Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (4): 112-128.DOI: 10.11686/cyxb2022139
Pan-pan SHANG, Bing ZENG, Ming-hao QU, Ming-yang LI, Xing-yun YANG, Yu-qian ZHENG, Bing-na SHEN, Lei BI, Cheng YANG, Bing ZENG()
Received:
2022-03-30
Revised:
2022-05-13
Online:
2023-04-20
Published:
2023-01-29
Contact:
Bing ZENG
Pan-pan SHANG, Bing ZENG, Ming-hao QU, Ming-yang LI, Xing-yun YANG, Yu-qian ZHENG, Bing-na SHEN, Lei BI, Cheng YANG, Bing ZENG. Analysis of metabolic pathways and differentially expressed genes of Trifolium pratense responding to waterlogging stress[J]. Acta Prataculturae Sinica, 2023, 32(4): 112-128.
名称Primer | 正向引物 Forward primers (5′-3′) | 反向引物Reverse primers (5′-3′) |
---|---|---|
gene623 | GGGCAGAGTCCGTGGTATGATAATC | AAAGATCGCTGGGTTGCTCGTG |
gene26262 | CAACAACAAACACCACCACCAACG | TTGAGTTACGACGGAGCAACACTG |
gene11075 | TCTCTACGGTATGATCAACGATGCA | CCCCCATGGTCTTCTCCTAACA |
gene44440 | CACCACAACCACAATCACAACCATC | GCTCCGCTACAACGTGCTAGTG |
gene21760 | CCCCAACTTGAGTCAGAAGCATC | TCCCTTTGATGTGCTGCACC |
gene21720 | CGGATGAGTTAGGCGGATGGTTG | CGACATCTCCTCTTCTCCCAACATC |
gene21305 | TCATCCCCTAAGAGGCCATACAGAG | CTGCTTCAGCGGTATCAAATGTTCC |
gene3571 | TGACTTGCTCAACAATCCAGACCTC | GGCATGATGGCTTCGGTGACTG |
GAPDH | TCTGACCGTTAGACTTGAGAAGG | CTTGAGCTTACCCTCAGACTCCT |
Table 1 Primers of differentially expressed genes
名称Primer | 正向引物 Forward primers (5′-3′) | 反向引物Reverse primers (5′-3′) |
---|---|---|
gene623 | GGGCAGAGTCCGTGGTATGATAATC | AAAGATCGCTGGGTTGCTCGTG |
gene26262 | CAACAACAAACACCACCACCAACG | TTGAGTTACGACGGAGCAACACTG |
gene11075 | TCTCTACGGTATGATCAACGATGCA | CCCCCATGGTCTTCTCCTAACA |
gene44440 | CACCACAACCACAATCACAACCATC | GCTCCGCTACAACGTGCTAGTG |
gene21760 | CCCCAACTTGAGTCAGAAGCATC | TCCCTTTGATGTGCTGCACC |
gene21720 | CGGATGAGTTAGGCGGATGGTTG | CGACATCTCCTCTTCTCCCAACATC |
gene21305 | TCATCCCCTAAGAGGCCATACAGAG | CTGCTTCAGCGGTATCAAATGTTCC |
gene3571 | TGACTTGCTCAACAATCCAGACCTC | GGCATGATGGCTTCGGTGACTG |
GAPDH | TCTGACCGTTAGACTTGAGAAGG | CTTGAGCTTACCCTCAGACTCCT |
样品Samples | 测序数据Clean reads | 测序下机数据Clean bases | GC含量GC content (%) | Q20 (%) | Q30 (%) |
---|---|---|---|---|---|
H0-1 | 21397140 | 6395717310 | 41.76 | 97.95 | 93.95 |
H0-2 | 21857534 | 6532928926 | 41.69 | 98.02 | 94.09 |
H0-3 | 19569973 | 5851935352 | 41.57 | 97.98 | 93.94 |
H8-1 | 23040082 | 6890947266 | 42.35 | 98.12 | 94.36 |
H8-2 | 19333333 | 5775427470 | 43.44 | 98.06 | 94.31 |
H8-3 | 26332328 | 7873279856 | 41.72 | 98.16 | 94.44 |
H24-1 | 18119992 | 5414773508 | 42.65 | 98.21 | 94.65 |
H24-2 | 39179129 | 11705420840 | 42.69 | 98.06 | 94.27 |
H24-3 | 20547211 | 6143134312 | 41.70 | 98.10 | 94.30 |
Table 2 Statistic of sequencing data of each sample
样品Samples | 测序数据Clean reads | 测序下机数据Clean bases | GC含量GC content (%) | Q20 (%) | Q30 (%) |
---|---|---|---|---|---|
H0-1 | 21397140 | 6395717310 | 41.76 | 97.95 | 93.95 |
H0-2 | 21857534 | 6532928926 | 41.69 | 98.02 | 94.09 |
