Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (4): 101-111.DOI: 10.11686/cyxb2022167
Yan-peng LI(), Na WEI, Qing-yan ZHAI, Hang LI, Ji-yu ZHANG, Wen-xian LIU()
Received:
2022-04-12
Revised:
2022-06-01
Online:
2023-04-20
Published:
2023-01-29
Contact:
Wen-xian LIU
Yan-peng LI, Na WEI, Qing-yan ZHAI, Hang LI, Ji-yu ZHANG, Wen-xian LIU. Genome-wide identification of members of the TCP gene family in Melilotus albus and their expression patterns under drought stress[J]. Acta Prataculturae Sinica, 2023, 32(4): 101-111.
引物名称 Primer name | 正向引物 Forward primer (5'-3') | 反向引物 Reverse primer (5'-3') |
---|---|---|
MaTCP2 MaTCP15 MaActin | TCATCAAAGGACCGTCACAC ATGAGCAAATGGAGTCCACCT CTTGGTACCGAGCTCGGATTC | CCACCGTATTGTTTCTCCGT ATGCGGTTGTTGTATGCCTC TACATGATGCGGCCCTCTAGA |
Table 1 The information of the primer and sequences used in this study
引物名称 Primer name | 正向引物 Forward primer (5'-3') | 反向引物 Reverse primer (5'-3') |
---|---|---|
MaTCP2 MaTCP15 MaActin | TCATCAAAGGACCGTCACAC ATGAGCAAATGGAGTCCACCT CTTGGTACCGAGCTCGGATTC | CCACCGTATTGTTTCTCCGT ATGCGGTTGTTGTATGCCTC TACATGATGCGGCCCTCTAGA |
基因名 Gene name | 基因ID Gene ID | 蛋白长度 Protein length (aa) | 分子量 Molecular weight (Da) | 等电点 Isoelectric point (pI) | 亚组 Subgroup | 蛋白亲水性 Protein GRAVY | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|
MaTCP1 | Malbus0100163.1 | 259 | 27773.93 | 9.51 | PCF | -0.568 | 细胞核Nucleus |
MaTCP2 | Malbus0101979.1 | 337 | 35361.22 | 5.04 | PCF | -0.377 | 细胞核Nucleus |
MaTCP3 | Malbus0103072.1 | 196 | 20910.49 | 8.99 | PCF | -0.389 | 细胞核Nucleus |
MaTCP4 | Malbus0104508.1 | 225 | 24395.98 | 7.20 | PCF | -0.718 | 细胞核Nucleus |
MaTCP5 | Malbus0204320.1 | 285 | 30934.94 | 8.70 | PCF | -0.833 | 细胞核Nucleus |
MaTCP6 | Malbus0204470.1 | 290 | 32989.63 | 8.55 | CIN | -0.773 | 细胞核Nucleus |
MaTCP7 | Malbus0300375.1 | 356 | 40128.29 | 8.91 | CIN | -0.894 | 细胞核Nucleus |
MaTCP8 | Malbus0300515.1 | 368 | 42150.42 | 8.19 | CYC/TB1 | -1.121 | 细胞核Nucleus |
MaTCP9 | Malbus0401066.1 | 331 | 36615.86 | 6.11 | CIN | -0.788 | 细胞核Nucleus |
MaTCP10 | Malbus0405049.1 | 452 | 47900.15 | 6.70 | PCF | -0.746 | 细胞核Nucleus |
MaTCP11 | Malbus0501562.1 | 316 | 34367.73 | 9.01 | PCF | -0.512 | 细胞核Nucleus |
MaTCP12 | Malbus0502316.1 | 404 | 43944.94 | 6.48 | CIN | -0.767 | 细胞核Nucleus |
MaTCP13 | Malbus0504240.1 | 434 | 47177.72 | 7.48 | PCF | -0.867 | 细胞核Nucleus |
MaTCP14 | Malbus0504339.1 | 319 | 35997.23 | 8.54 | CIN | -0.710 | 细胞核Nucleus |
MaTCP15 | Malbus0504421.1 | 372 | 42944.01 | 9.47 | CYC/TB1 | -0.973 | 细胞核Nucleus |
MaTCP16 | Malbus0602440.1 | 418 | 44160.61 | 6.50 | PCF | -0.588 | 细胞核Nucleus |
MaTCP17 | Malbus0604361.1 | 412 | 46707.68 | 9.20 | CYC/TB1 | -0.988 | 细胞核Nucleus |
MaTCP18 | Malbus0604532.1 | 324 | 36598.94 | 6.25 | CIN | -0.671 | 细胞核Nucleus |
Table 2 Basic information of TCP family members in M. albus
基因名 Gene name | 基因ID Gene ID | 蛋白长度 Protein length (aa) | 分子量 Molecular weight (Da) | 等电点 Isoelectric point (pI) | 亚组 Subgroup | 蛋白亲水性 Protein GRAVY | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|
MaTCP1 | Malbus0100163.1 | 259 | 27773.93 | 9.51 | PCF | -0.568 | 细胞核Nucleus |
MaTCP2 | Malbus0101979.1 | 337 | 35361.22 | 5.04 | PCF | -0.377 | 细胞核Nucleus |
MaTCP3 | Malbus0103072.1 | 196 | 20910.49 | 8.99 | PCF | -0.389 | 细胞核Nucleus |
