Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (4): 122-134.DOI: 10.11686/cyxb2023208
Dan-na CHANG1(), Zi-ying CHEN2, Mei HAN2, Zheng-peng LI2, Qing-biao YAN2, Shuai-lei LV1, Guo-peng ZHOU1, Xiao-feng SUN2, Wei-dong CAO1()
Received:
2023-06-23
Revised:
2023-09-07
Online:
2024-04-20
Published:
2024-01-15
Contact:
Wei-dong CAO
Dan-na CHANG, Zi-ying CHEN, Mei HAN, Zheng-peng LI, Qing-biao YAN, Shuai-lei LV, Guo-peng ZHOU, Xiao-feng SUN, Wei-dong CAO. Differences in phosphorus acquisition characteristics and rhizosphere properties among different hairy vetch genotypes[J]. Acta Prataculturae Sinica, 2024, 33(4): 122-134.
处理 Treatment | 尿素 Urea | 过磷酸钙Calcium superphosphate | 磷矿粉 Rock phosphate | KCl |
---|---|---|---|---|
不施磷肥CK | 0.84 | 0.00 | 0.00 | 0.67 |
过磷酸钙SP | 0.84 | 3.59 | 0.00 | 0.67 |
磷矿粉RP | 0.84 | 0.00 | 17.24 | 0.67 |
Table 1 Fertilizer application in each treatment (g·pot-1)
处理 Treatment | 尿素 Urea | 过磷酸钙Calcium superphosphate | 磷矿粉 Rock phosphate | KCl |
---|---|---|---|---|
不施磷肥CK | 0.84 | 0.00 | 0.00 | 0.67 |
过磷酸钙SP | 0.84 | 3.59 | 0.00 | 0.67 |
磷矿粉RP | 0.84 | 0.00 | 17.24 | 0.67 |
处理 Treatment | 品种 Variety | 干重Dry weight (g·pot-1) | 根冠比 Root/shoot (%) | 磷吸收量P uptake (mg·pot-1) | 利用率 Utilization rate (%) | ||||
---|---|---|---|---|---|---|---|---|---|
地上部 Shoot | 地下部 Root | 总计 Total | 地上部 Shoot | 地下部 Root | 总计 Total | ||||
CK | HV1 | 8.88±0.04gh | 0.48±0.01c | 9.36±0.05hi | 5.44±0.20a | 9.19±0.10fgh | 0.50±0.01b | 9.70±0.10ef | - |
HV2 | 9.25±0.08g | 0.46±0.02c | 9.71±0.08h | 5.04±0.29a | 12.25±0.66ef | 0.51±0.06b | 12.01±0.14e | - | |
HV3 | 8.63±0.05h | 0.29±0.01ef | 8.92±0.04i | 3.44±0.17d | 10.72±0.15efgh | 0.18±0.02c | 7.45±0.31f | - | |
HV4 | 7.30±0.02i | 0.27±0.02ef | 7.58±0.03j | 3.78±0.27cd | 8.15±0.27gh | 0.24±0.03c | 8.39±0.27f | - | |
SP | HV1 | 25.53±0.19b | 0.72±0.03a | 26.25±0.22b | 2.83±0.11e | 40.96±4.22b | 0.99±0.09a | 39.45±1.98b | 21.91±0.11e |
HV2 | 26.21±0.37a | 0.67±0.01a | 26.88±0.35a | 2.58±0.08e | 45.21±1.59a | 0.86±0.08a | 46.07±1.67a | 22.49±0.08e | |
HV3 | 24.40±0.05c | 0.38±0.02d | 24.79±0.05c | 1.59±0.10f | 38.29±0.35bc | 0.80±0.08ab | 39.15±0.31b | 19.47±0.10f | |
HV4 | 21.55±0.10d | 0.55±0.03b | 22.10±0.11d | 2.06±0.14f | 36.32±0.85c | 0.63±0.03b | 36.96±0.86b | 18.20±0.14f | |
RP | HV1 | 11.67±0.13e | 0.48±0.01c | 18.24±0.22e | 4.18±0.11bc | 16.69±0.62d | 0.53±0.03b | 25.85±0.98c | 11.41±0.11bc |
HV2 | 10.33±0.16f | 0.45±0.02c | 16.17±0.26f | 4.36±0.14b | 14.19±0.24de | 0.60±0.12b | 24.08±0.37c | 10.27±0.14b | |
HV3 | 9.27±0.04g | 0.25±0.00f | 14.29±0.07g | 2.75±0.09e | 7.27±0.33h | 0.09±0.00c | 16.22±0.23d | 7.12±0.09e | |
HV4 | 9.11±0.02g | 0.31±0.00e | 14.14±0.03g | 3.50±0.09d | 12.07±0.36efg | 0.11±0.00c | 16.78±0.37d | 7.25±0.09d | |
磷P | 14769.73*** | 120.56*** | 9292.87*** | 103.45*** | 595.91*** | 80.69*** | 1298.73*** | 423.13*** | |
