Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (1): 131-144.DOI: 10.11686/cyxb2020481
Xiao-fan YIN(), Na WEI, Shu-wen ZHENG, Wen-xian LIU()
Received:
2020-10-27
Revised:
2020-12-28
Online:
2021-12-01
Published:
2021-12-01
Contact:
Wen-xian LIU
Xiao-fan YIN, Na WEI, Shu-wen ZHENG, Wen-xian LIU. Genome-wide development and utilization of LTR retrotransposon-based IRAP markers in Medicago truncatula[J]. Acta Prataculturae Sinica, 2022, 31(1): 131-144.
编号No. | 标准品种Example varieties | 种属Species | 类型Type | 来源Origins |
---|---|---|---|---|
1 | 中牧1号Zhongmu 1 | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 中国China |
2 | 中苜1号Zhongmu 1 | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 中国China |
3 | 中苜2号Zhongmu 2 | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 中国China |
4 | 中兰1号Zhonglan 1 | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 中国China |
5 | 甘农7号Gannong 7 | 杂花苜蓿M. sativa Martin | 品种Cultivar | 中国China |
6 | 甘农2号Gannong 2 | 杂花苜蓿M. sativa Martin | 品种Cultivar | 中国China |
7 | 甘农3号Gannong 3 | 杂花苜蓿M. sativa Martin | 品种Cultivar | 中国China |
8 | 甘农4号Gannong 4 | 杂花苜蓿M. sativa Martin | 品种Cultivar | 中国China |
9 | 无棣苜蓿Wudi | 紫花苜蓿M. sativa ssp. sativa | 地方种Land race | 中国China |
10 | 新疆大叶Xinjiangdaye | 紫花苜蓿M. sativa ssp. sativa | 地方种Land race | 中国China |
11 | 保定苜蓿Baoding | 紫花苜蓿M. sativa ssp. sativa | 地方种Land race | 中国China |
12 | 东苜1号Dongmu 1 | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 中国China |
13 | 公农1号Gongnong 1 | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 中国China |
14 | 公农2号Gongnong 2 | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 中国China |
15 | 公农3号Gongnong 3 | 杂花苜蓿M. sativa Martin | 品种Cultivar | 中国China |
16 | 龙牧808 Longmu 808 | 紫花苜蓿M. sativa ssp. sativa | 地方种Land race | 中国China |
17 | 天水苜蓿Tianshui | 紫花苜蓿M. sativa ssp. sativa | 地方种Land race | 中国China |
18 | 新牧2号Xinmu 2 | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 中国China |
19 | 图牧1号Tumu 1 | 杂花苜蓿M. sativa Martin | 品种Cultivar | 中国China |
20 | 陇东苜蓿Longdong | 紫花苜蓿M. sativa ssp. sativa | 地方种Land race | 中国China |
21 | Abi 700 | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 美国United States |
22 | Arc | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 美国United States |
23 | Archer | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 美国United States |
24 | Boja | 紫花苜蓿M. sativa notho. varia | 品种Cultivar | 波兰Poland |
25 | CUF 101 | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 美国United States |
26 | Derby | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 英国United Kingdom |
27 | Europe | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 法国France |
28 | Hunter River | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 墨西哥Mexico |
29 | Hunterfield | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 奥地利Austria |
30 | IFMP 798 | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 沙特阿拉伯Saudi Arabia |
31 | Aurora | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 危地马拉Guatemala |
32 | IFMP 799 | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 沙特阿拉伯Saudi Arabia |
33 | Orca | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 法国France |
34 | Ranger | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 美国United States |
35 | Saranac AR | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 美国United States |
36 | Sutter | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 美国United States |
37 | Trifecta | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 奥地利Austria |
38 | Vernal | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 美国United States |
39 | WL168HQ | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 美国United States |
40 | WL343HQ | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 美国United States |
Table 1 40 alfalfa germplasm types and sources
编号No. | 标准品种Example varieties | 种属Species | 类型Type | 来源Origins |
