Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (5): 13-25.DOI: 10.11686/cyxb2021391
Previous Articles Next Articles
Ge-xia QIN1(), Jing WU1(), Chun-bin LI1, Shuai-jie SHEN2, Huai-hai LI1, Dao-han YANG1, Mei-rong JIAO1, Qi QI1
Received:
2021-10-28
Revised:
2021-11-23
Online:
2022-05-20
Published:
2022-03-30
Contact:
Jing WU
Ge-xia QIN, Jing WU, Chun-bin LI, Shuai-jie SHEN, Huai-hai LI, Dao-han YANG, Mei-rong JIAO, Qi QI. Sensitivity analysis of WOFOST model crop parameters in different grassland types[J]. Acta Prataculturae Sinica, 2022, 31(5): 13-25.
参数Parameter | 参数范围 Range of parameter in WOFOST |
---|---|
作物初始的干物质重量Initial total crop dry weight (TDWI) | 87~161 |
出苗时叶面积指数Leaf area index at emergence (LAIEM) | 0.10185~0.14650 |
叶面积指数最大相对增长速率Maximum relative increase in LAI (RGRLAI) | 0.007151~0.008326 |
比叶面积Specific leaf area [SLATB0 (DVS=0)] | 0.001008~0.002532 |
比叶面积Specific leaf area [SLATB0.5 (DVS=0.5)] | 0.001008~0.002532 |
比叶面积Specific leaf area [SLATB2 (DVS=2.0)] | 0.001008~0.002532 |
叶片在35 ℃时的生命周期Life span of leaves growing at 35 ℃ (SPAN) | 25.17~30.43 |
叶龄下限温度Lower threshold temperature for aging of leaves (TBASE) | -3~3 |
漫射可见光的消光系数Extinction coefficient for diffuse visible light [KDIFTB0 (DVS=0)] | 0.45~0.56 |
漫射可见光的消光系数Extinction coefficient for diffuse visible light [KDIFTB2 (DVS=2.0)] | 0.45~0.56 |
单叶片光能利用率Light-use efficiency of single leaf [EFFTB0 (T=0 ℃)] | 0.405~0.455 |
单叶片光能利用率Light-use efficiency of single leaf [EFFTB40 (T=40 ℃)] | 0.405 ~ 0.455 |
最大二氧化碳同化速率Maximum leaf CO2 assimilation rate [AMAXTB0 (DVS=0.0)] | 18.247~40.413 |
最大二氧化碳同化速率Maximum leaf CO2 assimilation rate [AMAXTB1 (DVS=1.0)] | 18.247~40.413 |
最大二氧化碳同化速率Maximum leaf CO2 assimilation rate [AMAXTB1.3 (DVS=1.3)] | 18.247~40.413 |
最大二氧化碳同化速率Maximum leaf CO2 assimilation rate [AMAXTB2 (DVS=2.0)] | 4.032~4.928 |
最大二氧化碳同化速率衰减因子Reduction factor of AMAX [TMPFTB0 (T=0 ℃)] | 0.009~0.011 |
最大二氧化碳同化速率衰减因子Reduction factor of AMAX [TMPFTB10 (T=10 ℃)] | 0.44~0.56 |
叶片同化物转化效率Efficiency of conversion into leaves (CVL) | 0.6165~0.7535 |
贮藏器官同化物转化效率Efficiency of conversion into storage organ (CVO) | 0.6381~0.7799 |
根同化物转化效率Efficiency of conversion into roots (CVR) | 0.6246~0.7634 |
茎同化物转化效率Efficiency of conversion into stems (CVS) | 0.5958~0.7282 |
温度每升高10 °C,呼吸速率相对增加Relative increase in respiration rate per 10 °C temperature increase (Q10) | 1.8~2.2 |
叶片相对维持呼吸速率Relative maintenance respiration rate of leaves (RML) | 0.027~0.033 |
贮藏器官相对维持呼吸速率Relative maintenance respiration rate of storage organ (RMO) | 0.009~0.011 |
根相对维持呼吸速率Relative maintenance respiration rate of roots (RMR) | 0.0135~0.0165 |
总干物质占根系的比例Fraction of total dry matter to roots [FRTB0 (DVS=0)] | 0.45~0.55 |
总干物质占根系的比例Fraction of total dry matter to roots [FRTB0.4 (DVS=0.4)] | 0.153~0.187 |
总干物质占根系的比例Fraction of total dry matter to roots [FRTB0.7 (DVS=0.7)] | 0.063~0.077 |