H0-3 | 19569973 | 5851935352 | 41.57 | 97.98 | 93.94 |
H8-1 | 23040082 | 6890947266 | 42.35 | 98.12 | 94.36 |
H8-2 | 19333333 | 5775427470 | 43.44 | 98.06 | 94.31 |
H8-3 | 26332328 | 7873279856 | 41.72 | 98.16 | 94.44 |
H24-1 | 18119992 | 5414773508 | 42.65 | 98.21 | 94.65 |
H24-2 | 39179129 | 11705420840 | 42.69 | 98.06 | 94.27 |
H24-3 | 20547211 | 6143134312 | 41.70 | 98.10 | 94.30 |
样品 Samples | 比对数据 Total reads | 比对上的数据 Mapped reads | 比对到唯一位置的数据 Unique mapped reads | 比对到多处位置的数据 Multiple mapped reads | 比对到正链的数据 Reads map to ‘+’ | 比对到负链的数据 Reads map to ‘-’ |
---|---|---|---|---|---|---|
H0-1 | 42794280 | 35486057 | 31690935 | 3795122 | 16073999 | 16721352 |
H0-2 | 43715068 | 36362495 | 32008861 | 4353634 | 15860703 | 16888759 |
H0-3 | 39139946 | 32347565 | 28590712 | 3756853 | 14374026 | 15045589 |
H8-1 | 46080164 | 37362124 | 33004646 | 4357478 | 16597665 | 17394638 |
H8-2 | 38666666 | 30216711 | 26296339 | 3920372 | 12726728 | 13856534 |
H8-3 | 52664656 | 43972928 | 39050460 | 4922468 | 19761602 | 20580516 |
H24-1 | 36239984 | 28099032 | 24677641 | 3421391 | 12290831 | 13074940 |
H24-2 | 78358258 | 63574337 | 55516961 | 8057376 | 27856971 | 29552246 |
H24-3 | 41094422 | 34030303 | 30035515 | 3994788 | 15052963 | 15928683 |
Table 3 Sequence comparison results between sample sequencing data and the selected reference genome
样品 Samples | 比对数据 Total reads | 比对上的数据 Mapped reads | 比对到唯一位置的数据 Unique mapped reads | 比对到多处位置的数据 Multiple mapped reads | 比对到正链的数据 Reads map to ‘+’ | 比对到负链的数据 Reads map to ‘-’ |
---|---|---|---|---|---|---|
H0-1 | 42794280 | 35486057 | 31690935 | 3795122 | 16073999 | 16721352 |
H0-2 | 43715068 | 36362495 | 32008861 | 4353634 | 15860703 | 16888759 |
H0-3 | 39139946 | 32347565 | 28590712 | 3756853 | 14374026 | 15045589 |
H8-1 | 46080164 | 37362124 | 33004646 | 4357478 | 16597665 | 17394638 |
H8-2 | 38666666 | 30216711 | 26296339 | 3920372 | 12726728 | 13856534 |
H8-3 | 52664656 | 43972928 | 39050460 | 4922468 | 19761602 | 20580516 |
H24-1 | 36239984 | 28099032 | 24677641 | 3421391 | 12290831 | 13074940 |
H24-2 | 78358258 | 63574337 | 55516961 | 8057376 | 27856971 | 29552246 |
H24-3 | 41094422 | 34030303 | 30035515 | 3994788 | 15052963 | 15928683 |
差异表达基因集名称DEG set | 差异表达基因DEGs | 上调基因Up-regulated | 下调基因Down-regulated |
---|---|---|---|
H8 vs H0 | 5065 | 2442 | 2623 |
H24 vs H8 | 2293 | 938 | 1355 |
H24 vs H0 | 9022 | 4279 | 4743 |
Table 4 Statistic of number of differentially expressed genes
差异表达基因集名称DEG set | 差异表达基因DEGs | 上调基因Up-regulated | 下调基因Down-regulated |
---|---|---|---|
H8 vs H0 | 5065 | 2442 | 2623 |
H24 vs H8 | 2293 | 938 | 1355 |
H24 vs H0 | 9022 | 4279 | 4743 |
名称 DEG set | 总数 Total | 直系同源蛋白数据库COG | 基因本体数据库GO | 京都基因和基因组途径数据库百科全书KEGG | 真核直系同源基因数据库KOG | 非冗余蛋白质序列数据库Nr | 蛋白质家族数据库Pfam | 蛋白质序列数据库Swiss-Prot |
---|---|---|---|---|---|---|---|---|
H8 vs H0 | 5043 | 1787 | 4181 | 3550 | 2701 | 4956 | 4059 | 3970 |
H24 vs H8 | 2279 | 1019 | 1920 | 1614 | 1248 | 2271 | 1855 | 1811 |
