Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (4): 30-41.DOI: 10.11686/cyxb2022274
Previous Articles Next Articles
Kai-feng WANG1,2(), Gang BAO1,2(), Zhi-hui YUAN1,2, Si-qin TONG1,2, Zhi-gang YE1,2, Xiao-jun HUANG1,2, Yu-hai BAO1,2
Received:
2022-06-27
Revised:
2022-09-01
Online:
2023-04-20
Published:
2023-01-29
Contact:
Gang BAO
Kai-feng WANG, Gang BAO, Zhi-hui YUAN, Si-qin TONG, Zhi-gang YE, Xiao-jun HUANG, Yu-hai BAO. Climate sensitivity of the start of the growing season in spring and the end of the growing season in autumn for vegetation in Inner Mongolia[J]. Acta Prataculturae Sinica, 2023, 32(4): 30-41.
Fig.4 Spatial distribution of annual mean start of growing season (SOS) and end of growing season (EOS) and variation trend of SOS and EOS in Inner Mongolia during 2001 to 2019
植被类型 Vegetation types | 返青期敏感性Sensitivity of SOS | 枯黄期敏感性Sensitivity of EOS | ||
---|---|---|---|---|
温度Temperature (d·℃-1) | 降水Precipitation (d·mm-1) | 温度Temperature (d·℃-1) | 降水Precipitation (d·mm-1) | |
林地Woodland | -0.042 | 0.204 | -0.007 | -0.032 |
灌丛Bushwood | 0.017 | 0.308 | 0.045 | 0.105 |
草地Grassland | -0.018 | 0.163 | -0.006 | 0.055 |
农田Cropland | -0.011 | 0.046 | -0.007 | 0.003 |
稀疏植被Sparse vegetation | 0.003 | 0.003 | 0.003 | 0.039 |
Table 1 Sensitivity of different vegetation types to meteorological factors during SOS and EOS in Inner Mongolia during 2001 to 2019
植被类型 Vegetation types | 返青期敏感性Sensitivity of SOS | 枯黄期敏感性Sensitivity of EOS | ||
---|---|---|---|---|
温度Temperature (d·℃-1) | 降水Precipitation (d·mm-1) | 温度Temperature (d·℃-1) | 降水Precipitation (d·mm-1) | |
林地Woodland | -0.042 | 0.204 | -0.007 | -0.032 |
灌丛Bushwood | 0.017 | 0.308 | 0.045 | 0.105 |
草地Grassland | -0.018 | 0.163 | -0.006 | 0.055 |
农田Cropland | -0.011 | 0.046 | -0.007 | 0.003 |
稀疏植被Sparse vegetation | 0.003 | 0.003 | 0.003 | 0.039 |
Fig.7 Comparison of temperature sensitivity and precipitation sensitivity during SOS and EOS of Inner Mongolia meteorological stations during 2001 to 2019
Fig.8 Spatial distribution of temperature sensitivity (a) and precipitation sensitivity (b) during SOS and EOS in Inner Mongolia meteorological stations during 2001 to 2019
1 | Elmendorf S C, Jones K D, Cook B I, et al. The plant phenology monitoring design for the national ecological observatory network. Ecosphere, 2016, 7(4): e01303. |
2 | Shen M G, Tang Y H, Jin C, et al. Earlier-season vegetation has greater temperature sensitivity of spring phenology in northern hemisphere. PLoS One, 2014, 9(2): e88178. |
3 | Piao S L, Tan J G, Chen A P, et al. Leaf onset in the northern hemisphere triggered by daytime temperature. Nature Communications, 2015, 6911(6): 1-8. |
4 | Zhang G L, Zhang Y J, Dong J W, et al. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(11): 4309-4314. |
5 | Zhu K Z. A preliminary study on climate change in China during the last five thousand years. China Science, 1973, 12(2): 15-38. |
竺可桢. 中国近五千年来气候变迁的初步研究. 中国科学, 1973, 12(2): 15-38. | |
6 | Piao S L, Fang J Y, Zhou L M, et al. Variations in satellite-derived phenology in China’s temperate vegetation. Global Change Biology, 2006, 12(4): 672-685. |