MaTCP4 | Malbus0104508.1 | 225 | 24395.98 | 7.20 | PCF | -0.718 | 细胞核Nucleus |
MaTCP5 | Malbus0204320.1 | 285 | 30934.94 | 8.70 | PCF | -0.833 | 细胞核Nucleus |
MaTCP6 | Malbus0204470.1 | 290 | 32989.63 | 8.55 | CIN | -0.773 | 细胞核Nucleus |
MaTCP7 | Malbus0300375.1 | 356 | 40128.29 | 8.91 | CIN | -0.894 | 细胞核Nucleus |
MaTCP8 | Malbus0300515.1 | 368 | 42150.42 | 8.19 | CYC/TB1 | -1.121 | 细胞核Nucleus |
MaTCP9 | Malbus0401066.1 | 331 | 36615.86 | 6.11 | CIN | -0.788 | 细胞核Nucleus |
MaTCP10 | Malbus0405049.1 | 452 | 47900.15 | 6.70 | PCF | -0.746 | 细胞核Nucleus |
MaTCP11 | Malbus0501562.1 | 316 | 34367.73 | 9.01 | PCF | -0.512 | 细胞核Nucleus |
MaTCP12 | Malbus0502316.1 | 404 | 43944.94 | 6.48 | CIN | -0.767 | 细胞核Nucleus |
MaTCP13 | Malbus0504240.1 | 434 | 47177.72 | 7.48 | PCF | -0.867 | 细胞核Nucleus |
MaTCP14 | Malbus0504339.1 | 319 | 35997.23 | 8.54 | CIN | -0.710 | 细胞核Nucleus |
MaTCP15 | Malbus0504421.1 | 372 | 42944.01 | 9.47 | CYC/TB1 | -0.973 | 细胞核Nucleus |
MaTCP16 | Malbus0602440.1 | 418 | 44160.61 | 6.50 | PCF | -0.588 | 细胞核Nucleus |
MaTCP17 | Malbus0604361.1 | 412 | 46707.68 | 9.20 | CYC/TB1 | -0.988 | 细胞核Nucleus |
MaTCP18 | Malbus0604532.1 | 324 | 36598.94 | 6.25 | CIN | -0.671 | 细胞核Nucleus |
1 | Wang T, Zhao X D, Zhen P P, et al. Genome-wide identification and characteristic analyzation of the TCP transcription factors family in peanut. Crops, 2021(2): 35-44. |
王通, 赵孝东, 甄萍萍, 等.花生TCP转录因子的全基因组鉴定及组织表达特性分析.作物杂志, 2021(2): 35-44. | |
2 | Doebley J, Stec A. Teosinte branched 1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics, 1995, 141(1): 333-346. |
3 | Luo D, Carpenter R, Vincent C, et al. Origin of floral asymmetry in Antirrhinum. Nature, 1996, 383(6603): 794-799. |
4 | An X Y, Lou P P, Hao J. Research progress on plant TCP transcription factors. Journal of Anhui Agricultural Sciences, 2020, 48(15): 20-23, 27. |
安新艳, 楼盼盼, 郝娟.植物TCP转录因子的研究进展.安徽农业科学, 2020, 48(15): 20-23, 27. | |
5 | Kan B L, Yang Y, Du P M, et al. Genome-wide identification of Musa acuminata TCP family and its response to low nitrogen stress. Molecular Plant Breeding, 2022, 20(1): 64-75. |
阚宝林, 杨勇, 杜鹏萌, 等.香蕉TCP家族的全基因组鉴定及对低氮胁迫的响应.分子植物育种, 2022, 20(1): 64-75. | |
6 | Navaud O, Dabos P, Carnus E, et al. TCP transcription factors predate the emergence of land plants. Journal of Molecular Evolution, 2007, 65(1): 23-33. |
7 | Xu S L, Luo Y H, Cai Z G, et al. Functional diversity of CYCLOIDEA-like TCP genes in the control of zygomorphic flower development in Lotus japonicus. Journal of Integrative Plant Biology, 2013, 55(3): 221-231. |
8 | Martín-Trillo M, Cubas P. TCP genes: a family snapshot ten years later. Trends in Plant Science, 2010, 15(1): 31-39. |
9 | Guo Z X, Shozo F, Elison B, et al. TCP1 modulates brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana. Plant Cell, 2010, 22(4): 1161-1173. |
10 | Yao X, Ma H, Wang J, et al. Genome-wide comparative analysis and expression pattern of TCP gene families in Arabidopsis thaliana and Oryza sativa. Journal of Integrative Plant Biology, 2007, 49(6): 885-897. |
11 | Liu J, Huang R, Cheng Z C, et al. Genome-wide identification and the whole analysis of TCP gene family in moso bamboo (Phyllostachys edulis). Genomics and Applied Biology, 2018, 37(12): 5388-5397. |
