.181 | |
抗冲 Impact resistance | 紫花苜蓿M. sativa | 2.947 | -0.488 | -0.886 | 1.295 |
拉巴豆D. lablab | 2.093 | 1.507 | 0.733 | 1.545 |
Table 4 The principal component score and comprehensive score of shear strength and anti-scourability for root-soil complex
试验名称 Test category | 草篱种类 Grasses hedgerows | F1 | F2 | F3 | F |
---|---|---|---|---|---|
抗剪 Shear resistance | 紫花苜蓿M. sativa | 2.733 | -1.783 | / | 1.348 |
拉巴豆D. lablab | 2.804 | 1.921 | / | 2.181 | |
抗冲 Impact resistance | 紫花苜蓿M. sativa | 2.947 | -0.488 | -0.886 | 1.295 |
拉巴豆D. lablab | 2.093 | 1.507 | 0.733 | 1.545 |
1 | Li J Q, Zhang H J, Cheng J H, et al. Soil physical properties of different hedgerow systems in upper reaches of Yangtze River. Chinese Journal of Applied Ecology, 2011, 22(2): 418-424. |
黎建强, 张洪江, 程金花, 等. 长江上游不同植物篱系统的土壤物理性质. 应用生态学报, 2011, 22(2): 418-424. | |
2 | Guo T, He B H, Jiang X J, et al. Effect of Leucaena leucocephala on soil organic carbon conservation on slope in the purple soil area. Acta Ecologica Sinica, 2012, 32(1): 190-197. |
郭甜, 何丙辉, 蒋先军, 等. 新银合欢篱对紫色土坡地土壤有机碳固持的作用. 生态学报, 2012, 32(1): 190-197. | |
3 | Zhai T T, Chen Y, Li T, et al. Comparative study on soil water reservoirs and shear strength between the sedimentation zone in front of and ridge behind hedgerows. Acta Ecologica Sinica, 2020, 40(2): 599-607. |
翟婷婷, 谌芸, 李铁, 等. 植物篱篱前淤积带与篱下土坎土壤水库和抗剪性能对比研究. 生态学报, 2020, 40(2): 599-607. | |
4 | Zhou P, Wen A B, Yan D C, et al. The mechanics of soil reinforcement by root on the hedge of the sloping cultivated lands of purple soils in the three gorges reservoir region. Journal of Soil and Water Conservation, 2017, 31(1): 85-90. |
周萍, 文安邦, 严冬春, 等. 三峡库区紫色土坡耕地草本植物根系固结地埂的土力学机制. 水土保持学报, 2017, 31(1): 85-90. | |
5 | Ding W B, He W J, Shi D M, et al. Effect of drying-wetting condition on attenuation-recovery of soil shear strength of bio-embankment on sloping farmland comprising purple soil. Acta Prataculturae Sinica, 2017, 26(6): 56-67. |
丁文斌, 何文健, 史东梅, 等. 干湿作用对紫色土坡耕地生物埂土壤抗剪强度衰减—恢复效应. 草业学报, 2017, 26(6): 56-67. | |
6 | Tang H, Chen Y, Liu X H, et al. Study on the mechanic features of root and root-soil matrix of Dolichos lablab hedgerows on the slopes of the Karst area. Acta Ecologica Sinica, 2019, 39(16): 6114-6125. |
唐菡, 谌芸, 刘枭宏, 等. 喀斯特坡地拉巴豆草篱根及根-土复合体力学特性. 生态学报, 2019, 39(16): 6114-6125. | |
7 | Osman N, Abdullah M N, Abdullah C H. Pull-out and tensile strength properties of two selected tropical trees. Sains Malaysiana, 2011, 40(6): 577-585. |
8 | Giadrossich F, Schwarz M, Cohen D, et al. Mechanical interactions between neighbouring roots during pullout rests. Plant and Soil, 2013, 367: 391-406. |
9 | Zhou T, Chen Y, Wang R Z, et al. Effect of planting grasses and adding polyacrylamide on the shear performance and erodibility-resistance of purple soil in barren hillsides. Acta Prataculturae Sinica, 2019, 28(3): 62-73. |
周涛, 谌芸, 王润泽, 等. 种草和施用聚丙烯酰胺对荒坡紫色土抗剪和抗蚀性能的影响研究. 草业学报, 2019, 28(3): 62-73. | |
10 | Li T, Wang R Z, Chen Y, et al. Effects of polyacrylamide and grass root system on shear strength and physical properties of purple soil on barren slopes. Acta Prataculturae Sinica, 2018, 27(2): 69-78. |
李铁, 王润泽, 谌芸, 等. PAM和草类根系对荒坡紫色土物理性质与抗剪性能的影响. 草业学报, 2018, 27(2): 69-78. | |
11 | Boldrin D, Leung A K, Bengough A G. Root biomechanical properties during establishment of woody perennials. Ecological Engineering, 2017, 109: 196-206. |
12 | Li J, Wang X, Jia H X, et al. Ecological restoration with shrub roots for slope reinforcement in a shallow landslide-prone region. Acta Ecologica Sinica, 2019, 39(14) : 5117-5126. |
李佳, 汪霞, 贾海霞, 等. 浅层滑坡多发区典型灌木根系对边坡土体抗剪强度的影响. 生态学报, 2019, 39(14): 5117-5126. | |