7 | Zou X M. Agricultural phenology. Beijing: Agricultural Press, 1983. |
邹效孟. 农业物候学. 北京: 农业出版社, 1983. | |
8 | Fu Y S, Piao S L, Zhao H F, et al. Unexpected role of winter precipitation in determining heat requirement for spring vegetation green-up at northern middle and high latitudes. Global Change Biology, 2014, 20(12): 3743-3755. |
9 | Shen M G, Piao S L, Cong N, et al. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Global Change Biology, 2015, 21(10): 3647-3656. |
10 | Delpierre N, Dufrêne E, Soudani E, et al. Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agricultural & Forest Meteorology, 2009, 149(6/7): 938-948. |
11 | Dragoni D, Rahman A F. Trends in fall phenology across the deciduous forests of the Eastern USA. Agricultural and Forest Meteorology, 2012, DOI: 10.1016/j.agrformet.2012.01.019. |
12 | Richardson A D, Bailey A S, Denny E G, et al. Phenology of a northern hardwood forest canopy. Global Change Biology, 2010, 12(7): 1174-1188. |
13 | Cong N, Shen M G. Variation of satellite-based spring vegetation phenology and the relationship with climate in the Northern Hemisphere over 1982 to 2009. Chinese Journal of Applied Ecology, 2016, 27(9): 2737-2746. |
丛楠, 沈妙根. 1982-2009年基于卫星数据的北半球中高纬地区植被春季物候动态及其与气候的关系. 应用生态学报, 2016, 27(9): 2737-2746. | |
14 | Zhang X Y, Tarpley D, Jerry T S. Diverse responses of vegetation phenology to a warming climate. Geophysical Research Letters, 2007, 34(19): 19405 |
15 | Cong N, Shen M G, Piao S L. Spatial variations in responses of vegetation autumn phenology to climate change on the Tibetan Plateau. Journal of Plant Ecology, 2016, 10(5): 744-752. |
16 | Chuin I, Cambo G, Comtois P. Scaling phenology from the local to the regional level: Advances from species-specific phenological models. Global Change Biology, 2010, 6(8): 943-952. |
17 | Liu Q, Fu Y S, Zeng Z Z, et al. Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China. Global Change Biology, 2016, 22(2): 644-655. |
18 | Güsewell S, Furrer R, Gehrig R, et al. Changes in temperature sensitivity of spring phenology with recent climate warming in Switzerland are related to shifts of the preseason. Global Change Biology, 2017, 23(12): 5189-5202. |
19 | Tao Z X, Ge Q S, Xu Y J, et al. Comparison of changes in flowering phenology of woody plants and temperature sensitivity between Xi’an and Baoji. Acta Ecologica Sinica, 2020, 40(11): 3666-3676. |
陶泽兴, 葛全胜, 徐韵佳, 等. 西安和宝鸡木本植物花期物候变化及温度敏感度对比. 生态学报, 2020, 40(11): 3666-3676. | |
20 | Thackeray S J, Henrys P A, Hemming D, et al. Phenological sensitivity to climate across taxa and trophic levels. Nature, 2016, 535: 241-245. |
21 | Zhu W Q, Zheng Z T, Jiang N, et al. A comparative analysis of the spatio-temporal variation in the phenologies of two herbaceous species and associated climatic driving factors on the Tibetan Plateau. Agricultural and Forest Meteorology, 2018, 248: 177-184. |
22 | Fu Y H, Piao S L, Vitasse Y, et al. Increased heat requirement for leaf flushing in temperate woody species over 1980-2012: Effects of chilling, precipitation and insolation. Global Change Biology, 2015, 21(7): 2687-2697. |