刘俊, 黄容, 程占超, 等.毛竹TCP基因家族全基因组鉴定与分析.基因组学与应用生物学, 2018, 37(12): 5388-5397. | |
12 | Wei N, Li Y P, Ma Y T, et al. Genome-wide identification of alfalfa TCP gene family and analysis of expression patterns under drought stress. Acta Prataculturae Sinica, 2022, 31(1): 118-130. |
魏娜, 李艳鹏, 马艺桐, 等.全基因组水平紫花苜蓿TCP基因家族的鉴定及其在干旱胁迫下表达模式分析. 草业学报, 2022, 31(1): 118-130. | |
13 | Zhang T, Qiu Y X, Wang H B, et al. The heterologous expression of a chrysanthemum TCP-P transcription factor CmTCP14 suppresses organ size and delays senescence in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2017, 115: 239-248. |
14 | Kieffer M, Master V, Waites S R, et al. TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. Plant Journal, 2011, 68(1): 147-158. |
15 | Mukhopadhyay P, Tyagi A K. OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4-mediated pathways. Scientific Reports, 2015, 5(1): 9998. |
16 | Wu F, Luo K, Yan Z Z, et al. Analysis of miRNAs and their target genes in five Melilotus albus NILs with different coumarin content. Scientific Reports, 2018, 8(1): 1-13. |
17 | Huo Y, Xiong W, Su K, et al. Genome-wide analysis of the TCP gene family in switchgrass (Panicum virgatum). International Journal of Genomics, 2019, 2019(1): 1-13. |
18 | Koichiro T, Glen S, Sudhir K. MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 2021, 38(7): 3022-3027. |
19 | Yuan J, Amend A, Borkowski J, et al. MULTICLUSTAL: a systematic method for surveying Clustal W alignment parameters. Bioinformatics, 1999, 15(10): 862-863. |
20 | Bailey T L, Boden M, Buske F A, et al. MEME SUITE: tools for motif discovery and searching. Nucleuseic Acids Research, 2009, 37(2): W202-W208. |
21 | Chen C, Chen H, Zhang Y, et al. TBtools-an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202. |
22 | Min X, Liu Z, Wang Y, et al. Comparative transcriptomic analysis provides insights into the coordinated mechanisms of leaves and roots response to cold stress in common vetch. Industrial Crops and Products, 2020, 158: 112949. |
23 | Min X, Jin X, Zhang Z, et al. Genome-wide identification of NAC transcription factor family and functional analysis of the abiotic stress-responsive genes in Medicago sativa L.Journal of Plant Growth Regulation, 2020, 39(1): 324-337. |
24 | Lei Q D, Sun X D, Xu H N. Research progress in transcription factor TCP4 participating in plant growth, development and stress resistance regulation. Acta Agriculturae Boreali-Sinica, 2021, 36(S1): 210-214. |
雷其冬, 孙旭东, 徐慧妮.转录因子TCP4参与植物生长发育和抗逆调节研究进展.华北农学报, 2021, 36(S1): 210-214. | |
25 | Lian B Y, Wang Z, Han S L, et al. Sequence characteristics and expression patterns analysis of TCP gene family members in foxtail millet (Setaria italica). Molecular Plant Breeding, 2020, 18(3): 710-718. |
连卜颍, 王喆, 韩尚玲, 等.谷子TCP基因家族成员序列特征及表达模式分析.分子植物育种, 2020, 18(3): 710-718. | |
26 | Rui R, Feng J, Long J, et al. Genomewide analysis of TCP transcription factor gene family in Malus domestica. Journal of Genetics, 2014, 93(3): 733-746. |
27 | Parapunova V, Busscher M, Busscher-Lange J, et al. Identification, cloning and characterization of the tomato TCP transcription factor family. BMC Plant Biology, 2014, 14(1): 1-17. |