总干物质占根系的比例Fraction of total dry matter to roots [FRTB0.9 (DVS=0.9)] | 0.027~0.033 |
地上干物质到叶片的比例Fraction of aboveground dry matter to leaves [FLTB0 (DVS=0)] | 0.62~0.78 |
地上干物质到叶片的比例Fraction of aboveground dry matter to leaves [FLTB0.25 (DVS=0.25)] | 0.53~0.75 |
地上干物质到叶片的比例Fraction of aboveground dry matter to leaves [FLTB0.5 (DVS=0.5)] | 0.45~0.55 |
地上干物质到叶片的比例Fraction of aboveground dry matter to leaves [FLTB0.646 (DVS=0.646)] | 0.27~0.33 |
水分胁迫对叶片的最大相对死亡率Maximum relative death rate of leaves due to water stress (PERDL) | 0.27~0.33 |
根的相对死亡率Relative death rate of roots [RDRRTB1.5 (DVS=1.5)] | 0.018~0.022 |
根的相对死亡率Relative death rate of roots [RDRRTB2.0 (DVS=2.0)] | 0.018~0.022 |
茎的相对死亡率Relative death rate of stems [RDRSTB1.5 (DVS=1.5)] | 0.018~0.022 |
茎的相对死亡率Relative death rate of stems [RDRSTB2.0 (DVS=2.0)] | 0.018~0.022 |
初始根深Initial rooting depth (RDI) | 2~10 |
最大日生根深度增加量Maximum daily increase in rooting depth (RRI) | 0~1.12 |
最大根深Maximum rooting depth (RDMCR) | 30.5~107.5 |
Table 1 Range of input parameters in WOFOST
参数Parameter | 参数范围 Range of parameter in WOFOST |
---|---|
作物初始的干物质重量Initial total crop dry weight (TDWI) | 87~161 |
出苗时叶面积指数Leaf area index at emergence (LAIEM) | 0.10185~0.14650 |
叶面积指数最大相对增长速率Maximum relative increase in LAI (RGRLAI) | 0.007151~0.008326 |
比叶面积Specific leaf area [SLATB0 (DVS=0)] | 0.001008~0.002532 |
比叶面积Specific leaf area [SLATB0.5 (DVS=0.5)] | 0.001008~0.002532 |
比叶面积Specific leaf area [SLATB2 (DVS=2.0)] | 0.001008~0.002532 |
叶片在35 ℃时的生命周期Life span of leaves growing at 35 ℃ (SPAN) | 25.17~30.43 |
叶龄下限温度Lower threshold temperature for aging of leaves (TBASE) | -3~3 |
漫射可见光的消光系数Extinction coefficient for diffuse visible light [KDIFTB0 (DVS=0)] | 0.45~0.56 |
漫射可见光的消光系数Extinction coefficient for diffuse visible light [KDIFTB2 (DVS=2.0)] | 0.45~0.56 |
单叶片光能利用率Light-use efficiency of single leaf [EFFTB0 (T=0 ℃)] | 0.405~0.455 |
单叶片光能利用率Light-use efficiency of single leaf [EFFTB40 (T=40 ℃)] | 0.405 ~ 0.455 |
最大二氧化碳同化速率Maximum leaf CO2 assimilation rate [AMAXTB0 (DVS=0.0)] | 18.247~40.413 |
最大二氧化碳同化速率Maximum leaf CO2 assimilation rate [AMAXTB1 (DVS=1.0)] | 18.247~40.413 |
最大二氧化碳同化速率Maximum leaf CO2 assimilation rate [AMAXTB1.3 (DVS=1.3)] | 18.247~40.413 |
最大二氧化碳同化速率Maximum leaf CO2 assimilation rate [AMAXTB2 (DVS=2.0)] | 4.032~4.928 |
最大二氧化碳同化速率衰减因子Reduction factor of AMAX [TMPFTB0 (T=0 ℃)] | 0.009~0.011 |
最大二氧化碳同化速率衰减因子Reduction factor of AMAX [TMPFTB10 (T=10 ℃)] | 0.44~0.56 |
叶片同化物转化效率Efficiency of conversion into leaves (CVL) | 0.6165~0.7535 |
贮藏器官同化物转化效率Efficiency of conversion into storage organ (CVO) | 0.6381~0.7799 |
根同化物转化效率Efficiency of conversion into roots (CVR) | 0.6246~0.7634 |
茎同化物转化效率Efficiency of conversion into stems (CVS) | 0.5958~0.7282 |
温度每升高10 °C,呼吸速率相对增加Relative increase in respiration rate per 10 °C temperature increase (Q10) | 1.8~2.2 |