品种HV | 230.20*** | 92.13*** | 252.82*** | 37.56*** | 10.44*** | 25.64*** | 41.77*** | 13.33*** | |
磷P×品种HV | 37.18*** | 3.60*** | 35.08*** | 63.92*** | 3.84** | 3.24* | 8.01*** | 0.67ns |
Table 2 Dry weight, phosphorus uptake, and phosphorus fertilizer utilization rate of different phosphorus efficiency hairy vetch cultivars (lines)
处理 Treatment | 品种 Variety | 干重Dry weight (g·pot-1) | 根冠比 Root/shoot (%) | 磷吸收量P uptake (mg·pot-1) | 利用率 Utilization rate (%) | ||||
---|---|---|---|---|---|---|---|---|---|
地上部 Shoot | 地下部 Root | 总计 Total | 地上部 Shoot | 地下部 Root | 总计 Total | ||||
CK | HV1 | 8.88±0.04gh | 0.48±0.01c | 9.36±0.05hi | 5.44±0.20a | 9.19±0.10fgh | 0.50±0.01b | 9.70±0.10ef | - |
HV2 | 9.25±0.08g | 0.46±0.02c | 9.71±0.08h | 5.04±0.29a | 12.25±0.66ef | 0.51±0.06b | 12.01±0.14e | - | |
HV3 | 8.63±0.05h | 0.29±0.01ef | 8.92±0.04i | 3.44±0.17d | 10.72±0.15efgh | 0.18±0.02c | 7.45±0.31f | - | |
HV4 | 7.30±0.02i | 0.27±0.02ef | 7.58±0.03j | 3.78±0.27cd | 8.15±0.27gh | 0.24±0.03c | 8.39±0.27f | - | |
SP | HV1 | 25.53±0.19b | 0.72±0.03a | 26.25±0.22b | 2.83±0.11e | 40.96±4.22b | 0.99±0.09a | 39.45±1.98b | 21.91±0.11e |
HV2 | 26.21±0.37a | 0.67±0.01a | 26.88±0.35a | 2.58±0.08e | 45.21±1.59a | 0.86±0.08a | 46.07±1.67a | 22.49±0.08e | |
HV3 | 24.40±0.05c | 0.38±0.02d | 24.79±0.05c | 1.59±0.10f | 38.29±0.35bc | 0.80±0.08ab | 39.15±0.31b | 19.47±0.10f | |
HV4 | 21.55±0.10d | 0.55±0.03b | 22.10±0.11d | 2.06±0.14f | 36.32±0.85c | 0.63±0.03b | 36.96±0.86b | 18.20±0.14f | |
RP | HV1 | 11.67±0.13e | 0.48±0.01c | 18.24±0.22e | 4.18±0.11bc | 16.69±0.62d | 0.53±0.03b | 25.85±0.98c | 11.41±0.11bc |
HV2 | 10.33±0.16f | 0.45±0.02c | 16.17±0.26f | 4.36±0.14b | 14.19±0.24de | 0.60±0.12b | 24.08±0.37c | 10.27±0.14b | |
HV3 | 9.27±0.04g | 0.25±0.00f | 14.29±0.07g | 2.75±0.09e | 7.27±0.33h | 0.09±0.00c | 16.22±0.23d | 7.12±0.09e | |
HV4 | 9.11±0.02g | 0.31±0.00e | 14.14±0.03g | 3.50±0.09d | 12.07±0.36efg | 0.11±0.00c | 16.78±0.37d | 7.25±0.09d | |
磷P | 14769.73*** | 120.56*** | 9292.87*** | 103.45*** | 595.91*** | 80.69*** | 1298.73*** | 423.13*** | |
品种HV | 230.20*** | 92.13*** | 252.82*** | 37.56*** | 10.44*** | 25.64*** | 41.77*** | 13.33*** | |
磷P×品种HV | 37.18*** | 3.60*** | 35.08*** | 63.92*** | 3.84** | 3.24* | 8.01*** | 0.67ns |
处理 Treatment | 品种 Variety | 活性磷Labile P | 中等活性磷Moderately labile P | 稳定性磷Stable P | ||||
---|---|---|---|---|---|---|---|---|
Resin-Pi | NaHCO3-Pi | NaHCO3-Po | NaOH-Pi | NaOH-Po | Dil. HCl-P | Residual-P | ||
CK | HV1 | 1.61±0.07b | 3.38±0.18e | 18.89±0.86c | 1.97±0.07bc | 3.58±0.14b | 514.28±4.17cd | 29.51±0.48f |
HV2 | 0.53±0.06e | 1.58±0.09g | 43.06±1.78b | 1.85±0.04bc | 2.54±0.09d | 491.30±5.09e | 38.44±0.94ef | |
HV3 | 0.30±0.02ef | 0.69±0.05h | 1.55±0.13f | 0.97±0.07e | 1.66±0.05f | 489.50±7.87e | 249.24±7.25b | |