23 | Baskerville G L, Emin P. Rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology, 1969, 50(3): 514-517. |
24 | Chuine I, Cour P, Rousseau D D. Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing. Plant, Cell & Environment, 2010, 21(5): 455-466. |
25 | Zhang X Y, Friedl M A, Schaaf C B, et al. Climate controls on vegetation phenological patterns in northern mid- and high latitudes inferred from MODIS data. Global Change Biology, 2004, 10(7): 1133-1145. |
26 | Fu Y S, Piao S L, Delpierre N, et al. Larger temperature response of autumn leaf senescence than spring leaf‐out phenology. Global Change Biology, 2018, 24(5): 2159-2168. |
27 | Li Y B, Zhang Y D, Gu F X, et al. Changes of spring phenology and sensitivity analysis in temperate grassland and desert zones of China. Forest Research, 2019, 32(4): 1-10. |
李耀斌, 张远东, 顾峰雪, 等. 中国温带草原和荒漠区域春季物候的变化及其敏感性分析. 林业科学研究, 2019, 32(4): 1-10. | |
28 | Piao S L, Cui M D, Chen A P, et al. Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agricultural and Forest Meteorology, 2011, 151(12): 1599-1608. |
29 | Wang D, Jiang X G, Tang L L, et al. The application of time-series fourier analysis to reconstructing cloud-free NDVI images. |
Remote Sensing for Land & Resources, 2005, 17(2): 29-32. | |
王丹, 姜小光, 唐伶俐, 等. 利用时间序列傅立叶分析重构无云NDVI图像. 国土资源遥感, 2005, 17(2): 29-32. | |
30 | Bao G, Qin Z H, Bao Y H, et al. Spatial-temporal changes of vegetation cover in Mongolian Plateau during 1982-2006. Journal of Desert Research, 2013, 33(3): 918-927. |
包刚, 覃志豪, 包玉海, 等. 1982-2006年蒙古高原植被覆盖时空变化分析. 中国沙漠, 2013, 33(3): 918-927. | |
31 | Hou X H, Gao S, Niu Z, et al. Extracting grassland vegetation phenology in North China based on cumulative SPOT-VEGETATION NDVI data. International Journal of Remote Sensing, 2014, 35(9): 3316-3330. |
32 | Gregory S M, Wilhelm W W. Growing degree-days: One equation, two interpretations. Agricultural & Forest Meteorology, 1997, 87(4): 291-300. |
33 | Wang T, Ottle C, Peng S, et al. The influence of local spring temperature variance on temperature sensitivity of spring phenology. Global Change Biology, 2014, 20(5): 1473-1480. |
34 | Gong Z, Kawamura K, Ishikawa N, et al. MODIS normalized difference vegetation index (NDVI) and vegetation phenology dynamics in the Inner Mongolia grassland. Solid Earth, 2015, 6(3): 1185-1194. |
35 | Walther G R, Post E, Convey P, et al. Ecological responses to recent climate change. Nature, 2002, 416: 389-395. |
36 | Jeganathan C, Dash J, Atkinson P M. Remotely sensed trends in the phenology of northern high latitude terrestrial vegetation, controlling for land cover change and vegetation type. Remote Sensing of Environment, 2014, DOI: 10.1016/j.rse.2013.11.020. |
37 | Fan D Q, Zhao X S, Zheng Z T. Phenology of leymus chinensis steppe in Inner Mongolia and its response to climate changes.Geography and Geo-Information Science, 2016, 32(6): 81-86. |
范德芹, 赵学胜, 郑周涛. 内蒙古羊草草原物候及其对气候变化的响应. 地理与地理信息科学, 2016, 32(6): 81-86. | |