叶片相对维持呼吸速率Relative maintenance respiration rate of leaves (RML) | 0.027~0.033 |
贮藏器官相对维持呼吸速率Relative maintenance respiration rate of storage organ (RMO) | 0.009~0.011 |
根相对维持呼吸速率Relative maintenance respiration rate of roots (RMR) | 0.0135~0.0165 |
总干物质占根系的比例Fraction of total dry matter to roots [FRTB0 (DVS=0)] | 0.45~0.55 |
总干物质占根系的比例Fraction of total dry matter to roots [FRTB0.4 (DVS=0.4)] | 0.153~0.187 |
总干物质占根系的比例Fraction of total dry matter to roots [FRTB0.7 (DVS=0.7)] | 0.063~0.077 |
总干物质占根系的比例Fraction of total dry matter to roots [FRTB0.9 (DVS=0.9)] | 0.027~0.033 |
地上干物质到叶片的比例Fraction of aboveground dry matter to leaves [FLTB0 (DVS=0)] | 0.62~0.78 |
地上干物质到叶片的比例Fraction of aboveground dry matter to leaves [FLTB0.25 (DVS=0.25)] | 0.53~0.75 |
地上干物质到叶片的比例Fraction of aboveground dry matter to leaves [FLTB0.5 (DVS=0.5)] | 0.45~0.55 |
地上干物质到叶片的比例Fraction of aboveground dry matter to leaves [FLTB0.646 (DVS=0.646)] | 0.27~0.33 |
水分胁迫对叶片的最大相对死亡率Maximum relative death rate of leaves due to water stress (PERDL) | 0.27~0.33 |
根的相对死亡率Relative death rate of roots [RDRRTB1.5 (DVS=1.5)] | 0.018~0.022 |
根的相对死亡率Relative death rate of roots [RDRRTB2.0 (DVS=2.0)] | 0.018~0.022 |
茎的相对死亡率Relative death rate of stems [RDRSTB1.5 (DVS=1.5)] | 0.018~0.022 |
茎的相对死亡率Relative death rate of stems [RDRSTB2.0 (DVS=2.0)] | 0.018~0.022 |
初始根深Initial rooting depth (RDI) | 2~10 |
最大日生根深度增加量Maximum daily increase in rooting depth (RRI) | 0~1.12 |
最大根深Maximum rooting depth (RDMCR) | 30.5~107.5 |
1 | Wang J, Zhao W, Wang G, et al. Effects of long-term afforestation and natural grassland recovery on soil properties and quality in Loess Plateau (China). Science of the Total Environment, 2021, 770: 144833. |
2 | Emadodin I, Corral D E F, Reinsch T, et al. Climate change effects on temperate grassland and its implication for forage production: A case study from Northern Germany. Agriculture, 2021, 11(3): 232. |
3 | Petersen K, Kraus D, Calanca P, et al. Dynamic simulation of management events for assessing impacts of climate change on pre-alpine grassland productivity. European Journal of Agronomy, 2021, 128: 126306. |
4 | Liu D, Zhang C, Ogaya R, et al. Increasing climatic sensitivity of global grassland vegetation biomass and species diversity correlates with water availability. New Phytologist, 2021, 230: 1761-1771. |
5 | Ding Y H, Ren G Y, Shi G Y. China’s National Assessment Report on Climate Change (I): Climate change in China and the future trend. Advances in Climate Change Research, 2007, 3: 1-5. |
6 | Scurlock J M O, Hall D O. The global carbon sink: A grassland perspective. Global Change Biology, 1998, 4(2): 229-233. |
7 | Jin Y, Yang X, Qiu J, et al. Remote sensing-based biomass estimation and its spatiotemporal variations in temperate grassland, Northern China. Remote Sensing, 2014, 6(2): 1496-1513. |