H24 vs H0 | 8959 | 3247 | 7404 | 6317 | 4984 | 8861 | 7072 | 6900 |
Table 5 Statistic of the number of differentially expressed genes annotated in each database
名称 DEG set | 总数 Total | 直系同源蛋白数据库COG | 基因本体数据库GO | 京都基因和基因组途径数据库百科全书KEGG | 真核直系同源基因数据库KOG | 非冗余蛋白质序列数据库Nr | 蛋白质家族数据库Pfam | 蛋白质序列数据库Swiss-Prot |
---|---|---|---|---|---|---|---|---|
H8 vs H0 | 5043 | 1787 | 4181 | 3550 | 2701 | 4956 | 4059 | 3970 |
H24 vs H8 | 2279 | 1019 | 1920 | 1614 | 1248 | 2271 | 1855 | 1811 |
H24 vs H0 | 8959 | 3247 | 7404 | 6317 | 4984 | 8861 | 7072 | 6900 |
代谢通路 Pathway | 基因ID Gene ID | 基因名称 Gene name | 差异倍数log2FC | 功能注释 Functional annotation | |
---|---|---|---|---|---|
H8 vs H0 | H24 vs H0 | ||||
植物-病原互作 Plant-pathogen interaction | |||||
Plant hormone signal transduction | |||||
碳代谢 Carbon metabolism | L195_g032111 | ||||
乙醛酸和二羧酸 代谢 Glyoxylate and dicarboxylate metabolism | |||||
Table 6 Statistic of functional annotation of differentially expressed genes in core pathways
代谢通路 Pathway | 基因ID Gene ID | 基因名称 Gene name | 差异倍数log2FC | 功能注释 Functional annotation | |
---|---|---|---|---|---|
H8 vs H0 | H24 vs H0 | ||||
植物-病原互作 Plant-pathogen interaction | |||||
Plant hormone signal transduction | |||||
碳代谢 Carbon metabolism | L195_g032111 | ||||
乙醛酸和二羧酸 代谢 Glyoxylate and dicarboxylate metabolism | |||||
转录因子 TF | 对比 Compare | 差异表达基因DEGs | 上调基因Up-regulated | 下调基因 Down-regulated | 主要通路富集 Primary pathway enrichment |
---|---|---|---|---|---|
AP2/ERF | H8 vs H0 | 4 | 4 | 0 | 糖酵解/糖异生、 戊糖磷酸途径、果糖和甘露糖代谢、碳代谢、氨基酸生物合成、RNA降解 Glycolysis/gluconeogenesis,pentose phosphate pathway,fructose and mannose metabolism,carbon metabolism,biosynthesis of amino acids,RNA degradation |
H24 vs H0 | 6 | 5 | 1 | ||
WRKY | H8 vs H0 | 30 | 6 | 24 | 剪接体、MAPK信号通路-植物、植物-病原互作Spliceosome,MAPK signaling pathway-plant,plant-pathogen interaction |
H24 vs H0 | 44 | 16 | 28 | ||
bHLH | H8VS H0 | 34 | 13 | 21 | 植物激素信号转导、昼夜节律-植物、MAPK信号通路-植物、植物-病原互作Plant hormone signal transduction,circadian rhythm-plant,MAPK signaling pathway-plant,plant-pathogen interaction |
H24 vs H0 | 46 | 16 | 30 | ||
NAC | H8 vs H0 | 62 | 22 | 40 | 核糖体、MAPK信号通路-植物、RNA转运、淀粉和蔗糖代谢、植物激素信号转导Ribosome,MAPK signaling pathway-plant,RNA transport,starch and sucrose metabolism,plant hormone signal transduction |
H24 vs H0 | 145 | 41 | 104 | ||
bZIP | H8 vs H0 | 13 | 8 | 5 | RNA转运、植物激素信号转导、内质网中的蛋白质加工、MAPK信号通路-植物RNA transport,plant hormone signal transduction,protein processing in endoplasmic reticulum,MAPK signaling pathway-plant |
H24 vs H0 | 27 | 18 | 9 |
Table 7 Statistic of number of differentially expressed genes of core transcription factors (TF)
转录因子 TF | 对比 Compare | 差异表达基因DEGs | 上调基因Up-regulated | 下调基因 Down-regulated | 主要通路富集 Primary pathway enrichment |
---|---|---|---|---|---|
AP2/ERF | H8 vs H0 | 4 | 4 | 0 | 糖酵解/糖异生、 戊糖磷酸途径、果糖和甘露糖代谢、碳代谢、氨基酸生物合成、RNA降解 Glycolysis/gluconeogenesis,pentose phosphate pathway,fructose and mannose metabolism,carbon metabolism,biosynthesis of amino acids,RNA degradation |