13 | Wang R Z, Chen Y, Li T, et al. Root distribution characteristics of Vetiveria zizanioides and Digitaria sanguinalis and their effects on the anti erodibility of purple soil in slope lands. Acta Prataculturae Sinica, 2017, 26(7): 45-54. |
王润泽, 谌芸, 李铁, 等. 香根草和马唐的根系特征及对坡地紫色土抗侵蚀性的影响. 草业学报, 2017, 26(7): 45-54. | |
14 | Xu W X, Bao Y H, Wei J, et al. Impacts of the typical herbaceous plant roots on soil scour resistance in the reservoir riparian zone. Journal of Soil and Water Conservation, 2019, 33(4): 65-71, 109. |
徐文秀, 鲍玉海, 韦杰, 等. 水库消落带典型草本植物根系对土壤抗冲性能的影响. 水土保持学报, 2019, 33(4): 65-71, 109. | |
15 | Liu Z, Yang R, Pei Y D. Soil erosion resistance characteristics of Zanthoxylum bungeanum and Lonicera japonica forest land in canyon areas of Karst plateau. Acta Pedologica Sinica, 2019, 56(2): 466-474. |
刘志, 杨瑞, 裴仪岱. 喀斯特高原峡谷区顶坛花椒与金银花林地土壤抗侵蚀特征. 土壤学报, 2019, 56(2): 466-474. | |
16 | Baum W. Root system research method. Xue D R, Tan X L, translate. Beijing: Science Press, 1985: 231. |
伯姆 W. 根系研究法. 薛德榕, 谭协麟, 译. 北京: 科学出版社, 1985: 231. | |
17 | Chen Y, He B H, Lian C X, et al. Root-soil system anti-scourability on steep slopes in the Three Gorges Reservoir Area. Acta Ecologica Sinica, 2016, 36(16): 5173-5181. |
谌芸, 何丙辉, 练彩霞, 等. 三峡库区陡坡根-土复合体抗冲性能. 生态学报, 2016, 36(16): 5173-5181. | |
18 | Li H S. Experimental principle and techniques for plant physiology and biochemistry. Beijing: Higher Education Press, 2000: 211-212. |
李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000: 211-212. | |
19 | Lv C J, Chen L H. Relationship between root tensile mechanical properties and its main chemical components of tipical tree species in North China. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(23): 69-78. |
吕春娟, 陈丽华. 华北典型植被根系抗拉力学特性及其与主要化学成分关系. 农业工程学报, 2013, 29(23): 69-78. | |
20 | Makhlouf M, Aboul-Ezz A, Fayed M S, et al. Evaluating the amount of tooth movement and root resorption during canine retraction with friction versus frictionless mechanics using cone beam computed tomography. Open Access Macedonian Journal of Medical Sciences, 2018, 6(2): 384-388. |
21 | Zhun M, Yan W, Luke M C M, et al. Mechanical traits of fine roots as a function of topology and anatomy. Annals of Botany, 2018, 122(7): 1103-1116. |
22 | Ye C, Guo Z L, Cai C F, et al. Relationship between root tensile mechanical properties and main chemical components of five herbaceous specics. Pratacultural Science, 2017, 34(3): 598-606. |
叶超, 郭忠录, 蔡崇法, 等. 5种草本植物根系理化特性及其相关性. 草业科学, 2017, 34(3): 598-606. | |
23 | Zhang C B, Chen L H, Jiang J. Why fine tree roots are stronger than thicker roots: The role of cellulose and lignin in relation to slope stability. Geomorphology, 2014, 206: 196-202. |
24 | Mao Z, Jourdan C, Bonis M L, et al. Modelling root demography in heterogeneous mountain forests and applications for slope stability analysis. Plant and Soil, 2013, 363(1/2): 357-382. |
25 | Li J X, He B H, Chen Y. Root features of typical herb plants for hillslope protection and their effects on soil infiltration. Acta Ecologica Sinica, 2013, 33(5): 1535-1544. |
李建兴, 何丙辉, 谌芸. 不同护坡草本植物的根系特征及对土壤渗透性的影响. 生态学报, 2013, 33(5): 1535-1544. | |
26 | Xie K Y, Wang Y X, Wan J C, et al. Mechanisms and factors affecting nitrogen transfer in mixed legume/grass swards: A review. Acta Prataculturae Sinica, 2020, 29(3): 157-170. |
谢开云, 王玉祥, 万江春, 等. 混播草地中豆科/禾本科牧草氮转移机理及其影响因素. 草业学报, 2020, 29(3): 157-170. | |
27 | Yang Y M, Zheng Z C, Li T X. Soil anti-scourability dynamic variation characteristics and its influencing factors under different land use types. Journal of Soil and Water Conservation, 2010, 24(4): 64-68. |
杨玉梅, 郑子成, 李廷轩. 不同土地利用方式下土壤抗冲性动态变化特征及其影响因素. 水土保持学报, 2010, 24(4): 64-68. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||