8 | Ma X C, Li Z F. The vegetation coverage, biomass and leaf area index of meadow in Napahai wetlands. Wetland Science, 2017, 15(1): 144-147. |
马旭晨, 栗忠飞. 纳帕海湿地区草甸的植物盖度、生物量和叶面积指数. 湿地科学, 2017, 15(1): 144-147. | |
9 | Chen S C, Wang B S. Analysis of influencing factors of LAI remote sensing inversion based on neural network. Geospatial Information, 2019, 17(12): 72-74. |
陈士城, 王宝水. 基于神经网络的LAI遥感反演影响因素分析. 地理空间信息, 2019, 17(12): 72-74. | |
10 | Xu K X, Su Y J, Liu J, et al. Estimation of degraded grassland aboveground biomass using machine learning methods from terrestrial laser scanning data. Ecological Indicators, 2020, 108: 105747. |
11 | Yang R R, Lan Y, Zhang Z. Research progress on aboveground biomass of grassland in China in recent 30 years. Subtropical Soil and Water Conservation, 2019, 2: 38-41. |
杨荣荣, 兰垚, 张卓. 中国近30年草地地上生物量的研究进展. 亚热带水土保持, 2019, 2: 38-41. | |
12 | Zhang X T. Estimation method and application for grassland aboveground dry biomass based on assimilation of remote sensing data and crop growth model. Chengdu: University of Electronic Science and Technology of China, 2017. |
张雪婷. 基于作物生长模型和遥感数据同化的草地生物量估算方法及应用. 成都: 电子科技大学, 2017. | |
13 | De W A, Boogaard H, Fumagalli D, et al. 25 years of the WOFOST cropping systems model. Agricultural Systems, 2019, 168: 154-167. |
14 | Mishra S K, Shekh A M, Pandey V, et al. Sensitivity analysis of four wheat cultivars to varying photoperiod and temperature at different phenological stages using WOFOST model. Journal of Agrometeorology, 2015, 17(1): 74-79. |
15 | Wang J, Li X. Progresses on data fusion technology of crop growth model and multi-source observation information. Remote Sensing Technology and Application, 2015, 30(2): 209-219. |
王静, 李新. 基于作物生长模型和多源数据的融合技术研究进展. 遥感技术与应用, 2015, 30(2): 209-219. | |
16 | Cheng Z Q, Meng J H. Research advances and perspectives on crop yield estimation models. Chinese Journal of Eco-Agriculture, 2015, 23(4): 402-415. |
程志强, 蒙继华. 作物单产估算模型研究进展与展望. 中国生态农业学报, 2015, 23(4): 402-415. | |
17 | Huang J X, Jia S L, Ma H Y, et al. Dynamic simulation of growth process of winter wheat in main production areas of China based on WOFOST model. Transactions of the Chinese Society of Agricultural Engineering, 2017(10): 222-228. |
黄健熙, 贾世灵, 马鸿元, 等. 基于WOFOST模型的中国主产区冬小麦生长过程动态模拟. 农业工程学报, 2017(10): 222-228. | |
18 | Liu J M, Pan P Z, Wang P X, et al. Parameters optimization of wheat spike differentiation stages model based on SCE-UA algorithm. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 232-240. |
刘峻明, 潘佩珠, 王鹏新, 等. 基于SCE-UA 算法的小麦穗分化期模拟模型参数优化. 农业机械学报, 2018, 49(4): 232-240. | |
19 | Xing A, Zhuo Z Q, Zhao Y Z, et al. Sensitivity analysis of WOFOST model crop parameters under different production levels based on EFAST method. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 161-171. |