H24 vs H0 | 6 | 5 | 1 | ||
WRKY | H8 vs H0 | 30 | 6 | 24 | 剪接体、MAPK信号通路-植物、植物-病原互作Spliceosome,MAPK signaling pathway-plant,plant-pathogen interaction |
H24 vs H0 | 44 | 16 | 28 | ||
bHLH | H8VS H0 | 34 | 13 | 21 | 植物激素信号转导、昼夜节律-植物、MAPK信号通路-植物、植物-病原互作Plant hormone signal transduction,circadian rhythm-plant,MAPK signaling pathway-plant,plant-pathogen interaction |
H24 vs H0 | 46 | 16 | 30 | ||
NAC | H8 vs H0 | 62 | 22 | 40 | 核糖体、MAPK信号通路-植物、RNA转运、淀粉和蔗糖代谢、植物激素信号转导Ribosome,MAPK signaling pathway-plant,RNA transport,starch and sucrose metabolism,plant hormone signal transduction |
H24 vs H0 | 145 | 41 | 104 | ||
bZIP | H8 vs H0 | 13 | 8 | 5 | RNA转运、植物激素信号转导、内质网中的蛋白质加工、MAPK信号通路-植物RNA transport,plant hormone signal transduction,protein processing in endoplasmic reticulum,MAPK signaling pathway-plant |
H24 vs H0 | 27 | 18 | 9 |
1 | Chen M J, Jia S X. Chinese forage plants. Beijing: China Agriculture Press, 2002. |
陈默君, 贾慎修. 中国饲用植物. 北京: 中国农业出版社, 2002. | |
2 | Jia S X. Forage plants of China-Vol.6. Beijing: China Agriculture Press, 1997. |
贾慎修. 中国饲用植物志-第六卷. 北京: 中国农业出版社, 1997. | |
3 | Chen B S. Forage crop cultivation. Beijing: China Agriculture Press, 2001. |
陈宝书. 牧草饲料作物栽培学. 北京: 中国农业出版社, 2001. | |
4 | Meng X J, Yu L P, Cheng W D, et al. Influence of rhizobia inoculation and nitrogen fertilizer application on isoflavonoides content of Minshan red clover. Pratacultural Science, 2010, 27(5): 97-100. |
孟祥君, 俞联平, 程文定, 等. 接种根瘤菌与施肥对岷山红三叶异黄酮含量的影响. 草业科学, 2010, 27(5): 97-100. | |
5 | Yuan J B, Lu J Z. Determination of soybean isoflavone with ultra-violet spectrophotometry. Soybean Science, 2004(2): 147-150. |
袁金斌, 卢建中. 紫外分光光度法测定大豆总异黄酮的含量. 大豆科学, 2004(2): 147-150. | |
6 | Wang Z M, Yue M Q, Du W H, et al. Excellent legume for feeding and medicine-Minshan Trifolium pratense. Pratacultural Science, 2005, 22(4): 33-35. |
王志明, 岳民勤, 杜文华, 等. 集饲用和药用价值于一体的牧草新秀-岷山红三叶. 草业科学, 2005, 22(4): 33-35. | |
7 | Phelan P, Moloney A P, McGeough E J, et al. Forage legumes for grazing and conserving in ruminant production systems. Critical Reviews in Plant Sciences, 2015, 34(4): 281-326. |
8 | Mckenna P, Cannon N, Conway J, et al. Red clover (Trifolium pratense) in conservation agriculture: A compelling case for increased adoption. International Journal of Agricultural Sustainability, 2018, 16: 342-366. |
9 | Tan S D, Zhu M Y, Zhang K R, et al. Response and adaptation of plants to submergence stress. Chinese Journal of Ecology, 2009, 28(9): 1871-1877. |
谭淑端, 朱明勇, 张克荣, 等. 植物对水淹胁迫的响应与适应. 生态学杂志, 2009, 28(9): 1871-1877. | |
10 | Bodegom P M V, Sorrell B K, Oosthoek A, et al. Separating the effects of partial submergence and soil oxygen demand on plant physiology. Ecology, 2008, 89(1): 193-204. |
11 | Silvertown J, Dodd M E, Gowing D, et al. Hydrologically defined niches reveal a basis for species richness in plant communities. Nature, 1999, 400: 61-63. |
