Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (12): 17-30.DOI: 10.11686/cyxb2021470
Previous Articles Next Articles
Xiao-min FAN1(), Xin JING1(), Bo-wen XIAO1, Xiao-liang MA1, Jin-sheng HE1,2
Received:
2021-12-14
Revised:
2022-04-22
Online:
2022-12-20
Published:
2022-10-17
Contact:
Xin JING
Xiao-min FAN, Xin JING, Bo-wen XIAO, Xiao-liang MA, Jin-sheng HE. Climate and land-use change jointly determine the spatial-temporal changes of ecosystem services in Hainan and Haibei Tibetan Autonomous Prefectures, Qinghai Province[J]. Acta Prataculturae Sinica, 2022, 31(12): 17-30.
数据 Data | 缩写 Abbreviation | 分辨率 Resolution | 年份 Year | 数据来源 Data source |
---|---|---|---|---|
数字高程模型Digital elevation model | DEM | 30 m | - | 谷歌地球引擎Google Earth Engine (SRTM V3) |
植被归一化指数Normalized difference vegetation index | NDVI | 250 m | 2000,2015 | 谷歌地球引擎Google Earth Engine (MOD13Q1.006) |
叶面积指数Leaf area index | LAI | 500 m | 2000,2015 | 谷歌地球引擎Google Earth Engine (GEE) (MOD15A2H.006) |
净初级生产力Net primary production | NPP | 500 m | 2000,2015 | 美国国家航空航天局地球观测系统数据与信息中心NASA’s Earth Observing System Data and Information System (https://doi.org/10.5067/MODIS/MOD17A3HGF.006) |
土地利用Land-use | - | 1 km | 2000,2015 | 资源环境科学与数据中心Resource and Environment Science and Data Center (https://www.resdc.cn/Default.aspx) |
土壤数据Soil data | - | 1 km | - | 世界土壤数据库Harmonized World Soil Database (http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/) |
行政边界数据Administrative boundaries data | - | - | 2017 | 国家青藏高原科学数据中心National Tibetan Plateau/Third Pole Environment Data Center (http://data.tpdc.ac.cn/zh-hans/) |
降水Precipitation | Precip | - | 2000,2015 | 中国气象数据网China Meteorological Data Service Center (http://data.cma.cn) |
温度Temperature | Tem | - | 2000,2015 | 中国气象数据网China Meteorological Data Service Center (http://data.cma.cn) |
人口密度Population density | PD | 1 km | 2000,2015 | 世界人口数据库World Population Database (https://www.worldpop.org/project/categories?id=3) |
农产品、畜产品Farm and livestock products | - | - | 2000,2015 | 青海统计年鉴Qinghai Statistical Yearbook |
Table 1 Data details and sources
数据 Data | 缩写 Abbreviation | 分辨率 Resolution | 年份 Year | 数据来源 Data source |
---|---|---|---|---|
数字高程模型Digital elevation model | DEM | 30 m | - | 谷歌地球引擎Google Earth Engine (SRTM V3) |
植被归一化指数Normalized difference vegetation index | NDVI | 250 m | 2000,2015 | 谷歌地球引擎Google Earth Engine (MOD13Q1.006) |
叶面积指数Leaf area index | LAI | 500 m | 2000,2015 | 谷歌地球引擎Google Earth Engine (GEE) (MOD15A2H.006) |
净初级生产力Net primary production | NPP | 500 m | 2000,2015 | 美国国家航空航天局地球观测系统数据与信息中心NASA’s Earth Observing System Data and Information System (https://doi.org/10.5067/MODIS/MOD17A3HGF.006) |
土地利用Land-use | - | 1 km | 2000,2015 | 资源环境科学与数据中心Resource and Environment Science and Data Center (https://www.resdc.cn/Default.aspx) |
土壤数据Soil data | - | 1 km | - | 世界土壤数据库Harmonized World Soil Database (http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/) |
行政边界数据Administrative boundaries data | - | - | 2017 | 国家青藏高原科学数据中心National Tibetan Plateau/Third Pole Environment Data Center (http://data.tpdc.ac.cn/zh-hans/) |