兴安, 卓志清, 赵云泽, 等. 基于EFAST的不同生产水平下WOFOST模型参数敏感性分析. 农业机械学报, 2020, 51(2): 161-171. | |
20 | Huang J X, Huang H, Ma H Y, et al. Markov Chain Monte Carlo based WOFOST model parameters calibration and uncertainty analysis. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(16): 113-119. |
黄健熙, 黄海, 马鸿元, 等. 基于MCMC方法的WOFOST模型参数标定与不确定性分析. 农业工程学报, 2018, 34(16): 113-119. | |
21 | Sun H, Zhu Y, Yang J, et al. Global sensitivity analysis for an integrated model for simulation of nitrogen dynamics under the irrigation with treated wastewater. Environment Science Pollution Resource, 2015, 22: 16664-16675. |
22 | Cai Y, Xing Y, Hu D. On sensitivity analysis. Journal of Beijing Normal University (Natural Science), 2008, 44(1): 9-16. |
蔡毅, 邢岩, 胡丹. 敏感性分析综述. 北京师范大学学报(自然科学版), 2008, 44(1): 9-16. | |
23 | Sobol I M. Sensitivity estimates for nonlinear mathematical models. Math Modeling and Computational Experiment, 1993, 1(4): 407-413. |
24 | Morris M D. Factorial sampling plans for preliminary computational experiments. Technometrics, 1991, 33(2): 161-174. |
25 | Saltelli A, Bolado R. An alternative way to compute Fourier amplitude sensitivity test (FAST). Computational Statistics and Data Analysis, 1998, 26(4): 445-460. |
26 | Saltelli A, Tarantola S, Chan K P S. A quantitative model-independent method for global sensitivity analysis of model output. Technometrics, 1999, 41(1): 39-56. |
27 | He L, Hou Y Y, Zhao G, et al. Parameters optimization of WOFOST model by integration of global sensitivity analysis and Bayesian calibration method. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(2): 169-179. |
何亮, 侯英雨, 赵刚, 等. 基于全局敏感性分析和贝叶斯方法的WOFOST作物模型参数优化. 农业工程学报, 2016, 32(2): 169-179. | |
28 | Lai S F. Localization and calibration of model parameters based on PCSE crop model and sensitivity analysis. Changchun: Jilin University, 2019. |
来守芳. 基于PCSE作物模型与敏感性分析的模型参数本地化校准研究. 长春: 吉林大学, 2019. | |
29 | Chen Y L, Gu X H, Gong A D. Global sensitivity analysis of WOFOST model parameters based on EFAST method. Journal of Henan Polytechnic University (Natural Science), 2018, 37(3): 72-78. |
陈艳玲, 顾晓鹤, 宫阿都. 基于EFAST方法的WOFOST作物模型参数敏感性分析. 河南理工大学学报(自然科学版), 2018, 37(3): 72-78. | |
30 | Xu X, Shen S, Xiong S, et al. Water stress is a key factor influencing the parameter sensitivity of the WOFOST model in different agro‑meteorological conditions. International Journal of Plant Production, 2021, 15: 231-242. |
31 | Gilardelli C, Confalonieri R, Cappelli G A, et al. Sensitivity of WOFOST-based modelling solutions to crop parameters under climate change. Ecological Modelling, 2018, 368: 1-14. |
32 | Paleari L, Movedi E, Zoli M, et al. Sensitivity analysis using Morris: Just screening or an effective ranking method? Ecological Modelling, 2021, 455: 109648. |