12 | Normile D. Reinventing rice to feed the world. Science, 2008, 321: 330-333. |
13 | Mcmanmon M, Crawford R M. Metabolic theory of flooding tolerance-significance of enzyme distribution and behaviour. New Phytologist, 1971, 70(2): 299-306. |
14 | Visser E, Voesenek L. Acclimation to soil flooding-sensing and signal-transduction. Plant and Soil, 2005, 274(1/2): 197-214. |
15 | Voesenek L A C J, Sasidharan R. Ethylene- and oxygen signalling- drive plant survival during flooding. Plant Biology, 2013, 15(3): 426-435. |
16 | Zhang F S. Environmental stress and plant rhizosphere nutrition. Beijing: China Agriculture Press, 1998. |
张福锁. 环境胁迫与植物根际营养. 北京: 中国农业出版社, 1998. | |
17 | Klok E J, Wilson I W, Wilson D, et al. Expression profile analysis of the low-oxygen response in Arabidopsis root cultures. Plant Cell, 2002, 14(10): 2481-2494. |
18 | Zhang J, Tang L, Zhang Y J, et al. Application of transcriptome sequencing technique in the study of waterlogging stress in plant. Molecular Plant Breeding, 2019, 17(4): 1191-1202. |
张健, 唐露, 张雅洁, 等. 转录组测序技术在植物淹水胁迫研究中的应用. 分子植物育种, 2019, 17(4): 1191-1202. | |
19 | Loucks C E S, Deen W, Gaudin A C M, et al. Genotypic differences in red clover (Trifolium pratense) response under severe water deficit. Plant and Soil, 2018, 425(1/2): 401-414. |
20 | He W, Fan Y, Wang L, et al. Analysis of the grey incidence of wild Trifolium pratense drought resistance in the three gorges reservoir area. Acta Prataculturae Sinica, 2009, 18(3): 255-259. |
何玮, 范彦, 王琳, 等. 三峡库区野生红三叶苗期抗旱性灰色关联分析. 草业学报, 2009, 18(3): 255-259. | |
21 | Pu X J, Tian J S, Tian X H, et al. Construction of the AFLP linkage map and QTL analysis of powdery mildew resistance in red clover. Acta Prataculturae Sinica, 2018, 27(4): 79-88. |
蒲小剑, 田久胜, 田新会, 等. 红三叶遗传图谱构建及抗白粉病基因QTL定位. 草业学报, 2018, 27(4): 79-88. | |
22 | Zhang H S, Gao Q, Zhang T T, et al. Comprehensive evaluation of copper tolerance of 30 germplasm resources of red clover (Trifolium pratense). Acta Prataculturae Sinica, 2021, 30(12): 117-128. |
张鹤山, 高秋, 张婷婷, 等. 30份红三叶种质资源耐铜性综合评价. 草业学报, 2021, 30(12): 117-128. | |
23 | Wang Z, Gerstein M, Snyder M. RNA-Seq: A revolutionary tool for transcriptomics. Nature Reviews Genetics, 2009, 10(1): 57-63. |
24 | Ren S, Sun M, Yan H, et al. Identification and distribution of NBS-encoding resistance genes of Dactylis glomerata L. and its expression under abiotic and biotic stress. Biochemical Genetics, 2020, 58(6): 824-847. |
25 | Qiao D D, Zhang Y J, Xiong X M, et al. Transcriptome analysis on responses of orchardgrass (Dactylis glomerata L.) leaves to a short term flooding. Hereditas, 2020, 157(1): 1-16. |
26 | Zeng B, Zhang Y, Zhang A, et al. Transcriptome profiling of two Dactylis glomerata L. cultivars with different tolerance in response to submergence stress. Phytochemistry, 2020, 175: 112378. |
27 | Reis-Filho J S. Next-generation sequencing. Breast Cancer Research, 2009, 11(3): 1-7. |