降水Precipitation | Precip | - | 2000,2015 | 中国气象数据网China Meteorological Data Service Center (http://data.cma.cn) |
温度Temperature | Tem | - | 2000,2015 | 中国气象数据网China Meteorological Data Service Center (http://data.cma.cn) |
人口密度Population density | PD | 1 km | 2000,2015 | 世界人口数据库World Population Database (https://www.worldpop.org/project/categories?id=3) |
农产品、畜产品Farm and livestock products | - | - | 2000,2015 | 青海统计年鉴Qinghai Statistical Yearbook |
年份 Year | 土地利用方式 Type of land-use | 2015 | 减少 Decrease | |||||||
---|---|---|---|---|---|---|---|---|---|---|
草地Grassland | 耕地 Cropland | 林地 Woodland | 水域 Water | 城乡用地 Built-up land | 未利用土地 Unused land | |||||
HC | MC | LC | ||||||||
2000 | HC | 9268 | 31 | 6 | 56 | 3 | 9 | 3 | 0 | 108 |
MC | 202 | 21173 | 35 | 37 | 0 | 14 | 22 | 0 | 310 | |
LC | 14 | 74 | 13172 | 21 | 0 | 11 | 30 | 7 | 157 | |
耕地Cropland | 6 | 2 | 0 | 2706 | 0 | 4 | 7 | 0 | 19 | |
林地Woodland | 7 | 0 | 2 | 5 | 8667 | 19 | 0 | 0 | 33 | |
水域Water | 1 | 0 | 0 | 0 | 0 | 5880 | 1 | 22 | 24 | |
城乡用地Built-up land | 0 | 0 | 0 | 0 | 0 | 0 | 137 | 0 | 0 | |
未利用土地Unused land | 7 | 12 | 27 | 2 | 0 | 67 | 7 | 16285 | 122 | |
增加Increase | 237 | 118 | 71 | 121 | 3 | 124 | 70 | 29 | ||
净增加Net increase | 129 | -192 | -86 | 102 | -30 | 100 | 70 | -93 |
Table 2 The transfer matrix of land-use in the study area from 2000 to 2015 (area, km2)
年份 Year | 土地利用方式 Type of land-use | 2015 | 减少 Decrease | |||||||
---|---|---|---|---|---|---|---|---|---|---|
草地Grassland | 耕地 Cropland | 林地 Woodland | 水域 Water | 城乡用地 Built-up land | 未利用土地 Unused land | |||||
HC | MC | LC | ||||||||
2000 | HC | 9268 | 31 | 6 | 56 | 3 | 9 | 3 | 0 | 108 |
MC | 202 | 21173 | 35 | 37 | 0 | 14 | 22 | 0 | 310 | |
LC | 14 | 74 | 13172 | 21 | 0 | 11 | 30 | 7 | 157 | |
耕地Cropland | 6 | 2 | 0 | 2706 | 0 | 4 | 7 | 0 | 19 | |
林地Woodland | 7 | 0 | 2 | 5 | 8667 | 19 | 0 | 0 | 33 | |
水域Water | 1 | 0 | 0 | 0 | 0 | 5880 | 1 | 22 | 24 | |
城乡用地Built-up land | 0 | 0 | 0 | 0 | 0 | 0 | 137 | 0 | 0 | |
未利用土地Unused land | 7 | 12 | 27 | 2 | 0 | 67 | 7 | 16285 | 122 | |
增加Increase | 237 | 118 | 71 | 121 | 3 | 124 | 70 | 29 | ||
净增加Net increase | 129 | -192 | -86 | 102 | -30 | 100 | 70 | -93 |
因素 Factor | 食物供给 Food supply | 净生态系统生产力NEP | 氮保留 N retention | 磷保留 P retention | 土壤保持 Soil retention | 水源供给 Water yield | 水源涵养 Water retention | MESLI |
---|---|---|---|---|---|---|---|---|
降水Precipitation (P) | -0.140*** | -0.025*** | 0.461*** | 0.300*** | 0.526*** | 1.016*** | 0.535*** | 0.782*** |
温度Temperature (T) | 0.217*** | 0.394*** | 0.098*** | 0.110*** | 0.029*** | -0.383*** | -0.001 | 0.019*** |
人口密度Population density | 0.009*** | -0.013*** | -0.009*** | -0.008*** | 0.008*** | 0.008*** | -0.001 | -0.003** |
土地利用Land-use (L) | 0.161*** | 0.034*** | 0.157*** | 0.213*** | -0.003 | 0.040*** | 0.049*** | 0.104*** |
降水×土地利用P×L | -0.207*** | 0.042*** | -0.014*** | -0.077*** | -0.012*** | 0.050*** | 0.052*** | 0.042*** |
温度×土地利用T×L | 0.145*** | -0.024*** | -0.035*** | 0.035*** | -0.005 | -0.079*** | -0.044*** | -0.074*** |