---|---|---|---|---|
1 | 中牧1号Zhongmu 1 | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 中国China |
2 | 中苜1号Zhongmu 1 | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 中国China |
3 | 中苜2号Zhongmu 2 | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 中国China |
4 | 中兰1号Zhonglan 1 | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 中国China |
5 | 甘农7号Gannong 7 | 杂花苜蓿M. sativa Martin | 品种Cultivar | 中国China |
6 | 甘农2号Gannong 2 | 杂花苜蓿M. sativa Martin | 品种Cultivar | 中国China |
7 | 甘农3号Gannong 3 | 杂花苜蓿M. sativa Martin | 品种Cultivar | 中国China |
8 | 甘农4号Gannong 4 | 杂花苜蓿M. sativa Martin | 品种Cultivar | 中国China |
9 | 无棣苜蓿Wudi | 紫花苜蓿M. sativa ssp. sativa | 地方种Land race | 中国China |
10 | 新疆大叶Xinjiangdaye | 紫花苜蓿M. sativa ssp. sativa | 地方种Land race | 中国China |
11 | 保定苜蓿Baoding | 紫花苜蓿M. sativa ssp. sativa | 地方种Land race | 中国China |
12 | 东苜1号Dongmu 1 | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 中国China |
13 | 公农1号Gongnong 1 | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 中国China |
14 | 公农2号Gongnong 2 | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 中国China |
15 | 公农3号Gongnong 3 | 杂花苜蓿M. sativa Martin | 品种Cultivar | 中国China |
16 | 龙牧808 Longmu 808 | 紫花苜蓿M. sativa ssp. sativa | 地方种Land race | 中国China |
17 | 天水苜蓿Tianshui | 紫花苜蓿M. sativa ssp. sativa | 地方种Land race | 中国China |
18 | 新牧2号Xinmu 2 | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 中国China |
19 | 图牧1号Tumu 1 | 杂花苜蓿M. sativa Martin | 品种Cultivar | 中国China |
20 | 陇东苜蓿Longdong | 紫花苜蓿M. sativa ssp. sativa | 地方种Land race | 中国China |
21 | Abi 700 | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 美国United States |
22 | Arc | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 美国United States |
23 | Archer | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 美国United States |
24 | Boja | 紫花苜蓿M. sativa notho. varia | 品种Cultivar | 波兰Poland |
25 | CUF 101 | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 美国United States |
26 | Derby | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 英国United Kingdom |
27 | Europe | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 法国France |
28 | Hunter River | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 墨西哥Mexico |
29 | Hunterfield | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 奥地利Austria |
30 | IFMP 798 | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 沙特阿拉伯Saudi Arabia |
31 | Aurora | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 危地马拉Guatemala |
32 | IFMP 799 | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 沙特阿拉伯Saudi Arabia |
33 | Orca | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 法国France |
34 | Ranger | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 美国United States |
35 | Saranac AR | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 美国United States |
36 | Sutter | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 美国United States |
37 | Trifecta | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 奥地利Austria |
38 | Vernal | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 美国United States |
39 | WL168HQ | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 美国United States |
40 | WL343HQ | 紫花苜蓿M. sativa ssp. sativa | 品种Cultivar | 美国United States |
引物名称 Primer name | 正向引物 Forward primer (5'-3') | 反向引物 Reverse primer (5'-3') | 退火温度 Annealing temperature (℃) |
---|---|---|---|
C1~C1 | GCACTATACTCACACACTCAC | TCCAGAGCATAATTGTTGAAGC | 52 |
C2~G1 | AGGCAAACACAGGGACTAAAATAG | GGGGCATTTTGGTCTTTTCC | 53 |
C2~C1 | TTCTCCGCTTGTGACATGG | CAACGTGGCACGATGGAG | 53 |
C3~G1 | TGAATGAGGGTGGCTGGTC | GTTTCAAGTGCCAAGGTAAAGG | 54 |
C3~C1 | AATAGCCTTACAAGCAAAACTGAG | CAACCGTCCATTCCTAAATTCG | 53 |
C4~G1 | TTGCTCCTTTGTAACTGCTCAG | TTGGCTCTGAATCCTTGTTACG | 54 |
C4~C1 | GCAAAGCTAACCCTAATTACAC | TTTGGCGGGAAAAGTTTGTTAC | 51 |
C5~G1 | TCATAATGGGCTTGGACCTTAC | AATCCCAATGCCTCCCAAAATC | 53 |