HV4 | 0.27±0.04ef | 0.88±0.13h | 1.14±0.05f | 0.94±0.05e | 1.00±0.03g | 451.95±1.48f | 313.51±0.89a | |
SP | HV1 | 2.66±0.09a | 9.42±0.15a | 47.23±1.86a | 3.49±0.55e | 4.33±0.12a | 508.68±3.67d | 28.18±0.52f |
HV2 | 2.69±0.12a | 9.79±0.20a | 46.76±1.15a | 3.45±0.06a | 2.38±0.09d | 517.86±1.12cd | 36.64±0.86ef | |
HV3 | 1.57±0.20bc | 6.27±0.34c | 1.14±0.09f | 1.70±0.06cd | 1.65±0.13f | 528.59±5.88c | 113.00±3.56d | |
HV4 | 1.36±0.07c | 7.02±0.07b | 1.39±0.11f | 1.91±0.15bc | 1.75±0.09f | 400.27±7.11g | 200.09±1.36c | |
RP | HV1 | 1.68±0.06b | 4.62±0.05d | 15.76±0.31d | 2.39±0.04b | 2.93±0.09c | 607.57±2.58a | 32.40±0.59f |
HV2 | 0.78±0.01d | 6.74±0.35bc | 11.10±0.30e | 1.91±0.09bc | 2.07±0.07e | 622.99±10.45a | 45.18±0.81e | |
HV3 | 0.38±0.06ef | 1.17±0.12gh | 1.87±0.15f | 1.18±0.21de | 1.69±0.10f | 564.71±6.21b | 204.43±10.37c | |
HV4 | 0.30±0.01f | 2.21±0.10f | 0.31±0.01f | 0.94±0.15e | 0.79±0.05g | 564.09±3.63b | 303.13±1.43a | |
磷P | 7.49*** | 953.82*** | 383.31*** | 298.71*** | 51.48*** | 444.51*** | 301.44*** | |
品种HV | 5.15*** | 192.21*** | 1177.09*** | 51.13*** | 399.11*** | 111.07*** | 2272.81*** | |
磷P×品种HV | 5.27*** | 70.96*** | 179.62*** | 18.34*** | 14.66*** | 26.44*** | 93.86*** |
Table 3 Different forms of phosphorus content in soil phosphorus pool (mg·kg-1)
处理 Treatment | 品种 Variety | 活性磷Labile P | 中等活性磷Moderately labile P | 稳定性磷Stable P | ||||
---|---|---|---|---|---|---|---|---|
Resin-Pi | NaHCO3-Pi | NaHCO3-Po | NaOH-Pi | NaOH-Po | Dil. HCl-P | Residual-P | ||
CK | HV1 | 1.61±0.07b | 3.38±0.18e | 18.89±0.86c | 1.97±0.07bc | 3.58±0.14b | 514.28±4.17cd | 29.51±0.48f |
HV2 | 0.53±0.06e | 1.58±0.09g | 43.06±1.78b | 1.85±0.04bc | 2.54±0.09d | 491.30±5.09e | 38.44±0.94ef | |
HV3 | 0.30±0.02ef | 0.69±0.05h | 1.55±0.13f | 0.97±0.07e | 1.66±0.05f | 489.50±7.87e | 249.24±7.25b | |
HV4 | 0.27±0.04ef | 0.88±0.13h | 1.14±0.05f | 0.94±0.05e | 1.00±0.03g | 451.95±1.48f | 313.51±0.89a | |
SP | HV1 | 2.66±0.09a | 9.42±0.15a | 47.23±1.86a | 3.49±0.55e | 4.33±0.12a | 508.68±3.67d | 28.18±0.52f |
HV2 | 2.69±0.12a | 9.79±0.20a | 46.76±1.15a | 3.45±0.06a | 2.38±0.09d | 517.86±1.12cd | 36.64±0.86ef | |
HV3 | 1.57±0.20bc | 6.27±0.34c | 1.14±0.09f | 1.70±0.06cd | 1.65±0.13f | 528.59±5.88c | 113.00±3.56d | |
HV4 | 1.36±0.07c | 7.02±0.07b | 1.39±0.11f | 1.91±0.15bc | 1.75±0.09f | 400.27±7.11g | 200.09±1.36c | |
RP | HV1 | 1.68±0.06b | 4.62±0.05d | 15.76±0.31d | 2.39±0.04b | 2.93±0.09c | 607.57±2.58a | 32.40±0.59f |
HV2 | 0.78±0.01d | 6.74±0.35bc | 11.10±0.30e | 1.91±0.09bc | 2.07±0.07e | 622.99±10.45a | 45.18±0.81e | |
HV3 | 0.38±0.06ef | 1.17±0.12gh | 1.87±0.15f | 1.18±0.21de | 1.69±0.10f | 564.71±6.21b | 204.43±10.37c | |
HV4 | 0.30±0.01f | 2.21±0.10f | 0.31±0.01f | 0.94±0.15e | 0.79±0.05g | 564.09±3.63b | 303.13±1.43a | |
磷P | 7.49*** | 953.82*** | 383.31*** | 298.71*** | 51.48*** | 444.51*** | 301.44*** | |