Table 3 Driving factors of ecosystem services in the period 2000-2015
因素 Factor | 食物供给 Food supply | 净生态系统生产力NEP | 氮保留 N retention | 磷保留 P retention | 土壤保持 Soil retention | 水源供给 Water yield | 水源涵养 Water retention | MESLI |
---|---|---|---|---|---|---|---|---|
降水Precipitation (P) | -0.140*** | -0.025*** | 0.461*** | 0.300*** | 0.526*** | 1.016*** | 0.535*** | 0.782*** |
温度Temperature (T) | 0.217*** | 0.394*** | 0.098*** | 0.110*** | 0.029*** | -0.383*** | -0.001 | 0.019*** |
人口密度Population density | 0.009*** | -0.013*** | -0.009*** | -0.008*** | 0.008*** | 0.008*** | -0.001 | -0.003** |
土地利用Land-use (L) | 0.161*** | 0.034*** | 0.157*** | 0.213*** | -0.003 | 0.040*** | 0.049*** | 0.104*** |
降水×土地利用P×L | -0.207*** | 0.042*** | -0.014*** | -0.077*** | -0.012*** | 0.050*** | 0.052*** | 0.042*** |
温度×土地利用T×L | 0.145*** | -0.024*** | -0.035*** | 0.035*** | -0.005 | -0.079*** | -0.044*** | -0.074*** |
1 | Costanza R, d’Arge R, de Groot R, et al. The value of the world’s ecosystem services and natural capital. Nature, 1997, 387: 253-260. |
2 | Millennium Ecosystem Assessment. Ecosystems and human well-being: Synthesis. Washington, DC: Island Press, 2005. |
3 | Jing X, He J S. Relationship between biodiversity, ecosystem multifunctionality and multiserviceability: Literature overview and research advances. Chinese Journal of Plant Ecology, 2021, 45(10): 1094-1111. |
井新, 贺金生. 生物多样性与生态系统多功能性和多服务性的关系: 回顾与展望. 植物生态学报, 2021, 45(10): 1094-1111. | |
4 | Díaz S, Settele J, Brondízio E S, et al. Pervasive human-driven decline of life on earth points to the need for transformative change. Science, 2019, 366(6471): eaax3100, DOI: 10.1126/science.aax3100. |
5 | Cavanagh R D, Melbourne-Thomas J, Grant S M, et al. Future risk for Southern Ocean ecosystem services under climate change. Frontiers in Marine Science, 2021, 7: 615214, DOI: 10.3389/fmars.2020.615214. |
6 | Doney S C, Ruckelshaus M, Duffy J E, et al. Climate change impacts on marine ecosystems. Annual Review of Marine Science, 2012, 4: 11-37. |
7 | Nolan C, Overpeck J T, Allen J R M, et al. Past and future global transformation of terrestrial ecosystems under climate change. Science, 2018, 361(6405): 920-923. |
8 | Foley J A, Defries R, Asner G P, et al. Global consequences of land use. Science, 2005, 309(5734): 570-574. |
9 | Polasky S, Nelson E, Pennington D, et al. The impact of land-use change on ecosystem services, biodiversity and returns to landowners: A case study in the state of Minnesota. Environmental & Resource Economics, 2011, 48(2): 219-242. |
10 | Su S L, Li D L, Hu Y N, et al. Spatially non-stationary response of ecosystem service value changes to urbanization in Shanghai, China. Ecological Indicators, 2014, 45: 332-339. |
11 | Wang S J, Liu Z T, Chen Y X, et al. Factors influencing ecosystem services in the Pearl River Delta, China: Spatiotemporal differentiation and varying importance. Resources Conservation and Recycling, 2021, 168: 105477, DOI: 10.1016/j.resconrec.2021.105477. |