C5~C1 | AAGTTTGGTTAGGTTGCTTGAAG | ACATCAAGAGCCTTTGGTTTCG | 54 |
C6~G1 | TCACAATATGCCTGCCTCTC | TGCTTCCAACATCACCAAATAG | 53 |
C6~C1 | TGTTGAATGCGGATGACTGAAG | CCAATCCGCCAGCAGTTG | 54 |
C7~G1 | GCCACACCTTCTTCAACTTG | GAGAACAAGGTGAACAATTCCAAC | 52 |
C7~C1 | TCCTAAAGACTTGGTCAATCAG | TGTGAGTGAAGTGAGTGAAACC | 51 |
C8~G1 | TCTTGGGCTGGGCTCATC | CTCCACCGCATTCTTCTAAGC | 54 |
C8~C1 | TGGTGTTTCCTTCAGCGTTTC | ACTTCGTTACTTGGTTAGTTAC | 50 |
C1~G2 | GCACTTGAACCATCACACATAG | GGTGCTTTCATTGCTCCTATTC | 53 |
C1~C2 | CTTGATTTCTTGTCTCCTATCG | AGGTGGAATTGTGACTAACTTG | 50 |
C2~G2 | TTCCCAGTCAAATCCTCAGATG | GGAACCGTTGTACCGTTATGG | 53 |
C2~C2 | GGAAAGTAGAAAGGCAAATACG | TCTGTGAGATGAATGCTGAAAC | 51 |
C3~G2 | CCTGAATGTTGAATGTGCCTTC | TTGGTGCTCTCGTTGTCATAAC | 54 |
C3~C2 | CTAGTGGTGAGTGGCAACTG | AAGCAGCAACCTTTGACATTC | 53 |
C4~G2 | CCAGGGAGCCAACAGAGG | GGCTGATAACACTCGTATGAAG | 52 |
C4~C2 | ACGACTGAATGAAATGTGAAAC | AACACCGCAATCCAATACCTAAG | 51 |
C5~C2 | CCTACAACGTGGAATGACTTAG | AGTGTGAGAGAAACAGTGAGTG | 52 |
C6~G2 | ATCATTCATAGAGACGCAGCTC | CCATCAAACCCATCAACCAAAG | 54 |
C6~C2 | CAGCACTGCCACTTCTTG | CAACTCCAACAACGGCTCTC | 51 |
C7~G2 | TATTTGTGATGGATGGCTACTC | GTAATGAGATTGGTGATGAGTC | 50 |
C7~C2 | CACACGTTGCCAATACTTCAG | CAGAGCTATCATCTCACAGGAC | 53 |
C8~G2 | TCCACCAGTAGGCATCTTCATC | ATGTGGTGACTCCCCTAGTTC | 54 |
C8~C2 | TGCCTTGTCAATACATAGAACC | TGGCAACGTCAAATTCAAATTC | 52 |
C1~G3 | CCTAACGGCATACTACAGATGG | GTGCTCTCGTGTTCTGTAACTC | 54 |
C1~C3 | TCACCACATACTGCTTACTTTC | GGCTTCCACAAACAACCCTTC | 52 |
C2~G3 | AAGCAGAAGGGGTGAGATTTC | CGGTCAATTAGAGAGTCGTGTC | 53 |
C3~G3 | TATGGCGGCGATATAATAATGC | CGATCCAAGGAACAACTGAGTC | 52 |
C3~C3 | TTCAGTACTTGGCATATATATAGC | AGTGGTATCAGGAGTCCTTAGG | 50 |
C4~G3 | TGGAGCAGTTCTCTTCCTTTTC | GCTTTCATCTTCACTCACCATG | 53 |
C4~C3 | ACCCTAACTCACGGCATCC | GGGCAACGGTAGTGATTTGG | 54 |
C5~C3 | AGCATATCAGAGAGTTCCTAAC | TGTGAGTGAAGTGAGTGAAACC | 50 |
C6~G3 | GCTTCTTCGATTCCTGCTGAG | CGCCCAGTGGAACCTTTTG | 54 |
C6~C3 | ACCGTGCTCACCAAATCG | TGGGGCAGAGGGTTAAAGG | 53 |
C7~G3 | ATCCAAGATGCCTACTCTCAAC | CGTTGGAGAATCAGTGAATGC | 53 |
C7~C3 | TGCATCAAATCGTTCTTCATAC | GTGGGGCAAGGGTCAAAG | 51 |
C8~G3 | GATTGATGACAGGAAGGTGAAG | ACACCCCGTTACCCAAAAG | 52 |
C8~C3 | TACTGCCTGACTATTTTCATTC | AAACACAAACCTGCTGCAATTC | 50 |
C1~G4 | TCCACAACCACACCCAATAAC | AATCGCAACTTTGGAGGTTTC | 53 |
C1~C4 | TTGTCGTGTACGGTATATTGGG | AGTGGTATCAGAGCGGTCTTC | 54 |
C2~G4 | CTCCCAAACCAAACCCAAAC | GGTCCAAACACTCTCACAAATG | 53 |
C3~G4 | AGCATAAGGACATTAGCCACTC | CTTCCCAATGCCTCCCAAAC | 54 |
C3~C4 | CCACTAGCAGCCTAACTAACC | TATCAGAGCCTCACCACGAG | 53 |
C4~G4 | TAGCGGTGACTTCTCCCATC | TTGGTGCTTTCATTGCCTCTAC | 54 |
C5~C4 | AATCTTCTCCGCCTTCTTCTG | GAACCACCGTCCGCTGAC | 53 |
C6~G4 | CGTCCTTTACTGATGCTGATGG | ACTTGGTGCTTTCATTTCCTTC | 53 |
C7~G4 | CCTATTACAGACTTGGGCCATG | ACTCCATGCCTCCCAAACC | 54 |
C8~G4 | AAACTGACATAAGGCCCAATAC | ATGCCTCCTAAACCTACAAACC | 52 |
C1~G5 | TCGCTGTTCCTGAAGTAGAAG | AATGGGGCGTAGCTTTGTG | 53 |
C1~C5 | ACAGCAGGACAGCATAGTAG | AACCCTTGCTTTCTTGACACC | 52 |
C2~G5 | TTCACCCCTTTTGTCCTTTTCC | AAGATGGGTGACCGTTTAGATG | 54 |
C3~G5 | AGGAAGGCTCTACATTACAAAC | TTGGTATCAGAGCTGGTTACG | 51 |
C4~G5 | AAGGCTCTCCATTACAAACTAG | GTTACGATACCACGGAGTTGAG | 51 |
C6~G5 | TTGCTCCTTCTTGTGGTACTTC | AACCCAAACACCGACACTTG | 54 |
C1~C6 | TGGTGGGATTGTTTGGAAGTAC | TGCTTAGGACTGCTGATGTG | 53 |
C2~G6 | TCTGGGCTTTATTTGGTGGATC | GGTGCTTTCATTGCCATCCTG | 54 |
C3~G6 | GCCACGTCATGCTTCTTTC | GTAGATGCCACCAAAGCCTAAG | 52 |
C4~G6 | GACAACACTGCTAAGACAACAC | GCCAAGTAGTAGAGTCGTGTTG | 54 |
C6~G6 | ACCCTAAGGATGAAAGAAAACG | ACCATGATGCCACGAAACC | 52 |
C2~G7 | GCCTGGACTTGTTTCTCTTAGC | ACTCACAACGATGCCTTACAAG | 55 |
C3~G7 | CATCGTTTCTTCCAGCCATTTC | AATTATTGGATACACGACTACG | 50 |
C6~G7 | TGGAGGCGGATAGGGTTTC | AGGAGGATATTGGACACTATGG | 52 |
C3~G8 | AACAAGCCAGTACAATGAACAG | GGAATTGACCACCGAGTTACG | 53 |
Table 2 Primer and sequences information applied in this study