品种HV | 5.15*** | 192.21*** | 1177.09*** | 51.13*** | 399.11*** | 111.07*** | 2272.81*** | |
磷P×品种HV | 5.27*** | 70.96*** | 179.62*** | 18.34*** | 14.66*** | 26.44*** | 93.86*** |
1 | Feng G, Gai J P, Feng X H, et al. Strategies for improving fertilizer phosphorus use efficiency in Chinese cropping systems. Frontiers of Agricultural Science and Engineering, 2019, 6(4): 341-347. |
2 | Ji B J, Li W H, Xu M Y, et al. Varying synthetic phosphorus varieties lead to different fractions in calcareous soil. Scientia Agricultura Sinica, 2021, 54(12): 2581-2594. |
吉冰洁, 李文海, 徐梦洋, 等. 不同磷肥品种在石灰性土壤中的磷形态差异. 中国农业科学, 2021, 54(12): 2581-2594. | |
3 | Zhang F S, Wang J Q, Zhang W F, et al. Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedologica Sinica, 2008, 45(5): 915-924. |
张福锁, 王激清, 张卫峰, 等. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45(5): 915-924. | |
4 | Cooper J, Lombardi R, Boardman D, et al. The future distribution and production of global phosphate rock reserves. Resources, Conservation and Recycling, 2011, 57: 78-86. |
5 | Cordell D, Drangert J O, White S. The story of phosphorus: global food security and food for thought. Global Environmental Change, 2009, 19(2): 292-305. |
6 | Zhang H W, Huang Y, Ye X S, et al. Genotypic differences in phosphorus acquisition and the rhizosphere properties of Brassica napus in response to low phosphorus stress. Plant and Soil, 2009, 320(1/2): 91-102. |
7 | Sugihara S, Tomita Y, Nishigaki T, et al. Effects of different phosphorus-efficient legumes and soil texture on fractionated rhizosphere soil phosphorus of strongly weathered soils. Biology and Fertility of Soils, 2016, 52: 367-376. |
8 | Cao W D, Bao X G, Xu C X, et al. Reviews and prospects on science and technology of green manure in China. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1450-1461. |
曹卫东, 包兴国, 徐昌旭, 等. 中国绿肥科研60年回顾与未来展望. 植物营养与肥料学报, 2017, 23(6): 1450-1461. | |
9 | Gao S J, Zhou G P, Chang D N, et al. Southern China can produce more high-quality rice with less N by green manuring. Resources, Conservation and Recycling, 2023, 196: 107025. |
10 | Cao W D, Huang H X. Ideas on restoration and development of green manures in China. Soil and Fertilizer Sciences in China, 2009(4): 1-3. |
曹卫东, 黄鸿翔. 关于我国恢复和发展绿肥若干问题的思考. 中国土壤与肥料, 2009(4): 1-3. | |
11 | Cao W D, Xu C X. Atlas of main green manure varieties in China. Beijing: China Agricultural Science and Technology Press, 2021. |
曹卫东, 徐昌旭. 中国主要绿肥品种资源图集. 北京: 中国农业科学技术出版社, 2021. | |
12 | Lu B L, Che Z X, Zhang J D, et al. Effects of long-term intercropping of maize with hairy vetch root returning to field on crop yield and nitrogen use efficiency under nitrogen fertilizer reduction. Scientia Agricultura Sinica, 2022, 55(12): 2384-2397. |
卢秉林, 车宗贤, 张久东, 等. 氮肥减量下长期间作毛叶苕子根茬还田对玉米产量及氮肥利用率的影响. 中国农业科学, 2022, 55(12): 2384-2397. | |