12 | Zhang M Y, Wang K L, Liu H Y, et al. Effect of ecological engineering projects on ecosystem services in a karst region: A case study of northwest Guangxi, China. Journal of Cleaner Production, 2018, 183: 831-842. |
13 | Samal N R, Wollheim W M, Zuidema S, et al. A coupled terrestrial and aquatic biogeophysical model of the Upper Merrimack River watershed, New Hampshire, to inform ecosystem services evaluation and management under climate and land-cover change. Ecology and Society, 2017, 22(4): 18, DOI: 10.5751/ES-09662-220418. |
14 | Su C H, Dong M, Fu B J, et al. Scale effects of sediment retention, water yield, and net primary production: A case-study of the Chinese Loess Plateau. Land Degradation & Development, 2020, 31(11): 1408-1421. |
15 | Anderegg W R L, Kane J M, Anderegg L D L. Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change, 2013, 3(1): 30-36. |
16 | van Mantgem P J, Stephenson N L, Byrne J C, et al. Widespread increase of tree mortality rates in the western United States. Science, 2009, 323(5913): 521-524. |
17 | Zhu Z C, Piao S L, Myneni R B, et al. Greening of the earth and its drivers. Nature Climate Change, 2016, 6(8): 791-795. |
18 | Ding J Z, Li F, Yang G B, et al. The permafrost carbon inventory on the Tibetan Plateau: A new evaluation using deep sediment cores. Global Change Biology, 2016, 22(8): 2688-2701. |
19 | Xu X D, Lu C G, Shi X H, et al. World water tower: An atmospheric perspective. Geophysical Research Letters, 2008, 35(20): L20815, DOI: 10.1029/2008GL035867. |
20 | Li S C, Zhang Y L, Wang Z F, et al. Mapping human influence intensity in the Tibetan Plateau for conservation of ecological service functions. Ecosystem Services, 2018, 30: 276-286. |
21 | Li S C, Zhang H, Zhou X W, et al. Enhancing protected areas for biodiversity and ecosystem services in the Qinghai Tibet Plateau. Ecosystem Services, 2020, 43: 101090, DOI: 10.1016/j.ecoser.2020.101090. |
22 | He J S, Dong S K, Shang Z H, et al. Above-belowground interactions in alpine ecosystems on the roof of the world. Plant and Soil, 2021, 458(1/2): 1-6. |
23 | Villa F, Bagstad K J, Voigt B, et al. A methodology for adaptable and robust ecosystem services assessment. PLoS One, 2014, 9(3): e91001, DOI: 10.1371/journal.pone.0091001. |
24 | Sharp R, Tallis H T, Ricketts T, et al. InVEST 3.7.0 User’s Guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund, 2018. |
25 | Sherrouse B C, Clement J M, Semmens D J. A GIS application for assessing, mapping, and quantifying the social values of ecosystem services. Applied Geography, 2011, 31(2): 748-760. |
26 | Ouyang Z Y, Zheng H, Xiao Y, et al. Improvements in ecosystem services from investments in natural capital. Science, 2016, 352(6292): 1455-1459. |
27 | Wu W H, Peng J, Liu Y X, et al. Tradeoffs and synergies between ecosystem services in Ordos City. Progress in Geography, 2017, 36(12): 1571-1581. |
武文欢, 彭建, 刘焱序, 等. 鄂尔多斯市生态系统服务权衡与协同分析. 地理科学进展, 2017, 36(12): 1571-1581. | |
28 | Raich J W, Potter C S, Bhagawati D. Interannual variability in global soil respiration, 1980-94. Global Change Biology, 2002, 8(8): 800-812. |