引物名称 Primer name | 正向引物 Forward primer (5'-3') | 反向引物 Reverse primer (5'-3') | 退火温度 Annealing temperature (℃) |
---|---|---|---|
C1~C1 | GCACTATACTCACACACTCAC | TCCAGAGCATAATTGTTGAAGC | 52 |
C2~G1 | AGGCAAACACAGGGACTAAAATAG | GGGGCATTTTGGTCTTTTCC | 53 |
C2~C1 | TTCTCCGCTTGTGACATGG | CAACGTGGCACGATGGAG | 53 |
C3~G1 | TGAATGAGGGTGGCTGGTC | GTTTCAAGTGCCAAGGTAAAGG | 54 |
C3~C1 | AATAGCCTTACAAGCAAAACTGAG | CAACCGTCCATTCCTAAATTCG | 53 |
C4~G1 | TTGCTCCTTTGTAACTGCTCAG | TTGGCTCTGAATCCTTGTTACG | 54 |
C4~C1 | GCAAAGCTAACCCTAATTACAC | TTTGGCGGGAAAAGTTTGTTAC | 51 |
C5~G1 | TCATAATGGGCTTGGACCTTAC | AATCCCAATGCCTCCCAAAATC | 53 |
C5~C1 | AAGTTTGGTTAGGTTGCTTGAAG | ACATCAAGAGCCTTTGGTTTCG | 54 |
C6~G1 | TCACAATATGCCTGCCTCTC | TGCTTCCAACATCACCAAATAG | 53 |
C6~C1 | TGTTGAATGCGGATGACTGAAG | CCAATCCGCCAGCAGTTG | 54 |
C7~G1 | GCCACACCTTCTTCAACTTG | GAGAACAAGGTGAACAATTCCAAC | 52 |
C7~C1 | TCCTAAAGACTTGGTCAATCAG | TGTGAGTGAAGTGAGTGAAACC | 51 |
C8~G1 | TCTTGGGCTGGGCTCATC | CTCCACCGCATTCTTCTAAGC | 54 |
C8~C1 | TGGTGTTTCCTTCAGCGTTTC | ACTTCGTTACTTGGTTAGTTAC | 50 |
C1~G2 | GCACTTGAACCATCACACATAG | GGTGCTTTCATTGCTCCTATTC | 53 |
C1~C2 | CTTGATTTCTTGTCTCCTATCG | AGGTGGAATTGTGACTAACTTG | 50 |
C2~G2 | TTCCCAGTCAAATCCTCAGATG | GGAACCGTTGTACCGTTATGG | 53 |
C2~C2 | GGAAAGTAGAAAGGCAAATACG | TCTGTGAGATGAATGCTGAAAC | 51 |
C3~G2 | CCTGAATGTTGAATGTGCCTTC | TTGGTGCTCTCGTTGTCATAAC | 54 |
C3~C2 | CTAGTGGTGAGTGGCAACTG | AAGCAGCAACCTTTGACATTC | 53 |
C4~G2 | CCAGGGAGCCAACAGAGG | GGCTGATAACACTCGTATGAAG | 52 |
C4~C2 | ACGACTGAATGAAATGTGAAAC | AACACCGCAATCCAATACCTAAG | 51 |
C5~C2 | CCTACAACGTGGAATGACTTAG | AGTGTGAGAGAAACAGTGAGTG | 52 |
C6~G2 | ATCATTCATAGAGACGCAGCTC | CCATCAAACCCATCAACCAAAG | 54 |
C6~C2 | CAGCACTGCCACTTCTTG | CAACTCCAACAACGGCTCTC | 51 |
C7~G2 | TATTTGTGATGGATGGCTACTC | GTAATGAGATTGGTGATGAGTC | 50 |
C7~C2 | CACACGTTGCCAATACTTCAG | CAGAGCTATCATCTCACAGGAC | 53 |
C8~G2 | TCCACCAGTAGGCATCTTCATC | ATGTGGTGACTCCCCTAGTTC | 54 |
C8~C2 | TGCCTTGTCAATACATAGAACC | TGGCAACGTCAAATTCAAATTC | 52 |
C1~G3 | CCTAACGGCATACTACAGATGG | GTGCTCTCGTGTTCTGTAACTC | 54 |
C1~C3 | TCACCACATACTGCTTACTTTC | GGCTTCCACAAACAACCCTTC | 52 |
C2~G3 | AAGCAGAAGGGGTGAGATTTC | CGGTCAATTAGAGAGTCGTGTC | 53 |
C3~G3 | TATGGCGGCGATATAATAATGC | CGATCCAAGGAACAACTGAGTC | 52 |
C3~C3 | TTCAGTACTTGGCATATATATAGC | AGTGGTATCAGGAGTCCTTAGG | 50 |
C4~G3 | TGGAGCAGTTCTCTTCCTTTTC | GCTTTCATCTTCACTCACCATG | 53 |
C4~C3 | ACCCTAACTCACGGCATCC | GGGCAACGGTAGTGATTTGG | 54 |
C5~C3 | AGCATATCAGAGAGTTCCTAAC | TGTGAGTGAAGTGAGTGAAACC | 50 |
C6~G3 | GCTTCTTCGATTCCTGCTGAG | CGCCCAGTGGAACCTTTTG | 54 |
C6~C3 | ACCGTGCTCACCAAATCG | TGGGGCAGAGGGTTAAAGG | 53 |
C7~G3 | ATCCAAGATGCCTACTCTCAAC | CGTTGGAGAATCAGTGAATGC | 53 |
C7~C3 | TGCATCAAATCGTTCTTCATAC | GTGGGGCAAGGGTCAAAG | 51 |
C8~G3 | GATTGATGACAGGAAGGTGAAG | ACACCCCGTTACCCAAAAG | 52 |
C8~C3 | TACTGCCTGACTATTTTCATTC | AAACACAAACCTGCTGCAATTC | 50 |
C1~G4 | TCCACAACCACACCCAATAAC | AATCGCAACTTTGGAGGTTTC | 53 |
C1~C4 | TTGTCGTGTACGGTATATTGGG | AGTGGTATCAGAGCGGTCTTC | 54 |
C2~G4 | CTCCCAAACCAAACCCAAAC | GGTCCAAACACTCTCACAAATG | 53 |
C3~G4 | AGCATAAGGACATTAGCCACTC | CTTCCCAATGCCTCCCAAAC | 54 |
C3~C4 | CCACTAGCAGCCTAACTAACC | TATCAGAGCCTCACCACGAG | 53 |
C4~G4 | TAGCGGTGACTTCTCCCATC | TTGGTGCTTTCATTGCCTCTAC | 54 |
C5~C4 | AATCTTCTCCGCCTTCTTCTG | GAACCACCGTCCGCTGAC | 53 |
C6~G4 | CGTCCTTTACTGATGCTGATGG | ACTTGGTGCTTTCATTTCCTTC | 53 |
C7~G4 | CCTATTACAGACTTGGGCCATG | ACTCCATGCCTCCCAAACC | 54 |
C8~G4 | AAACTGACATAAGGCCCAATAC | ATGCCTCCTAAACCTACAAACC | 52 |
C1~G5 | TCGCTGTTCCTGAAGTAGAAG | AATGGGGCGTAGCTTTGTG | 53 |
C1~C5 | ACAGCAGGACAGCATAGTAG | AACCCTTGCTTTCTTGACACC | 52 |
C2~G5 | TTCACCCCTTTTGTCCTTTTCC | AAGATGGGTGACCGTTTAGATG | 54 |
C3~G5 | AGGAAGGCTCTACATTACAAAC | TTGGTATCAGAGCTGGTTACG | 51 |
C4~G5 | AAGGCTCTCCATTACAAACTAG | GTTACGATACCACGGAGTTGAG | 51 |
C6~G5 | TTGCTCCTTCTTGTGGTACTTC | AACCCAAACACCGACACTTG | 54 |