28 | Pertea M, Pertea G M, Antonescu C M, et al. Stringtie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 2015, 33(3): 290-295. |
29 | Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 2014, 15(12): 550. |
30 | Altschul S F, Madden T L, Schaffer A A, et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 1997, 25(17): 3389-3402. |
31 | Ashburner M, Ball C A, Blake J A, et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics, 2000, 25(1): 25-29. |
32 | Minoru K, Susumu G, Shuichi K, et al. The KEGG resource for deciphering the genome. Nucleic Acids Research, 2004, 32: 277-280. |
33 | Uniprot C T. UniProt: The universal protein knowledgebase. Nucleic Acids Research, 2018, 32: 115-119. |
34 | Mistry J, Chuguransky S, Williams L, et al. Pfam: The protein families database in 2021. Nucleic Acids Research, 2021, 49: 412-419. |
35 | Muller J, Szklarczyk D, Julien P, et al. egg NOG v2.0: Extending the evolutionary genealogy of genes with enhanced non-supervised orthologous groups, species and functional annotations. Nucleic Acids Research, 2010, 38: 190-195. |
36 | Bettler E, Krause R, Horn F, et al. NRSAS: Nuclear receptor structure analysis servers. Nucleic Acids Research, 2003, 31(13): 3400-3403. |
37 | Pruitt K D, Tatusova T, Maglott D R. NCBI reference sequences (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Research, 2007, 35: 61-65. |
38 | Tatusov R L, Galperin M Y, Natale D A, et al. The COG database: A tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Research, 2000, 28(1): 33-36. |
39 | Ichimura K, Shinozaki K, Tena G, et al. Mitogen-activated protein kinase cascades in plants: A new nomenclature. Trends in Plant Science, 2002, 7(7): 301-308. |
40 | Zhang H. Functional analysis of C2H2-type zinc finger protein ZFP182 and ZFP36 in ABA-induced antioxidant defense in rice. Nanjing: Nanjing Agricultural University, 2012. |
张宏. 水稻C2H2型锌指蛋白ZFP182和ZFP36在ABA诱导的抗氧化防护中的功能分析. 南京: 南京农业大学, 2012. | |
41 | Dahl C C, Baldwin I T. Deciphering the role of ethylene in plant-herbivore interactions. Journal of Plant Growth Regulation, 2007, 26(2): 201-209. |
42 | Loon L C, Geraats B P J, Linthorst H J M. Ethylene as a modulator of disease resistance in plants. Trends in Plant Science, 2006, 11(4): 184-191. |
43 | Pozo M J, Van Loon L C, Pieterse C. Jasmonates-signals in plant-microbe interactions. Trends in Plant Science, 2004, 23(3): 211-222. |
44 | Aslam S, Gul N, Mir M A, et al. Role of jasmonates, calcium, and glutathione in plants to combat abiotic stresses through precise signaling cascade. Frontiers in Plant Science, 2021, 12: 668029. |
45 | Hu X J, Mao D H. Genome-wide expression analysis of the phytohormones signalling pathway in rice seedlings by using RNA-Seq. Research of Agricultural Modernization, 2019, 40(5): 878-890. |
胡潇婕, 毛东海. 基于RNA-Seq技术分析植物激素信号途径在水稻幼苗中对低温胁迫的应答规律. 农业现代化研究, 2019, 40(5): 878-890. | |