13 | Ma B J, Gou Z W, Yin W, et al. Effects of multiple cropping green manure after wheat harvest and nitrogen application levels on wheat photosynthetic performance and yield in arid irrigated areas. Scientia Agricultura Sinica, 2022, 55(18): 3501-3515. |
麻碧娇, 苟志文, 殷文, 等. 干旱灌区麦后复种绿肥与施氮水平对小麦光合性能与产量的影响. 中国农业科学, 2022, 55(18): 3501-3515. | |
14 | Luo Y, Lu B L, Zhou G P, et al. Effects of returning the root of green manure on reducing N application in maize within their intercropping system in Hexi oasis irrigation area. Journal of Plant Nutrition and Fertilizers, 2021, 27(12): 2125-2135. |
罗跃, 卢秉林, 周国朋, 等. 河西绿洲灌区玉米间作绿肥根茬还田的氮肥减施效应. 植物营养与肥料学报, 2021, 27(12): 2125-2135. | |
15 | Xu X F, Mi Q, Liu D, et al. Effect of phosphorus fertilizer rate on phosphorus fractions contents in calcareous soil and phosphorus accumulation amount in crop. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1857-1866. |
徐晓峰, 米倩, 刘迪, 等. 磷肥施用量对石灰性土壤磷组分和作物磷积累量的影响. 中国生态农业学报, 2021, 29(11): 1857-1866. | |
16 | Hasnuri M H, Marschne P, McNeill A, et al. Growth, P uptake in grain legumes and changes in rhizosphere soil P pools. Biology and Fertility of Soils, 2011, 48(2): 151-159. |
17 | Lv Y, Cheng W D, Huang K, et al. Comparison of rhizosphere processes of Vicia sativa and Vicia villosa in response to phosphorus deficiency. Journal of Plant Nutrition and Fertilizers, 2011, 17(3): 674-679. |
吕阳, 程文达, 黄珂, 等. 低磷胁迫下箭筈豌豆和毛叶苕子根际过程的差异比较. 植物营养与肥料学报, 2011, 17(3): 674-679. | |
18 | Hu Y F, Liu J P, Wang Z K, et al. Rotation increases soil phosphorous bioavailability and improves phosphorous nutrition of the latter crop in rotation. Journal of Plant Nutrition and Fertilizers, 2021, 27(8): 1305-1310. |
胡怡凡, 刘佳坪, 王子楷, 等. 轮作提高土壤磷生物有效性改善后茬作物磷素营养. 植物营养与肥料学报, 2021, 27(8): 1305-1310. | |
19 | Chen Z Y, Chang D N, Han M, et al. Capability evaluation of 50 hairy vetch cultivars (lines) as autumn green manure in Qinghai Province, Northwest China. Journal of Plant Nutrition and Fertilizers, 2022, 28(4): 701-714. |
陈子英, 常单娜, 韩梅, 等. 50份毛叶苕子品种(系)在青海作秋绿肥的能力评价. 植物营养与肥料学报, 2022, 28(4): 701-714. | |
20 | Liu X, Yan Q B, Li Z P, et al. Evaluation of germplasm resources and selection of excellent varieties of Vicia villosa Roth as a green fertilizer crop. Molecular Plant Breeding, 2022, 20(9): 3110-3121. |
刘翔, 严清彪, 李正鹏, 等. 绿肥作物毛叶苕子种质资源性状评价及优异品种筛选. 分子植物育种, 2022, 20(9): 3110-3121. | |
21 | Liu Y, Mi G H, Chen F J, et al. Rhizosphere effect and root growth of two maize (Zea mays L.) genotypes with contrasting P efficiency at low P availability. Plant Science, 2004, 167(2): 217-223. |
22 | Bao S D. Soil agrochemical analysis (the third edition). Beijing: China Agriculture Press, 2000: 263-270. |
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000: 263-270. | |
23 | Tabatabai M A, Bremner J M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1969, 1(4): 301-307. |