C1~C6 | TGGTGGGATTGTTTGGAAGTAC | TGCTTAGGACTGCTGATGTG | 53 |
C2~G6 | TCTGGGCTTTATTTGGTGGATC | GGTGCTTTCATTGCCATCCTG | 54 |
C3~G6 | GCCACGTCATGCTTCTTTC | GTAGATGCCACCAAAGCCTAAG | 52 |
C4~G6 | GACAACACTGCTAAGACAACAC | GCCAAGTAGTAGAGTCGTGTTG | 54 |
C6~G6 | ACCCTAAGGATGAAAGAAAACG | ACCATGATGCCACGAAACC | 52 |
C2~G7 | GCCTGGACTTGTTTCTCTTAGC | ACTCACAACGATGCCTTACAAG | 55 |
C3~G7 | CATCGTTTCTTCCAGCCATTTC | AATTATTGGATACACGACTACG | 50 |
C6~G7 | TGGAGGCGGATAGGGTTTC | AGGAGGATATTGGACACTATGG | 52 |
C3~G8 | AACAAGCCAGTACAATGAACAG | GGAATTGACCACCGAGTTACG | 53 |
检索项目Search items | Gypsy家族Gypsy family | Copia家族Copia family | 未知Unknown |
---|---|---|---|
已识别的LTR总数Total number of identified LTRs (No.) | 105 | 96 | 230 |
检索序列的总长度Total length of sequences searched (bp) | 265~14644 | 113~10167 | 113~10330 |
检索序列的平均总长度Average total length of the search sequence (bp) | 2837.1 | 2305.5 | 2623.5 |
配对评分的平均值Average of pair rating (%) | 78.7 | 74.4 | 75.2 |
LTR总数的百分比Percentage of total LTRs (%) | 24.40 | 22.30 | 53.40 |
Table 3 Information of designing primers based on the M. truncatula sequence
检索项目Search items | Gypsy家族Gypsy family | Copia家族Copia family | 未知Unknown |
---|---|---|---|
已识别的LTR总数Total number of identified LTRs (No.) | 105 | 96 | 230 |
检索序列的总长度Total length of sequences searched (bp) | 265~14644 | 113~10167 | 113~10330 |
检索序列的平均总长度Average total length of the search sequence (bp) | 2837.1 | 2305.5 | 2623.5 |
配对评分的平均值Average of pair rating (%) | 78.7 | 74.4 | 75.2 |
LTR总数的百分比Percentage of total LTRs (%) | 24.40 | 22.30 | 53.40 |
引物组合 Primer combination | 总条带数 TB (No.) | 多态性条带 PB (No.) | 多态性条带比率 PPB (%) | 预期杂合度 He | 多态性信息含量 PIC |
---|---|---|---|---|---|
C1~C2 | 10 | 7 | 70.0 | 0.82 | 0.79 |
C1~G2 | 12 | 7 | 58.3 | 0.87 | 0.86 |
C2~C1 | 17 | 16 | 94.1 | 0.83 | 0.81 |
C2~C2 | 12 | 11 | 91.7 | 0.84 | 0.82 |
C2~G1 | 4 | 3 | 75.0 | 0.56 | 0.49 |
C2~G2 | 6 | 4 | 66.7 | 0.68 | 0.62 |
C3~C2 | 10 | 9 | 90.0 | 0.72 | 0.68 |
C3~G2 | 5 | 4 | 80.0 | 0.71 | 0.66 |
C4~G1 | 6 | 5 | 83.3 | 0.76 | 0.72 |
C5~C1 | 6 | 5 | 83.3 | 0.61 | 0.57 |
C5~G1 | 13 | 12 | 92.3 | 0.89 | 0.88 |
C6~C1 | 13 | 11 | 84.6 | 0.82 | 0.80 |
C7~G1 | 5 | 4 | 80.0 | 0.55 | 0.45 |
C8~G1 | 5 | 4 | 80.0 | 0.73 | 0.68 |
C8~C1 | 3 | 2 | 66.7 | 0.39 | 0.34 |
C4~G2 | 11 | 9 | 81.8 | 0.80 | 0.77 |
C4~C2 | 7 | 5 | 71.4 | 0.69 | 0.64 |
C5~C2 | 7 | 5 | 71.4 | 0.80 | 0.77 |
C6~G2 | 10 | 7 | 70.0 | 0.82 | 0.79 |
C6~C2 | 15 | 12 | 80.0 | 0.83 | 0.81 |
C7~C2 | 16 | 15 | 93.8 | 0.89 | 0.88 |
C8~G2 | 8 | 8 | 100.0 | 0.74 | 0.69 |
C8~C2 | 3 | 2 | 66.7 | 0.48 | 0.39 |
C1~G3 | 17 | 16 | 94.1 | 0.87 | 0.86 |
C1~C3 | 9 | 8 | 88.9 | 0.85 | 0.83 |
C3~G3 | 11 | 9 | 81.8 | 0.86 | 0.84 |
C6~C3 | 6 | 4 | 66.7 | 0.71 | 0.66 |
C7~G3 | 7 | 4 | 57.1 | 0.75 | 0.71 |
C2~G4 | 6 | 5 | 83.3 | 0.47 | 0.43 |
C3~G4 | 4 | 2 | 50.0 | 0.62 | 0.54 |
C6~G4 | 4 | 3 | 75.0 | 0.67 | 0.60 |
C7~G4 | 9 | 7 | 77.8 | 0.84 | 0.82 |
C8~G4 | 7 | 5 | 71.4 | 0.71 | 0.65 |
C2~G5 | 13 | 11 | 84.6 | 0.85 | 0.83 |
C4~G5 | 15 | 14 | 93.3 | 0.85 | 0.83 |
C5~C4 | 9 | 9 | 100.0 | 0.53 | 0.51 |
C1~G5 | 4 | 4 | 100.0 | 0.69 | 0.63 |
总数Total | 325 | 268 | 82.5 | - | - |
平均值Average | 8.8 | 7.2 | 79.9 | 0.73 | 0.69 |
Table 4 Information of 37 pairs of polymorphic IRAP marker primers
引物组合 Primer combination | 总条带数 TB (No.) | 多态性条带 PB (No.) | 多态性条带比率 PPB (%) | 预期杂合度 He | 多态性信息含量 PIC |
---|---|---|---|---|---|
C1~C2 | 10 | 7 | 70.0 | 0.82 | 0.79 |
C1~G2 | 12 | 7 | 58.3 | 0.87 | 0.86 |
C2~C1 | 17 | 16 | 94.1 | 0.83 | 0.81 |
C2~C2 | 12 | 11 | 91.7 | 0.84 | 0.82 |
C2~G1 | 4 | 3 | 75.0 | 0.56 | 0.49 |
C2~G2 | 6 | 4 | 66.7 | 0.68 | 0.62 |
C3~C2 | 10 | 9 | 90.0 | 0.72 | 0.68 |
C3~G2 | 5 | 4 | 80.0 | 0.71 | 0.66 |
C4~G1 | 6 | 5 | 83.3 | 0.76 | 0.72 |
C5~C1 | 6 | 5 | 83.3 | 0.61 | 0.57 |
C5~G1 | 13 | 12 | 92.3 | 0.89 | 0.88 |
C6~C1 | 13 | 11 | 84.6 | 0.82 | 0.80 |
C7~G1 | 5 | 4 | 80.0 | 0.55 | 0.45 |