38 | Dong X Y, Yao H R, Dai J H, et al. Phenological changes of desert steppe vegetation and its effect on net primary productivity in Inner Mongolia from 2000 to 2017. Progress in Geography, 2020, 39(1): 24-35. |
董晓宇, 姚华荣, 戴君虎, 等. 2000-2017年内蒙古荒漠草原植被物候变化及对净初级生产力的影响. 地理科学进展, 2020, 39(1): 24-35. | |
39 | Han F, Liu P T, Niu J M, et al. Spatial distribution and evolution of climatic aridity in desert steppe in Inner Mongolia in recent 50 years. Arid Zone Research, 2013, 30(3): 449-456. |
韩芳, 刘朋涛, 牛建明, 等. 50a来内蒙古荒漠草原气候干燥度的空间分布及其演变特征. 干旱区研究, 2013, 30(3): 449-456. | |
40 | Gallinat A S, Primack R B, Wagner D, et al. Autumn, the neglected season in climate change research. Trends in Ecology & Evolution, 2015, 30(3): 169-176. |
41 | Bao G, Jin H, Tong S Q, et al. Autumn phenology and its covariation with climate, spring phenology and annual peak growth on the mongolian plateau. Agricultural and Forest Meteorology, 2021, DOI: 10.1016/j.agrformet.2020.108312. |
42 | Yang Y T, Guan H D, Shen M G, et al. Changes in autumn vegetation dormancy onset date and the climate controls across temperate ecosystems in China from 1982 to 2010. Global Change Biology, 2015, 21(2): 652-665. |
43 | Yu H Y, Eike L, Xu J C. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences, 2010, 107(51): 22151-22156. |
44 | Parmesan C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Global Change Biology, 2010, 13(9): 1860-1872. |
45 | Gao M D, Wang X H, Meng F D, et al. Three-dimensional change in temperature sensitivity of northern vegetation phenology. Global Change Biology, 2020, 26(9): 5189-5201. |
46 | Erez A, Samish R M, Lavee S. The role of light in leaf and flower bud break of the peach. Physiologia Plantarum, 2006, 19(3): 650-659. |
47 | Segura G, Balvanera P, Elvira D, et al. Tree community structure and stem mortality along a water availability gradient in a mexican tropical dry forest. Plant Ecology, 2003, 169(2): 259-271. |
48 | Huang W L, Zhang Q, Kong D D, et al. Response of vegetation phenology to drought in Inner Mongolia from 1982 to 2013.Acta Ecologica Sinica, 2019, 39(13): 4953-4965. |
黄文琳, 张强, 孔冬冬, 等. 1982-2013年内蒙古地区植被物候对干旱变化的响应. 生态学报, 2019, 39(13): 4953-4965. | |
49 | Delpierre N, Vitasse Y, Chuine I, et al. Temperate and boreal forest tree phenology: From organ-scale processes to terrestrial ecosystem models. Annals of Forest Science, 2016, 73(1): 5-25. |
50 | Zhang G G, Kang Y M, Han G D, et al. Effect of climate change over the past half century on the distribution, extent and NPP of ecosystems of Inner Mongolia. Global Change Biology, 2010, 17(1): 377-389. |
[1] | Ge-xia QIN, Jing WU, Chun-bin LI, Shuai-jie SHEN, Huai-hai LI, Dao-han YANG, Mei-rong JIAO, Qi QI. Sensitivity analysis of WOFOST model crop parameters in different grassland types [J]. Acta Prataculturae Sinica, 2022, 31(5): 13-25. |
[2] | Zuo-tian YIN, Yu-hui WANG, Guang-sheng ZHOU, Quan-hui MA, Xiao-di LIU, Bing-rui JIA, Yan-ling JIANG. Response and sensitivity of photosynthesis of Stipa tianschanica in desert steppe to developing soil drought process [J]. Acta Prataculturae Sinica, 2022, 31(1): 81-94. |