33 | Wang L X, Zhang Y, Li Q, et al. Current status and prospects of sensitivity analysis of crop model parameters. Meteorological Science and Technology, 2018, 46(2): 382-389. |
王连喜, 张阳, 李琪, 等. 作物模型参数敏感性分析现状与展望. 气象科技, 2018, 46(2): 382-389. | |
34 | Chen X H. Analysis on the prospect of grass and livestock industry in Tianzhu Tibetan Autonomous County. China Herbivores, 2012, 32(1): 57-59. |
陈新辉. 天祝藏族自治县草畜产业前景浅析. 中国草食动物, 2012, 32(1): 57-59. | |
35 | Zhang Z L. Research report on grassland industrialization in Tianzhu Tibetan Autonomous County//Proceedings of 2009 academic conference of Gansu Province. Lanzhou: Gansu Association for Science and Technology, 2019: 272-276. |
张子廉. 天祝藏族自治县草业产业化调研报告//甘肃省2009年学术会议论文集. 兰州: 甘肃省科学技术协会, 2009: 272-276. | |
36 | Hu Q F, Yang D W, Wang Y T, et al. Effects of Angstrom coefficients on ET0 estimation and the applicability of FAO recommended coefficient values in China. Advances in Water Science, 2010, 21(5): 644-652. |
胡庆芳, 杨大文, 王银堂, 等. Angstrom公式参数对ET0的影响及FAO建议值适用性评价. 水科学进展, 2010, 21(5): 644-652. | |
37 | Saxton K E, Rawls W J. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America Journal, 2006, 70(5): 1569-1578. |
38 | Wang J, Li X, Lu L, et al. Parameter sensitivity analysis of crop growth models based on the extended Fourier Amplitude Sensitivity Test method. Environment Model Software, 2013, 48: 171-182. |
39 | Li Z H, Jin X L, Liu H L, et al. Global sensitivity analysis of wheat grain yield and quality and the related process variables from the DSSAT-CERES model based on the extended Fourier Amplitude Sensitivity Test method. Journal of Integrative Agriculture, 2019, 18(7): 1547-1561. |
40 | Rowan T H. Functional stability analysis of numerical algorithms. Austin: The University of Texas at Austin, 1990. |
41 | Bai T C, Wang S G, Meng W B, et al. Assimilation of remotely-sensed LAI into WOFOST model with the SUBPLEX algorithm for improving the field-scale jujube yield forecasts. Remote Sensing, 2019, 11(16): 1945. |
42 | Wang W M, Li Z L, Su H B. Comparison of leaf angle distribution functions: Effects on extinction coefficient and fraction of sunlit foliage. Agricultural and Forest Meteorology, 2007, 143(1/2): 106-122. |
[1] | Ge-xia QIN, Jing WU, Chun-bin LI, Zhen-xia JI, Zheng-chao QIU, Ying LI. Inversion of grassland aboveground biomass in Tianzhu Zangzu Autonomous County based on a machine learning algorithm [J]. Acta Prataculturae Sinica, 2022, 31(4): 177-188. |
[2] | Cai-he ZHANG, Chun-bin LI, Jing WU. Definition of Comprehensive Sequential Classification System subclasses in Chinese montane grassland [J]. Acta Prataculturae Sinica, 2022, 31(3): 16-25. |
[3] | Lei ZHOU, Xue WEI, Chang-ting WANG, Peng-fei WU. Differences in soil microarthropod community structure in alpine grasslands with differing degrees of degradation [J]. Acta Prataculturae Sinica, 2022, 31(3): 34-46. |