46 | Gao H X, Zhu L, Liu T Q, et al. Transcriptomic analysis of plant hormone response to low temperature stress in rice. Molecular Plant Breeding, 2021, 19(13): 4188-4197. |
高红秀, 朱琳, 刘天奇, 等. 水稻植物激素响应低温胁迫反应的转录组分析. 分子植物育种, 2021, 19(13): 4188-4197. | |
47 | Zhou W, Yang Y, Zheng C, et al. Flooding represses soybean seed germination by mediating anaerobic respiration, glycometabolism and phytohormones biosynthesis. Environmental and Experimental Botany, 2021, 188: 104491. |
48 | Li Y, Shi L, Yang J, et al. Physiological and transcriptional changes provide insights into the effect of root waterlogging on the aboveground part of Pterocarya stenoptera. Genomics, 2021, 113(4): 2583-2590. |
49 | Wang X, He Y, Zhang C, et al. Physiological and transcriptional responses of Phalaris arundinacea under waterlogging conditions. Journal of Plant Physiology, 2021, 261(9): 153428. |
50 | Park S, Kim Y, Lee C, et al. Comparative transcriptome profiling of two sweet potato cultivars with contrasting flooding stress tolerance levels. Plant Biotechnology Reports, 2020, 14(6): 743-756. |
51 | Bromke M A. Amino acid biosynthesis pathways in diatoms. Metabolites, 2013, 3(2): 294-311. |
52 | Yalage D S M, Gambetta J M, Steel C C, et al. Elucidating the interaction of carbon, nitrogen, and temperature on the biosynthesis of Aureobasidium pullulans antifungal volatiles. Environmental Microbiology Reports, 2021, 13(4): 482-494. |
53 | Wang L, Yang Y R, Liu Y Q, et al. Transcriptome analysis of Chysanthemum×grandiflora in salt stress based on high-through-put sequencing. Molecular Plant Breeding, 2020, 18(5): 1419-1427. |
王琳, 杨伊如, 刘艳秋, 等. 基于高通量测序的露地菊(Chysanthemum×grandiflora)盐胁迫转录组分析. 分子植物育种, 2020, 18(5): 1419-1427. | |
54 | Qi X. The analysis of the differentially expressed genes in alfalfaunder cold stress at transcriptome level. Beijing: Chinese Academy of Agricultural Sciences, 2017. |
齐晓. 紫花苜蓿在转录组水平响应低温胁迫的差异表达基因研究. 北京: 中国农业科学院, 2017. | |
55 | Kramer R. Genetic and physiological approaches for the production of amino acids. Journal of Biotechnology, 1996, 45(1): 1-21. |
56 | Li Y H. Study on the regulation of metabolic pathway in aromatic amino acids biosynthesis. Beijing: Academy of Military Medical Sciences, 2003. |
李永辉. 芳香族氨基酸生物合成代谢途径调控研究. 北京: 中国人民解放军军事医学科学院, 2003. | |
57 | Lu Y. Analyses of rice genome sequences and expressed sequence tags and studies of glyoxylate cycle in submerged seedlings in rice. Shanghai: University of Chinese Academy of Sciences (Shanghai Institutes for Biological Sciences), 2006. |
陆颖. 水稻基因组和EST序列的测定和分析以及水淹条件下乙醛酸循环相关基因功能的研究. 上海: 中国科学院研究生院(上海生命科学研究院), 2006. | |
58 | Willekens H, Chamnongpol S, Davey M, et al. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. The EMBO Journal, 1997, 16(16): 4806-4816. |
59 | Mei Y, Chen L M. Research progresses on gene regulation and physiological role of plant formate dehygrogenase. China Biotechnology, 2010,30(5): 133-139. |
梅岩, 陈丽梅. 植物甲酸脱氢酶基因的表达调控及其生理功能研究进展. 中国生物工程杂志, 2010, 30(5): 133-139. |