29 | Bond-Lamberty B, Wang C K, Gower S T. A global relationship between the heterotrophic and autotrophic components of soil respiration? Global Change Biology, 2004, 10(10): 1756-1766. |
30 | Zhou X F, Yu F, Cao G Z, et al. Spatiotemporal features of carbon source-sink and its relationship with climate factors in Qinghai-Tibet Plateau grassland ecosystem during 2001-2015. Research of Soil and Water Conservation, 2019, 26(1): 76-81. |
周夏飞, 於方, 曹国志, 等. 2001-2015年青藏高原草地碳源/汇时空变化及其与气候因子的关系. 水土保持研究, 2019, 26(1): 76-81. | |
31 | Chaplin-Kramer R, Sharp R P, Weill C, et al. Global modeling of nature’s contributions to people. Science, 2019, 366(6462): 255-258. |
32 | Sharp R, Douglass J, Wolny S, et al. InVEST 3.10.2.post2065+invest.g67b325794 User’s Guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund, 2020. |
33 | Rao E M, Ouyang Z Y, Yu X X, et al. Spatial patterns and impacts of soil conservation service in China. Geomorphology, 2014, 207: 64-70. |
34 | Wang X L. Soil erosion of alpine grassland eocsystem on Tibetan Plateau Sanjiangyuan region. Lanzhou: Lanzhou University, 2016. |
王雪璐. 青藏高原三江源高寒草地生态系统土壤侵蚀研究. 兰州: 兰州大学, 2016. | |
35 | Yu X X, Zhou B, Lv X Z, et al. Evaluation of water conservation function in mountain forest areas of Beijing based on InVEST model. Scientia Silvae Sinicae, 2012, 48(10): 1-5. |
余新晓, 周彬, 吕锡芝, 等. 基于InVEST模型的北京山区森林水源涵养功能评估. 林业科学, 2012, 48(10): 1-5. | |
36 | Saxton K E, Rawls W J. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America Journal, 2006, 70(5): 1569-1578. |
37 | Shen J S, Li S C, Liang Z, et al. Exploring the heterogeneity and nonlinearity of trade-offs and synergies among ecosystem services bundles in the Beijing-Tianjin-Hebei urban agglomeration. Ecosystem Services, 2020, 43: 101103, DOI: 10.1016/j.ecoser.2020.101103. |
38 | Grölmping U. Relative importance for linear regression in R: The package relaimpo. Journal of Statistical Software, 2006, 17(1): 1-27. |
39 | Li X Y, Ma Y J, Xu H Y, et al. Impact of land use and land cover change on environmental degradation in lake Qinghai watershed, northeast Qinghai-Tibet Plateau. Land Degradation & Development, 2009, 20(1): 69-83. |
40 | Liu Y Y, Ren H Y, Zheng C, et al. Untangling the effects of management measures, climate and land use cover change on grassland dynamics in the Qinghai-Tibet Plateau, China. Land Degradation & Development, 2021, 32(17): 4974-4987. |
41 | Liang B, Qi S, Li Z Y, et al. Dynamic change of lake area over the Tibetan Plateau and its response to climate change. Mountain Research, 2018, 36(2): 206-216. |
梁斌, 齐实, 李智勇, 等. 青藏高原湖泊面积动态变化及其对气候变化的响应. 山地学报, 2018, 36(2): 206-216. | |
42 | Zhang Y L, Liu L S, Wang Z F, et al. Spatial and temporal characteristics of land use and cover changes in the Tibetan Plateau. Chinese Science Bulletin, 2019, 64(27): 2865-2875. |
张镱锂, 刘林山, 王兆锋, 等. 青藏高原土地利用与覆被变化的时空特征. 科学通报, 2019, 64(27): 2865-2875. | |
43 | Wang X M, Liu X C, Long Y X, et al. Spatial-temporal changes and influencing factors of ecosystem services in Shaoguan City based on improved InVEST. Research of Soil and Water Conservation, 2020, 27(5): 381-388. |