[4] | Ya-hui WANG, Wen-jia TANG, Sen LI, Hong-yan ZHAO, Jia-li XIE, Chao MA, Chang-zhen YAN. Change in grassland productivity in Qinghai Province and its driving factors [J]. Acta Prataculturae Sinica, 2022, 31(2): 1-13. |
[5] | Ren-ping ZHANG, Jing GUO, Xiao-fang MA, Wei-yong GUO. Grassland phenology extraction for Xinjiang Province and trend analysis using MODIS data [J]. Acta Prataculturae Sinica, 2022, 31(1): 1-12. |
[6] | Xiao-yu HAN, Ning GUO, Dong-dong LI, Ming-yang XIE, Feng JIAO. Effects of nitrogen addition on soil carbon and nitrogen and biomass change in different grassland types in Inner Mongolia [J]. Acta Prataculturae Sinica, 2022, 31(1): 13-25. |
[7] | Wen-ming MA, Chao-wen LIU, Qing-ping ZHOU, Zhuo-ma DENGzeng, Si-hong TANG, Diliyaer·mohetaer, Chen HOU. Effects of shrub encroachment on soil aggregate ecological stoichiometry and enzyme activity in alpine grassland [J]. Acta Prataculturae Sinica, 2022, 31(1): 57-68. |
[8] | Jing-hai WANG, Guang LI, Min-hua YIN, Guang-ping QI, Yan-xia KANG, Yan-lin MA. Effects of regulated deficit irrigation on the soil environment and forage growth of mixed-species forage plantings in China’s high-cold desert area [J]. Acta Prataculturae Sinica, 2022, 31(1): 95-106. |
[9] | Ting-mei WU, Hui-long LIN, Di FAN, Chang-ting JI, Yu-ting ZHAO, Jing-qiong WEI. Factors influencing the scale of herdsmen’s livestock farming in tundra alpine grassland-A case study from Qinghai Province [J]. Acta Prataculturae Sinica, 2021, 30(9): 117-126. |
[10] | Jia-li LIU, Jian-rong FAN, Xi-yu ZHANG, Chao YANG, Fu-bao XU, Xiao-xue ZHANG, Bo LIANG. Remote sensing estimation of vegetation cover in alpine grassland in the growing and non-growing seasons [J]. Acta Prataculturae Sinica, 2021, 30(9): 15-26. |
[11] | Mei-ling SONG, Yu-qin WANG, Hong-sheng WANG, Gen-sheng Bao. Effect of Epichloë endophyte on the litter decomposition of Stipa purpurea in alpine grassland [J]. Acta Prataculturae Sinica, 2021, 30(9): 150-158. |
[12] | Qing ZHANG, Lu-yao LIU, Xue XU, Peng HAN, Yan-yun ZHAO, Jian-ming NIU, Yong DING. Sustainable development of family ranches in the Inner Mongolian grassland [J]. Acta Prataculturae Sinica, 2021, 30(9): 168-181. |
[13] | Gang FU, Jun-hao WANG, Shao-wei LI, Ping HE. Responses of forage nutrient quality to grazing in the alpine grassland of Northern Tibet [J]. Acta Prataculturae Sinica, 2021, 30(9): 38-50. |
[14] | Jing-dong ZHAO, Wuyunna, Yan-tao SONG. Effect of short-term fencing on the forage quality of plant communities in degraded grassland in Northwestern Liaoning [J]. Acta Prataculturae Sinica, 2021, 30(9): 51-61. |
[15] | Hui-long LIN, Yan-fei PU, Dan-ni WANG, Hai-li MA. Index insurances for grasslands: A review and the Chinese scheme design [J]. Acta Prataculturae Sinica, 2021, 30(8): 171-185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||