28 | Li F, He X H, Zhang Y B, et al. Genome-wide identification and analysis of the TCP transcription factor family of Medicago truncatula. Molecular Plant Breeding, 2018, 16(20): 6639-6645. |
李菲, 何小红, 张宇斌, 等.蒺藜苜蓿TCP转录因子家族的全基因组鉴定和分析.分子植物育种, 2018, 16(20): 6639-6645. | |
29 | Wu F, Duan Z, Xu P, et al. Genome and systems biology of Melilotus albus provides insights into coumarins biosynthesis. Plant Biotechnology Journal, 2022, 20(3): 592-609. |
30 | Perez M, Guerringue Y, Ranty B, et al. Specific TCP transcription factors interact with and stabilize PRR2 within different nucleusear sub-domains. Plant Science, 2019, 287: 110197. |
31 | Kosugi S, Ohashi Y. DNA binding and dimerization specificity and potential targets for the TCP protein family. Plant Journal, 2010, 30(3): 337-348. |
32 | Vieira C P, Vieira J, Charlesworth D. Evolution of the cycloidea gene family in Antirrhinum and Misopates. Molecular Biology & Evolution, 1999, 16(11): 1474-1483. |
33 | Ma X, Ma J, Fan D, et al. Genome-wide identification of TCP family transcription factors from Populus euphratica and their involvement in leaf shape regulation. Scientific Reports, 2016, 6: 32795. |
34 | Sharma R, Kapoor M, Tyagi A K, et al. Comparative transcript profiling of TCP family genes provide insight into gene functions and diversification in rice and Arabidopsis. Journal of Plant Molecular Biology & Biotechnology, 2010, 1(1): 24-38. |
35 | Ji Z R, Gu Y B, Dong Q L, et al. Genome-wide identification and analysis of TCP gene family in grape. Genomics and Applied Biology, 2015, 34(10): 2194-2199. |
冀志蕊, 谷彦冰, 董庆龙, 等.葡萄TCP基因家族全基因组鉴定和分析.基因组学与应用生物学, 2015, 34(10): 2194-2199. | |
36 | Liu C H, Liang N S, Yu L, et al. Cloning, analysing and homologous expression of TCP4 transcription factor under abiotic stress and hormone signal in Fraxinus mandschurica. Journal of Beijing Forestry University, 2017, 39(6): 22-31. |
刘春浩, 梁楠松, 于磊, 等.水曲柳TCP4转录因子克隆及胁迫和激素下的表达分析.北京林业大学学报, 2017, 39(6): 22-31. | |
37 | Huo Y Z. Genome-wide analysis of TCP gene family in switchgrass (Panicum virgatum L.). Dalian: Dalian Polytechnic University, 2019. |
霍昱竹.柳枝稷TCP转录因子家族全基因组鉴定和分析.大连: 大连工业大学, 2019. | |
38 | Yao Y, Wang W, Sun Y Y, et al. Identification of HrTCP transcription factors in seabuckthorn (Hippophae rhamnoides) and its response to drought stress. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(4): 576-584. |
姚莹, 王伟, 孙永媛, 等.沙棘HrTCP转录因子家族鉴定及其干旱胁迫下的表达分析.西北植物学报, 2021, 41(4): 576-584. | |
39 | Danisman S, van der Wal F, Dhondt S, et al. Arabidopsis class I and class Ⅱ TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically. Plant Physiology, 2012, 159(4): 1511-1523. |
[1] | Yi-long ZHANG, Qi-kun YU, Wen LI, Pei-ying LI, Zong-jiu SUN. Aboveground and belowground phenotypic characteristics of Cynodon dactylon lines differing in drought resistance and endogenous hormone response to drought stress [J]. Acta Prataculturae Sinica, 2023, 32(3): 163-178. |
[2] | Fu LIU, Cheng CHEN, Kai-xuan ZHANG, Mei-liang ZHOU, Xin-quan ZHANG. Cloning and identification of drought tolerance function of the LjbHLH34 gene in Lotus japonicus [J]. Acta Prataculturae Sinica, 2023, 32(1): 178-191. |