[3] | Qing ZHANG, Lu-yao LIU, Xue XU, Peng HAN, Yan-yun ZHAO, Jian-ming NIU, Yong DING. Sustainable development of family ranches in the Inner Mongolian grassland [J]. Acta Prataculturae Sinica, 2021, 30(9): 168-181. |
[4] | JIN Quan-Feng, JU Yuan-Hua, YANG Xia-Jie, WANG Wen-Hui, GUO Fu-Tao. Temporal and spatial patterns of emissions and pollutants from grassland burned in Inner Mongolia during 2005-2014 [J]. Acta Prataculturae Sinica, 2017, 26(2): 21-29. |
[5] | QIAO Yu-Xin, ZHU Hua-Zhong, ZHONG Hua-Ping, WU Zhao-Wen, MENG Lei, ZHOU Li-Lei. Spatial interpolation analysis of grassland below-ground biomass in the Inner Mongolia Autonomous Region, China [J]. Acta Prataculturae Sinica, 2016, 25(6): 1-12. |
[6] | SUN Xiao-Long, WU Rong-Sheng, LI Ping, LI Dan. AnevaluationoftheHargreavesmethodforestimatingreferenceevapotranspirationindifferentgrasslandtypesinInnerMongolia,China [J]. Acta Prataculturae Sinica, 2016, 25(5): 13-20. |
[7] | ZHOU Huai-Lin, WANG Yu-Hui, ZHOU Guang-Sheng. Temporal and spatial dynamics of grassland fires in Inner Mongolia [J]. Acta Prataculturae Sinica, 2016, 25(4): 16-25. |
[8] | CHAI Hua,FANG Jiang-ping,WEN Ding,LI Jie,HE Nian-peng. Effect of sampling method on the estimation of soil carbon and nitrogen storages in thicketed semiarid grasslands, Inner Mongolia [J]. Acta Prataculturae Sinica, 2014, 23(6): 28-35. |
[9] | XIONG Li, XU Zheng-feng, WU Fu-zhong, YANG Wan-qin, YIN rui, LI Zhi-ping, NI Xiang-yin, XIONG Hai-tao. Effects of stepping on soil respiration of Zoysia matrella lawn during the winter dormancy period [J]. Acta Prataculturae Sinica, 2014, 23(2): 83-89. |
[10] |
GAO Li-jie, HOU Jian-hua, AN Zhe, GAO Bao-jia.
Characteristics of soil fauna community structure in forest-steppe ecotone on Southeastern Inner Mongolia Plateau [J]. Acta Prataculturae Sinica, 2013, 22(4): 27-34. |
[11] |
MU Shao-jie, LI Jian-long, YANG Hong-fei, GANG Cheng-cheng, CHEN Yi-zhao.
Spatio-temporal variation analysis of grassland net primary productivity and its relationship with climate over the past 10 years in Inner Mongolia [J]. Acta Prataculturae Sinica, 2013, 22(3): 6-. |
[12] | LI Guang, LI Yue, HUANG Gao-bao, LUO Zhu-zhu, WANG Qi, LIU Qiang, YAN Zhen-gang, ZHAO You-yi. The effects of climate change on dryland wheat production under different tillage systems [J]. Acta Prataculturae Sinica, 2012, 21(5): 160-168. |
[13] | WANG Feng-lan, ZHANG Yan-nan, YANG Yan, HAN Yan-jun. Ecological analysis and classification of Stipa breviflora communities in the Inner Mongolia region: the role of environmental factors [J]. Acta Prataculturae Sinica, 2012, 21(1): 83-92. |
[14] | XU Hai-hong, HOU Xiang-yang, NA Ri-su. Dynamics of soil respiration under different grazing systems in a Stipa breviflora desert steppe [J]. Acta Prataculturae Sinica, 2011, 20(2): 219-226. |
[15] | LV Yu-hua, ZHENG Da-wei. Mechanisms and effects of agro-pastoral system coupling in the Inner Mongolian ecotone [J]. Acta Prataculturae Sinica, 2009, 18(4): 217-223. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||