C8~G1 | 5 | 4 | 80.0 | 0.73 | 0.68 |
C8~C1 | 3 | 2 | 66.7 | 0.39 | 0.34 |
C4~G2 | 11 | 9 | 81.8 | 0.80 | 0.77 |
C4~C2 | 7 | 5 | 71.4 | 0.69 | 0.64 |
C5~C2 | 7 | 5 | 71.4 | 0.80 | 0.77 |
C6~G2 | 10 | 7 | 70.0 | 0.82 | 0.79 |
C6~C2 | 15 | 12 | 80.0 | 0.83 | 0.81 |
C7~C2 | 16 | 15 | 93.8 | 0.89 | 0.88 |
C8~G2 | 8 | 8 | 100.0 | 0.74 | 0.69 |
C8~C2 | 3 | 2 | 66.7 | 0.48 | 0.39 |
C1~G3 | 17 | 16 | 94.1 | 0.87 | 0.86 |
C1~C3 | 9 | 8 | 88.9 | 0.85 | 0.83 |
C3~G3 | 11 | 9 | 81.8 | 0.86 | 0.84 |
C6~C3 | 6 | 4 | 66.7 | 0.71 | 0.66 |
C7~G3 | 7 | 4 | 57.1 | 0.75 | 0.71 |
C2~G4 | 6 | 5 | 83.3 | 0.47 | 0.43 |
C3~G4 | 4 | 2 | 50.0 | 0.62 | 0.54 |
C6~G4 | 4 | 3 | 75.0 | 0.67 | 0.60 |
C7~G4 | 9 | 7 | 77.8 | 0.84 | 0.82 |
C8~G4 | 7 | 5 | 71.4 | 0.71 | 0.65 |
C2~G5 | 13 | 11 | 84.6 | 0.85 | 0.83 |
C4~G5 | 15 | 14 | 93.3 | 0.85 | 0.83 |
C5~C4 | 9 | 9 | 100.0 | 0.53 | 0.51 |
C1~G5 | 4 | 4 | 100.0 | 0.69 | 0.63 |
总数Total | 325 | 268 | 82.5 | - | - |
平均值Average | 8.8 | 7.2 | 79.9 | 0.73 | 0.69 |
1 | Sorkheh K, Dehkordi M K, Ercisli S, et al. Comparison of traditional and new generation DNA markers declares high genetic diversity and differentiated population structure of wild almond species. Scientific Reports, 2017, 7(1): 100-108. |
2 | Liu L, Chen W, Zheng X, et al. Genetic diversity of Ulmus lamellosa by morphological traits and sequence-related amplified polymorphism (SRAP) markers. Biochemical Systematics and Ecology, 2016, 66: 272-280. |
3 | Arruda M P, Lipka A E, Brown P J, et al. Comparing genomic selection and marker-assisted selection for Fusarium head blight resistance in wheat (Triticum aestivum L.). Molecular Breeding, 2016, 36(7): 1-11. |
4 | Wang Z, Yan H, Fu X, et al. Development of simple sequence repeat markers and diversity analysis in alfalfa (Medicago sativa L.). Molecular Biology Reports, 2013, 40(4): 3291-3298. |
5 | Vitte C, Panaud O. LTR retrotransposons and flowering plant genome size: Emergence of the increase/decrease model. Cytogenetic & Genome Research, 2005, 110(1/2/3/4): 91-107. |
6 | Kalendar R, Flavell A J, Ellis T H N, et al. Analysis of plant diversity with retrotransposon-based molecular markers. Heredity, 2011, 106(4): 520-530. |
7 | Kalendar R, Grob T, Regina M, et al. IRAP and REMAP: Two new retrotransposon-based DNA fingerprinting techniques. Theoretical & Applied Genetics, 1999, 98(5): 704-711. |
8 | Hou X G, Zhang X, Guo D L. Identification and analysis methods of plant LTR retrotransposon sequences. Hereditas, 2012, 34(11): 1491-1500. |
侯小改, 张曦, 郭大龙. 植物LTR类反转录转座子序列分析识别方法. 遗传, 2012, 34(11): 1491-1500. | |
9 | Xiao B G, Yang B C. Analysis of genetic differences among flue-cured tobacco varieties using IRAP markers. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(6): 1119-1124. |
肖炳光, 杨本超. 利用IRAP标记分析烤烟品种间遗传差异. 西北植物学报, 2006, 26(6): 1119-1124. | |
10 | Ellis T H N, Poyser S J, Knox M R, et al. Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea. Molecular and General Genetics MGG, 1998, 260(1): 9-19. |
11 | Holasou H A, Rahmati F, Rahmani F, et al. Elucidate genetic diversity and population structure of bread wheat (Triticum aestivum L.) cultivars using IRAP and REMAP markers. Journal of Crop Science and Biotechnology, 2019, 22(2): 139-151. |
12 | Mandoulakani B A, Piri Y, Darvishzadeh R, et al. Retroelement insertional polymorphism and genetic diversity in Medicago sativa populations revealed by IRAP and REMAP markers. Plant Molecular Biology Reporter, 2012, 30(2): 286-296. |
13 | Wei Z W, Gai J Y. Advances in genomic study on the legume model plant Medicago truncatula. Chinese Journal of Grassland, 2006, 28(6): 83-90. |
魏臻武, 盖钧镒. 豆科模式植物蒺藜苜蓿基因组研究进展. 中国草地学报, 2006, 28(6): 83-90. | |
14 | Boller B, Posselt U K, Veronesi F. Fodder crops and amenity grasses. New York: Springer, 2010. |