24 | Liu X C, Mo S X. Studies on the colorimetric determination of organic acids in soil. Acta Pedologica Sinica, 1985(3): 290-296. |
刘修才, 莫淑勋. 土壤中有机酸比色法测定的研究. 土壤学报, 1985(3): 290-296. | |
25 | Li X Y, Liu H Y, Xue S Q, et al. Zinc mobilization effect by root exudates of different green manure. Soil and Fertilizer Sciences in China, 2022, 297(1): 81-89. |
李欣雨, 刘函亦, 薛少琪, 等. 几种绿肥的根系分泌物对土壤锌的活化效应. 中国土壤与肥料, 2022, 297(1): 81-89. | |
26 | Tiessen H, Moir J O. Characterization of available P by sequential extraction. Boca Raton: CRC Press, 1993: 75-86. |
27 | Cao N, Zhang M L, Zhi W Q, et al. Straw retention combined with phosphorus fertilizer promotes soil phosphorus availability by enhancing soil P-related enzymes and the abundance of phoC and phoD genes. Soil and Tillage Research, 2022, 220: 105390. |
28 | Wang X R, Shen J B, Liao H. Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops? Plant Science, 2010, 179(4): 302-306. |
29 | Krasilnikoff G, Gahoonia T, Nielsen N E. Variation in phosphorus uptake efficiency by genotypes of cowpea (Vigna unguiculata) due to differences in root and root hair length and induced rhizosphere processes. Plant and Soil, 2003, 251(1): 83-91. |
30 | Hernandez G, Ramírez M, Valdes-Lopez O, et al. Phosphorus stress in common bean: Root transcript and metabolic responses. Plant Physiology, 2007, 144: 752-767. |
31 | Ye D H, Zhang X Z, Li T X, et al. Phosphorus-acquisition characteristics and rhizosphere properties of wild barley in relation to genotypic differences as dependent on soil phosphorus availability. Plant and Soil, 2017, 423(1/2): 503-516. |
32 | Wang Z R, Zang H L. Fertilizer efficiency of phosphate rock on several acidic soils in Jiangsu Province. Soils, 1974(4) :29-32. |
王振荣, 臧惠林. 磷矿粉肥在江苏几种酸性土壤上的肥效. 土壤, 1974(4): 29-32. | |
33 | Wu L L. Research on the phosphorus forms of typical soils in northern China based on the Hedley method. Xianyang: Northwest A&F University, 2021. |
吴璐璐. 基于Hedley法对我国北方典型土壤磷素形态的研究. 咸阳: 西北农林科技大学, 2021. | |
34 | Wang K K, Ren T, Yan J Y, et al. Straw returning mediates soil microbial biomass carbon and phosphorus turnover to enhance soil phosphorus availability in a rice-oilseed rape rotation with different soil phosphorus levels. Agriculture, Ecosystems & Environment, 2022, 335: 107991. |
35 | Wang W H, Zhou X B, Zhou Y X, et al. The mechanism of rhizosphere phosphorus activation of two rape genotypes (Brassica napus L.) with different P efficiencies. Journal of Plant Nutrition and Fertilizers, 2011, 17(6): 1379-1387. |
王文华, 周鑫斌, 周永祥, 等. 不同磷效率油菜根际土壤磷活化机理研究. 植物营养与肥料学报, 2011, 17(6): 1379-1387. | |
36 | Wang X J, Tang C X, Guppy C N, et al. Phosphorus acquisition characteristics of cotton (Gossypium hirsutum L.), wheat (Triticum aestivum L.) and white lupin (Lupinus albus L.) under P deficient conditions. Plant and Soil, 2008, 312(1/2): 117-128. |