王秀明, 刘谞承, 龙颖贤, 等. 基于改进的InVEST模型的韶关市生态系统服务功能时空变化特征及影响因素. 水土保持研究, 2020, 27(5): 381-388. | |
44 | Mooney H, Larigauderie A, Cesario M, et al. Biodiversity, climate change, and ecosystem services. Current Opinion in Environmental Sustainability, 2009, 1(1): 46-54. |
45 | Scholes R J. Climate change and ecosystem services. Wiley Interdisciplinary Reviews-Climate Change, 2016, 7(4): 537-550. |
46 | Fu B J, Zhang L W, Xu Z H, et al. Ecosystem services in changing land use. Journal of Soils and Sediments, 2015, 15(4): 833-843. |
47 | Koo H, Kleemann J, Fürst C. Land use scenario modeling based on local knowledge for the provision of ecosystem services in northern Ghana. Land, 2018, 7(2): 59, DOI: 10.3390/land7020059. |
48 | Yang Y X, Wang G Y, Pan X C. China food composition. Beijing: Peking University Medical Press, 2009. |
杨月欣, 王光亚, 潘兴昌. 中国食物成分表. 北京: 北京大学医学出版社, 2009. | |
49 | Zheng J L, Mao F J, Du H Q, et al. Spatiotemporal simulation of net ecosystem productivity and its response to climate change in subtropical forests. Forests, 2019, 10(8): 708, DOI: 10.3390/f10080708. |
50 | Zhou W, Yang H, Zhou L, et al. Dynamics of grassland carbon sequestration and its coupling relation with hydrothermal factor of Inner Mongolia. Ecological Indicators, 2018, 95: 1-11. |
51 | Chen H, Zhu Q A, Peng C H, et al. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Global Change Biology, 2013, 19(10): 2940-2955. |
52 | Chuai X W, Qi X X, Zhang X Y, et al. Land degradation monitoring using terrestrial ecosystem carbon sinks/sources and their response to climate change in China. Land Degradation & Development, 2018, 29(10): 3489-3502. |
53 | Peng C H, Zhou X L, Zhao S Q, et al. Quantifying the response of forest carbon balance to future climate change in Northeastern China: Model validation and prediction. Global and Planetary Change, 2009, 66(3/4): 179-194. |
54 | Bai Y, Ochuodho T O, Yang J. Impact of land use and climate change on water-related ecosystem services in Kentucky, USA. Ecological Indicators, 2019, 102: 51-64. |
55 | Dai E F, Yin L, Wang Y H, et al. Quantitative assessment of the relative impacts of land use and climate change on the key ecosystem services in the Hengduan Mountain region, China. Sustainability, 2020, 12(10): 4100, DOI: 10.3390/su12104100. |
56 | Guo M, Ma S, Wang L J, et al. Impacts of future climate change and different management scenarios on water-related ecosystem services: A case study in the Jianghuai ecological economic Zone, China. Ecological Indicators, 2021, 127: 107732, DOI: 10.1016/j.ecolind.2021.107732. |
57 | Yang K, Wu H, Qin J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global and Planetary Change, 2014, 112: 79-91. |
58 | Tao S L, Fang J Y, Ma S H, et al. Changes in China’s lakes: Climate and human impacts. National Science Review, 2020, 7(1): 132-140. |
59 | Wang J, Li Y R. Spatial pattern and influencing factors of urbanization development in China at county level: A quantitative analysis based on 2000 and 2010 census data. Acta Geographica Sinica, 2016, 71(4): 621-636. |