15 | álvaro S, Erice G, Aguirreolea J, et al. Alfalfa forage digestibility, quality and yield under future climate change scenarios vary with Sinorhizobium meliloti strain. Journal of Plant Physiology, 2012, 169(8): 782-788. |
16 | Zhang Z, Min X, Wang Z, et al. Genome-wide development and utilization of novel intron-length polymorphic (ILP) markers in Medicago sativa. Molecular Breeding, 2017, 37(7): 1-8. |
17 | Michaud R, Lehman W F, Rumbaugh M D. World distribution and historical development. Alfalfa and Alfalfa Improvement, 1988, 29: 25-91. |
18 | Paterson A H, Lin Y R, Li Z K, et al. Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science, 1995, 269(5231): 1714-1718. |
19 | Herrmann D, Flajoulot S, Julier B. Sample size for diversity studies in tetraploid alfalfa (Medicago sativa) based on codominantly coded SSR markers. Euphytica, 2010, 171(3): 441-446. |
20 | Liu W, Jia X, Liu Z, et al. Development and characterization of transcription factor gene-derived microsatellite (TFGM) markers in Medicago truncatula and their transferability in leguminous and non-leguminous species. Molecules, 2015, 20(5): 8759-8771. |
21 | Zhao X, Hao W. LTR_FINDER: An efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Research, 2007, 35(Web Server Issue): W265-W268. |
22 | Brigadoi S, Salvagnin D, Fischetti M, et al. Array designer: Automated optimized array design for functional near-infrared spectroscopy. Neurophotonics, 2018, 5(3): 1-19. |
23 | Rohlf F J. NTSYS-pc: Microcomputer programs for numerical taxonomy and multivariate analysis. America: The American Statistician, 1987. |
24 | Nei M. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, 1973, 70(12): 3321-3323. |
25 | Anderson J A, Churchill G A, Autrique J E, et al. Optimizing parental selection for genetic linkage maps. Genome, 1993, 36(1): 181-186. |
26 | Pritchard J K, Stephens M J, Donnelly P J. Inference of population structure using multilocus genotype data. Genetics, 2000, 155(2): 945-959. |
27 | Earl D A, Vonholdt B M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 2012, 4(2): 359-361. |
28 | Wicker T, Sabot F, Hua-Van A, et al. A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics, 2007, 8(12): 973-982. |
29 | Min X Y, Liu W X, Zhang Z S, et al. Construction of SSR marker fingerprint database of standard alfalfa varieties utilizing DUS tests. Acta Prataculturae Sinica, 2017, 26(11): 47-56. |
闵学阳, 刘文献, 张正社, 等. 苜蓿DUS测试标准品种SSR分子标记指纹图谱的构建. 草业学报, 2017, 26(11): 47-56. | |
30 | Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 2005, 14(8): 2611-2620. |
31 | Campbell B C, Lemare S, Piperidis G, et al. IRAP, a retrotransposon-based marker system for the detection of somaclonal variation in barley. Molecular Breeding, 2011, 27(2): 193-206. |
32 | Xu Y X. Genome-wide identification and evolutionary analysis of LTR-retrotransposons in potato. Genomics and Applied Biology, 2013, 32(6): 734-742. |
33 | Du J, Tian Z, Hans C S, et al. Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Plant Journal, 2010, 63(4): 584-598. |
34 | Marco A, Marín I. How Athila retrotransposons survive in the Arabidopsis genome. BMC Genomics, 2008, 9(1): 1-14. |
35 | Paterson A H, Bowers J E, Bruggmann R, et al. The sorghum bicolor genome and the diversification of grasses. Nature, 2009, 457(7229): 551-556. |
36 | Branco C J S, Vieira E A, Malone G, et al. IRAP and REMAP assessments of genetic similarity in rice. Journal of Applied Genetics, 2007, 48(2): 107-113. |
37 | Carvalho A, Guedes‐Pinto H, Martins‐Lopes P, et al. Genetic variability of old portuguese bread wheat cultivars assayed by IRAP and REMAP markers. Annals of Applied Biology, 2010, 156(3): 337-345. |
38 | Bandelj D, Jakše J, Javornik B. Assessment of genetic variability of olive varieties by microsatellite and AFLP markers. Euphytica, 2004, 136(1): 93-102. |