[1] | Zhi-min YANG, Rui XING, Yun-jia DING, Li-li ZHUANG. Analysis of differentially expressed genes in relation to tiller development and plant height based on transcriptomic sequencing of two tall fescue cultivars [J]. Acta Prataculturae Sinica, 2022, 31(1): 145-163. |
[2] | Shi-ya WANG, Dian-feng ZHENG, Nai-jie FENG, Xi-long LIANG, Hong-tao XIANG, Sheng-jie FENG, Xin-xin WANG, Guan-qiang ZUO. Damage to the AsA-GSH cycle of soybean leaves under waterlogging stress at in seed filling period growth stages and the mitigation effect of uniconazole [J]. Acta Prataculturae Sinica, 2021, 30(7): 157-166. |
[3] | Qiao-yu LUO, Yan-long WANG, Zhi CHEN, Yong-gui MA, Qi-mei REN, Yu-shou MA. Effect of water stress on proline accumulation and metabolic pathways in Deschampsia caespitosa [J]. Acta Prataculturae Sinica, 2021, 30(5): 75-83. |
[4] | Fang-zhen WANG, Cheng-hang YANG, Zi-hua HE, Zi-ru LIN, Hao-yuan ZENG, Qing MA. Analysis of differentially expressed protein kinase related genes in the xerophyte Pugionium cornutum under salt treatment [J]. Acta Prataculturae Sinica, 2021, 30(10): 116-124. |
[5] | CHENG Qi-ming, GE Gen-tu, SA Duo-wen, WANG Zhi-jun, FAN Wen-qiang, BU Zhen-kun, SI Qiang, LI Jun-feng, LU Juan, JIA Yu-shan. Transcriptome analyses provide insights into differences in nutritional quality among different alfalfa varieties [J]. Acta Prataculturae Sinica, 2019, 28(10): 199-208. |
[6] | QUAN Rui-Lan, YU Yong-Xiong. Effect of waterlogging on antioxidant and anaerobic respiratory enzymesin Medicago sativa varieties from southern and northern China [J]. Acta Prataculturae Sinica, 2015, 24(5): 84-90. |
[7] | YU Lian-ping, HAO Zheng-li, LI Fa-di, MENG Xiang-jun, CHEN Xing-rong, LI Xin-yuan. Effect of isoflavone in red clover on the growth and immune functions, and in the antioxidant indices in ovariectomized rats [J]. Acta Prataculturae Sinica, 2012, 21(6): 137-144. |
[8] | WANG Rui, LIANG Kun-lun, ZHOU Zhi-yu, GUO Xia, LIU Xue-yun. Effect of different waterlogging stress conditions on growth and some physiological characteristics of Amorpha fruticosa [J]. Acta Prataculturae Sinica, 2012, 21(1): 149-155. |
[9] | XU Rui, LIU Quan, YAN Zhi-qiang, JIN Hui, CUI Hai-yan, PU Xun, QIN Bo. Inhibitory effect of Trifolium pratense on the growth of Lactuca sativa seedlings [J]. Acta Prataculturae Sinica, 2011, 20(6): 45-51. |
[10] | WANG Yuan-sheng, LI Fa-di, HAO Zheng-li, YU Lian-ping. Effects of Trifolium pratense cv ‘Minshan’ isoflavone on performance and bonemineralization and blood profile of laying hens in later period [J]. Acta Prataculturae Sinica, 2010, 19(2): 133-139. |
[11] |
HE Wei, FAN Yan, WANG Lin, XU Yuan-dong, QING Xiao-peng, PENG Yan.
Analysis of the grey incidence of wild Trifolium pratense drought resistance in the three gorges reservoir area [J]. Acta Prataculturae Sinica, 2009, 18(3): 255-259. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||