37 | Wen Z H, Li H B, Shen Q, et al. Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species. New Phytologist, 2009, 223(2): 882-895. |
38 | Wang Y L, Lambers H. Root-released organic anions in response to low phosphorus availability: recent progress, challenges and future perspectives. Plant and Soil, 2020, 447(1): 135-156. |
39 | Ryan P R, Delhaize E, Jones D L. Function and mechanism of organic anion exudation from plant roots. Annual Review of Plant Biology, 2001, 52: 527-560. |
40 | Wang B L, Tang X Y, Cheng L Y, et al. Nitric oxide is involved in phosphorus deficiency-induced cluster-root development and citrate exudation in white lupin. New Phytologist, 2010, 187: 1112-1123. |
41 | Liu H X, Wu J J, Wang J S, et al. Progress of research on tolerance to low-phosphorus stress in soybean. Soybean Science, 2017, 36(4): 639-644. |
刘海旭, 吴俊江, 王金生, 等. 大豆耐低磷研究进展. 大豆科学, 2017, 36(4): 639-644. | |
42 | Lan Z M, Lin X J, Zhang W G, et al. Effect of P deficiency on the emergence of Astragalus L. root exudates and mobilization of sparingly soluble phosphorus. Scientia Agricultura Sinica, 2012, 45(8): 1521-1531. |
兰忠明, 林新坚, 张伟光, 等. 缺磷对紫云英根系分泌物产生及难溶性磷活化的影响. 中国农业科学, 2012, 45(8): 1521-1531. | |
43 | Wang L S, Liu D. Functions and regulation of phosphate starvation-induced secreted acid phosphatases in higher plants. Plant Science, 2018, 271: 108-116. |
44 | Wu J S, Huang M, Xiao H A, et al. Dynamics in microbial immobilization and transformations of phosphorus in highly weathered subtropical soil following organic amendments. Plant and Soil, 2007, 290: 333-342. |
[1] | Xiu-fang LI, Wen-jing WEI, Yong PU, Ting-xuan LI, Dai-hua YE. Changes in phosphorus forms and phosphatase activity in the soil profile after treatment with swine manure and planting with Polygonum hydropiper [J]. Acta Prataculturae Sinica, 2024, 33(3): 61-72. |
[2] | Xiao-xia AN, Ying-ying ZHANG, Chun-hui MA, Man LI, Qian-bing ZHANG. Effects of phosphorus application and inoculation with arbuscular mycorrhizal fungi on alfalfa yield and phosphorus use efficiency [J]. Acta Prataculturae Sinica, 2023, 32(6): 71-84. |
[3] | Zheng TIAN, Zheng-yu YANG, Zhong-jie LU, Ben LUO, Mao ZHANG, Rui DONG. Acid-aluminum adaptability and tolerance evaluation of 44 alfalfa cultivars [J]. Acta Prataculturae Sinica, 2023, 32(3): 142-151. |
[4] | Zhan XIE, Lin MU, Zhi-fei ZHANG, Gui-hua CHEN, Yang LIU, Shuai GAO, Zhong-shan WEI. Effects on fermentation in alfalfa mixed silage of added lactic acid bacteria or organic acid salt combined with urea [J]. Acta Prataculturae Sinica, 2021, 30(5): 165-173. |
[5] | Ru-yue WANG, Shi-li YUAN, Wu-wu WEN, Peng ZHOU, Yuan AN. Effects of phosphorus on root growth and photosynthetic physiology of alfalfa seedlings under aluminum stress [J]. Acta Prataculturae Sinica, 2021, 30(10): 53-62. |