王婧, 李裕瑞. 中国县域城镇化发展格局及其影响因素—基于2000和2010年全国人口普查分县数据. 地理学报, 2016, 71(4): 621-636. | |
60 | Peng J, Tian L, Zhang Z M, et al. Distinguishing the impacts of land use and climate change on ecosystem services in a karst landscape in China. Ecosystem Services, 2020, 46: 101199, DOI: 10.1016/j.ecoser.2020.101199. |
61 | Su C H, Fu B J. Evolution of ecosystem services in the Chinese Loess Plateau under climatic and land use changes. Global and Planetary Change, 2013, 101: 119-128. |
62 | Oliver T H, Morecroft M D. Interactions between climate change and land use change on biodiversity: Attribution problems, risks, and opportunities. Wiley Interdisciplinary Reviews: Climate Change, 2014, 5(3): 317-335. |
63 | Chen H, Wu N, Yao S P, et al. High methane emissions from a littoral zone on the Qinghai-Tibetan Plateau. Atmospheric Environment, 2009, 43(32): 4995-5000. |
64 | Zhang G Q, Xie H J, Kang S C, et al. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003-2009). Remote Sensing of Environment, 2011, 115(7): 1733-1742. |
65 | Bastviken D, Tranvik L J, Downing J A, et al. Freshwater methane emissions offset the continental carbon sink. Science, 2011, 331: 50. |
66 | Beaulieu J J, DelSontro T, Downing J A. Eutrophication will increase methane emissions from lakes and impoundments during the 21st century. Nature Communications, 2019, 10: 1375, DOI: 10.1038/s41467-019-09100-5. |
67 | Dale V H. The relationship between land-use change and climate change. Ecological Applications, 1997, 7(3): 753-769. |
68 | Schulte to Bühne H, Tobias J A, Durant S M, et al. Improving predictions of climate change-land use change interactions. Trends in Ecology & Evolution, 2021, 36(1): 29-38. |
69 | Mendelsohn R, Dinar A. Land use and climate change interactions. Annual Review of Resource Economics, 2009, 1: 309-332. |
70 | Liu D Q, Gong J, Zhang J X, et al. Spatiotemporal variation of soil conservation function and its influencing factors in Bailongjiang Watershed in Gansu Province. Research of Soil and Water Conservation, 2018, 25(4): 98-103. |
柳冬青, 巩杰, 张金茜, 等. 甘肃白龙江流域生态系统土壤保持功能时空变异及其影响因子. 水土保持研究, 2018, 25(4): 98-103. | |
71 | Novara A, Gristina L, Saladino S S, et al. Soil erosion assessment on tillage and alternative soil managements in a Sicilian vineyard. Soil & Tillage Research, 2011, 117: 140-147. |
72 | Wuepper D, Borrelli P, Finger R. Countries and the global rate of soil erosion. Nature Sustainability, 2020, 3(1): 51-55. |
73 | Peters M K, Hemp A, Appelhans T, et al. Climate-land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature, 2019, 568: 88-92. |
[1] | Xiang JIANG, Jian-xia MA. The impact of different factors on the outcomes of grassland ecological restoration to in China: A Meta-analysis [J]. Acta Prataculturae Sinica, 2021, 30(2): 14-31. |
[2] | Wen-hui GUO, Run-yuan GU, Feng DING. Spring phenological characteristics of dandelion and plantain in Shandong Province and their responses to climate change [J]. Acta Prataculturae Sinica, 2021, 30(12): 27-38. |