[1] | Bin WANG, Man-you LI, Xin-pan WANG, Xiu DONG, Jun-bao PANG, Jian LAN. Combined ploughing and tilling to improve degraded alfalfa (Medicago sativa) stands in a semi-arid region [J]. Acta Prataculturae Sinica, 2022, 31(1): 107-117. |
[2] | Na WEI, Yan-peng LI, Yi-tong MA, Wen-xian LIU. Genome-wide identification of the alfalfa TCP gene family and analysis of gene transcription patterns in alfalfa (Medicago sativa) under drought stress [J]. Acta Prataculturae Sinica, 2022, 31(1): 118-130. |
[3] | Yan-zhong LI, Jun-qiang YU, Ming LI. Preliminary evaluation of 48 alfalfa varieties for resistance to three diseases [J]. Acta Prataculturae Sinica, 2021, 30(9): 62-75. |
[4] | Xue WANG, Xiao-jing LIU, Ya-jiao ZHAO, Jing WANG. Nitrogen utilization and interspecific feedback characteristics of intercropped alfalfa/oat with different root barriers [J]. Acta Prataculturae Sinica, 2021, 30(8): 73-85. |
[5] | Gulnazar Ali, Hai-ning TAO, Zi-kui WANG, Yu-ying SHEN. Evaluating the deep-horizon soil water content and water use efficiency in the alfalfa-wheat rotation system on the dryland of Loess Plateau using APSIM [J]. Acta Prataculturae Sinica, 2021, 30(7): 22-33. |
[6] | Dan-dan ZHANG, Yuan-qing ZHANG, Jing CHENG, Guang JIN, Bo LI, Dong-cai WANG, Fang XU, Rui-feng SUN. Effects of different roughage combinations on in vitro rumen fermentation characteristics of Jinnan cattle [J]. Acta Prataculturae Sinica, 2021, 30(7): 93-100. |
[7] | Zhen-feng ZANG, Jie BAI, Cong LIU, Kan-zhuo ZAN, Ming-xiu LONG, Shu-bin HE. Variety specificity of alfalfa morphological and physiological characteristics in response to drought stress [J]. Acta Prataculturae Sinica, 2021, 30(6): 73-81. |
[8] | Yi-meng WANG, Tian-tian MA, Zi-feng OUYANG, Ji-yu ZHANG. Genome-wide identification of full-length long-terminal repeat retrotransposons and identification of interrupted genes in Cleistogenes songorica [J]. Acta Prataculturae Sinica, 2021, 30(5): 121-133. |
[9] | Hui JI, Jiu-qiang GUAN, Hui WANG, Jian-xu ZHOU, Nong-ga A, Zong-wei HE, Zhen-xiang FAN, Long-kang QIU, Shi-xiao CAO, Tian-wu AN, Qin BAI, Jin-cheng ZHONG, Xiao-lin LUO. Genetic structure and diversity of Yading yak and Larima yak populations [J]. Acta Prataculturae Sinica, 2021, 30(5): 134-145. |
[10] | Xiao-jun SUO, Nian ZHANG, Qian-ping YANG, Hu TAO, Qi XIONG, Xiao-feng LI, Feng ZHANG, Ming-xin CHEN. Effects of peanut vine and alfalfa meal on weight gain performance, internal organ development, and blood indexes of Boer×Macheng crossbred goats [J]. Acta Prataculturae Sinica, 2021, 30(5): 146-154. |
[11] | Zhan XIE, Lin MU, Zhi-fei ZHANG, Gui-hua CHEN, Yang LIU, Shuai GAO, Zhong-shan WEI. Effects on fermentation in alfalfa mixed silage of added lactic acid bacteria or organic acid salt combined with urea [J]. Acta Prataculturae Sinica, 2021, 30(5): 165-173. |
[12] | Ji-xiang WANG, Huan-yu GONG, Xiang-jian TU, Zhen-xing GUO, Jia-nan ZHAO, Jian SHEN, Zhen-yi LI, Juan SUN. Screening of phosphite-tolerant alfalfa varieties and identification of phosphite tolerance indicators [J]. Acta Prataculturae Sinica, 2021, 30(5): 186-199. |
[13] | Yi-yao HOU, Xiao LI, Rui-cai LONG, Qing-chuan YANG, Jun-mei KANG, Chang-hong GUO. Effect of overexpression of the alfalfa MsHB7 gene on drought tolerance of Arabidopsis [J]. Acta Prataculturae Sinica, 2021, 30(4): 170-179. |
[14] | Di ZHANG, Li-fei REN, Guang-bin LIU, Fu-qing LUO, Wen-hao ZHANG, Tian-zuo WANG. Comparative metabolite profiling of alfalfa seeds dried at different temperatures [J]. Acta Prataculturae Sinica, 2021, 30(3): 158-166. |
[15] | Bai-ping SHA, Ying-zhong XIE, Xue-qin GAO, Wei CAI, Bing-zhe FU. Effects of coupling of drip irrigation water and fertilizer on yield and quality of alfalfa in the yellow river irrigation district [J]. Acta Prataculturae Sinica, 2021, 30(2): 102-114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||