[3] | Ling-shuang ZENG, Pei-ying LI, Zong-jiu SUN, Xiao-fan SUN. Analysis of antioxidant enzyme protection systems and gene expression differences in two Xinjiang bermudagrass genotypes with contrasting drought resistance [J]. Acta Prataculturae Sinica, 2022, 31(7): 122-132. |
[4] | Yi-ting JIN, Wen-hui LIU, Kai-qiang LIU, Guo-ling LIANG, Zhi-feng JIA. Effect of water deficit stress on the chlorophyll fluorescence parameters of Avena sativa ‘Qingyan No.1’ over the whole crop growth period [J]. Acta Prataculturae Sinica, 2022, 31(6): 112-126. |
[5] | Shi-ping SU, Yi LI, Xiao-e LIU, Pei-fang CHONG, Li-shan SHAN, You-li HOU. A study of the mechanism of drought stress alleviation by exogenous proline applied to Reaumuria soongorica [J]. Acta Prataculturae Sinica, 2022, 31(6): 127-138. |
[6] | Xiao-fan SUN, Yi-long ZHANG, Pei-ying LI, Zong-jiu SUN. Effects of different nitrogen application rates on antioxidant activity and content of substances involved in osmotic adjustment in Cynodon dactylon under drought stress [J]. Acta Prataculturae Sinica, 2022, 31(6): 69-78. |
[7] | Zhi-heng WANG, Yu-qing WEI, Yan-rong ZHAO, Yue-juan WANG. A transcriptomic study of physiological responses to drought and salt stress in sweet sorghum seedlings [J]. Acta Prataculturae Sinica, 2022, 31(3): 71-84. |
[8] | Peng-fei GAO, Jing ZHANG, Wei-fang FAN, Bing GAO, Hong-juan HAO, Jian-hui WU. Effects of drought stress on root characteristics structure and physiological characteristics of Potentilla bifurca var. glabrata [J]. Acta Prataculturae Sinica, 2022, 31(2): 203-212. |
[9] | Yu-han WU, Wen-hui LIU, Kai-qiang LIU, Yong-chao ZHANG. Effects of drought stress on leaf senescence and the active oxygen scavenging system of oat seedlings [J]. Acta Prataculturae Sinica, 2022, 31(10): 75-86. |
[10] | Na WEI, Yan-peng LI, Yi-tong MA, Wen-xian LIU. Genome-wide identification of the alfalfa TCP gene family and analysis of gene transcription patterns in alfalfa (Medicago sativa) under drought stress [J]. Acta Prataculturae Sinica, 2022, 31(1): 118-130. |
[11] | Peng-lei WANG, Zhuan-zhuan YAN, Li-juan GAO, Qian MA, Xi-fang ZONG, Sheng-sheng WANG, Ji-yu ZHANG. Analysis of genetic variation in agronomic traits of half-sib families of Melilotus albus in the second generation of recurrent selection [J]. Acta Prataculturae Sinica, 2022, 31(1): 238-245. |
[12] | Zhen-feng ZANG, Jie BAI, Cong LIU, Kan-zhuo ZAN, Ming-xiu LONG, Shu-bin HE. Variety specificity of alfalfa morphological and physiological characteristics in response to drought stress [J]. Acta Prataculturae Sinica, 2021, 30(6): 73-81. |
[13] | Qiao-yu LUO, Yan-long WANG, Zhi CHEN, Yong-gui MA, Qi-mei REN, Yu-shou MA. Effect of water stress on proline accumulation and metabolic pathways in Deschampsia caespitosa [J]. Acta Prataculturae Sinica, 2021, 30(5): 75-83. |
[14] | Yi-yao HOU, Xiao LI, Rui-cai LONG, Qing-chuan YANG, Jun-mei KANG, Chang-hong GUO. Effect of overexpression of the alfalfa MsHB7 gene on drought tolerance of Arabidopsis [J]. Acta Prataculturae Sinica, 2021, 30(4): 170-179. |
[15] | Kai-qiang LIU, Wen-hui LIU, Zhi-feng JIA, Guo-ling LIANG, Xiang MA. Effects of drought stress on yield and dry matter accumulation and distribution of Avena sativa cv. Qingyan No.1 [J]. Acta Prataculturae Sinica, 2021, 30(3): 177-188. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||