[6] | LEI Wei-qian, HU Yu-fu, YANG Ze-peng, HE Jian-feng, XIAO Hai-hua, SHU Xiang-yang, YANG Fan, LI Zheng-qing. Effects of reclamation on the soil phosphorus fractions of alpine meadow in Northwest Sichuan [J]. Acta Prataculturae Sinica, 2019, 28(5): 36-45. |
[7] | LI Zhen-song, LI Zhen-yi, ZHANG Qi-xin, HE Feng, WANG Yu-fei, WAN Li-qiang, LI Xiang-lin, TONG Zong-yong. Comparison of response mechanisms to low inorganic phosphate stress between alfalfa varieties Aohan and Victoria [J]. Acta Prataculturae Sinica, 2019, 28(1): 50-59. |
[8] | CAI Hua, XU Hui-hui, SUN Na, SONG Ting-ting, REN Yong-jing, YANG Sheng-qiu. Physiological aspects of photosynthesis and organic acid accumulation in alkali-resistant transgenic alfalfa containing the GsPPCK1 and GsPPCK3 genes [J]. Acta Prataculturae Sinica, 2018, 27(8): 107-117. |
[9] | XUE Bo-han, LI Na, SONG Gui-long, LI Shi-gang, PUYANG Xue-hua, LI Jin-bo. Effects of exogenous citric, malic and oxalic acids on the tolerance and enrichment efficiency of Elymus dahuricus under cadmium-stress [J]. Acta Prataculturae Sinica, 2018, 27(6): 128-136. |
[10] | LI Hai?yun, YAO Tuo, ZHANG Rong, ZHANG Jie, LI Zhi?yan, RONG Liang?yan, LU Xiao?wen, YANG Xiao?lei, XIA Dong?hui, LUO Hui?qin. Relationship between organic acids secreted from rhizosphere phosphate?solubilizing bacteria in Trifolium pratense and phosphate?solubilizing ability [J]. Acta Prataculturae Sinica, 2018, 27(12): 113-121. |
[11] | LI Xiao-Dong, WANG Xiao-Li, CHEN Xi, CAI Lu, ZENG Qing-Fei, SHU Jian-Hong, CAI Yi-Ming. Transcriptome profiling analysis of the phosphate-solubilizing mechanism of the white clover rhizosphere strain RW8 [J]. Acta Prataculturae Sinica, 2017, 26(8): 168-179. |
[12] | MA Ying, WANG Xiao-Ping, JIANG Hai-Bo, SHI De-Cheng. Characteristics of organic acids accumulation and oxalate metabolism in Kochia sieversiana under salt and alkali stresses [J]. Acta Prataculturae Sinica, 2017, 26(7): 158-165. |
[13] | CAI Lu, WANG Xiao-Li, CHEN Yin, WANG Zi-Yuan, LI Xiao-Dong. Isolation and identification of an inorganic phosphorus-solubilizing bacterium RW8 and its growth-promoting effect on white clover (Trifolium repens) [J]. Acta Prataculturae Sinica, 2017, 26(5): 181-188. |
[14] | ZHANG Qiang, LIU Ning-Fang, XIANG Zuo-Xiang, YANG Zhi-Jian, JIANG Yuan-Li, HU Long-Xing. Effects of neutral and alkaline salt stresses on the growth and physiological metabolism of Kentucky bluegrass [J]. Acta Prataculturae Sinica, 2017, 26(12): 67-76. |
[15] | LV Jia-Qiang, LI Chang-You, YANG Chun-Wu, HU Rui. Effect of natural saline soil on organic acid accumulation in the stem and leaf of Chloris virgata and analysis of stress factors [J]. Acta Prataculturae Sinica, 2015, 24(4): 95-103. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||