[3] | Hui-long LIN, Di FAN, Qi-sheng FENG, Tian-gang LIANG. New focus for the study of the Comprehensive Sequential Classification System for grassland: A review from 2008 to 2020 and prospects for future research [J]. Acta Prataculturae Sinica, 2021, 30(10): 201-213. |
[4] | GUO Qiang, WANG Yu-qin, BAO Gen-sheng, WANG Hong-sheng. Effect of meteorological factors on the population of plateau zokor [J]. Acta Prataculturae Sinica, 2020, 29(8): 188-194. |
[5] | Qian-qian MA, Tong LIU, He-gan DONG, Han-yue WANG, Wen-xuan ZHAO, Rui-li WANG, Yan LIU, Le CHEN. Potential geographical distribution of Ambrosia trifida in Xinjiang under climate change [J]. Acta Prataculturae Sinica, 2020, 29(12): 73-85. |
[6] | JIANG Xiao-qun, LIN Zhe-yan, SHI Yu, ZHAO Jin-ling, LI Ang. Historic experience from American public rangeland management policies [J]. Acta Prataculturae Sinica, 2020, 29(11): 151-164. |
[7] | ZHANG Zhi-qi, ZHANG Li-xu, XU Wei, WANG Hao, WANG Jin-zhou, WANG Wei, HE Jin-sheng. Several important issues of soil respiration under climate warming [J]. Acta Prataculturae Sinica, 2019, 28(9): 164-173. |
[8] | WANG Duo-bin, JI Chang-ting, LIN Hui-long. A ‘denitrification-decomposition’ (DNDC) model evaluation of alpine meadow soil carbon response to climate change [J]. Acta Prataculturae Sinica, 2019, 28(12): 197-204. |
[9] | WANG Ying-xin, CHEN Xian-jiang, LOU Shan-ning, HU An, REN Jin-fei, HU Jun-qi, ZHANG Jing, HOU Fu-jiang. Woody-plant encroachment in grasslands: a review of mechanisms and aftereffects [J]. Acta Prataculturae Sinica, 2018, 27(5): 219-227. |
[10] | GUO Ding, GUO Wen-fei, ZHAO Jian, Temuqiletu, LI Xu-dong, FU Hua, LUO Yi-qi. Modeled effects of precipitation, temperature, and CO2 changes on carbon dynamics in grassland and cropland on the Loess Plateau [J]. Acta Prataculturae Sinica, 2018, 27(2): 1-14. |
[11] | GENG Yuan-bo, WANG Song, HU Xue-di. Responses of aboveground net primary productivity of the alpine meadow steppe to climate change: simulations based on the CENTURY model [J]. Acta Prataculturae Sinica, 2018, 27(1): 1-13. |
[12] | ZHANG Ying, ZHANG Chao-Bin, WANG Zhao-Qi, YANG Yue, ZHANG Yan-Zhen, LI Jian-Long, AN Ru. Quantitative assessment of relative roles of climate change and human activities on grassland net primary productivity in the Three-River Source Region, China [J]. Acta Prataculturae Sinica, 2017, 26(5): 1-14. |
[13] | CHEN Yi-Zhao, LI Jian-Long, SUN Zheng-Guo, GANG Cheng-Cheng. Spatio-temporal dynamics of grassland net primary productivity and its response to climate change in the Temperate Eurasian Steppe 1982-2008 [J]. Acta Prataculturae Sinica, 2017, 26(1): 1-12. |
[14] | WANG Song, GENG Yuan-Bo, MU Yue. Responses of aboveground net primary productivity of the typical steppe to climate change-a simulation based on the CENTURY Model [J]. Acta Prataculturae Sinica, 2016, 25(12): 4-13. |
[15] | MA Xiao-Fang, CHEN Si-Yu, DENG Jie, FENG Qi-Sheng, HUANG Xiao-Dong. Vegetation phenology dynamics and its response to climate change on the Tibetan Plateau [J]. Acta Prataculturae Sinica, 2016, 25(1): 13-21. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||